tspd_main.c 19.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */


/*******************************************************************************
 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
 * plug-in component to the Secure Monitor, registered as a runtime service. The
 * SPD is expected to be a functional extension of the Secure Payload (SP) that
 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
 * the Trusted OS/Applications range to the dispatcher. The SPD will either
 * handle the request locally or delegate it to the Secure Payload. It is also
 * responsible for initialising and maintaining communication with the SP.
 ******************************************************************************/
#include <arch_helpers.h>
42
43
44
#include <assert.h>
#include <bl_common.h>
#include <bl31.h>
45
#include <context_mgmt.h>
46
47
48
#include <debug.h>
#include <errno.h>
#include <platform.h>
49
#include <runtime_svc.h>
50
#include <stddef.h>
51
#include <tsp.h>
52
#include <uuid.h>
53
#include "tspd_private.h"
54
55

/*******************************************************************************
56
57
 * Address of the entrypoint vector table in the Secure Payload. It is
 * initialised once on the primary core after a cold boot.
58
 ******************************************************************************/
59
tsp_vectors_t *tsp_vectors;
60
61
62
63

/*******************************************************************************
 * Array to keep track of per-cpu Secure Payload state
 ******************************************************************************/
64
tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
65

66

67
68
69
70
71
/* TSP UID */
DEFINE_SVC_UUID(tsp_uuid,
		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);

72
int32_t tspd_init(void);
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the TSPD. It
 * validates the interrupt and upon success arranges entry into the TSP at
 * 'tsp_fiq_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{
	uint32_t linear_id;
	uint64_t mpidr;
	tsp_context_t *tsp_ctx;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

#if IMF_READ_INTERRUPT_ID
	/* Check the security status of the interrupt */
93
	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
94
95
96
97
#endif

	/* Sanity check the pointer to this cpu's context */
	mpidr = read_mpidr();
98
	assert(handle == cm_get_context(NON_SECURE));
99
100
101
102
103
104
105

	/* Save the non-secure context before entering the TSP */
	cm_el1_sysregs_context_save(NON_SECURE);

	/* Get a reference to this cpu's TSP context */
	linear_id = platform_get_core_pos(mpidr);
	tsp_ctx = &tspd_sp_context[linear_id];
106
	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

	/*
	 * Determine if the TSP was previously preempted. Its last known
	 * context has to be preserved in this case.
	 * The TSP should return control to the TSPD after handling this
	 * FIQ. Preserve essential EL3 context to allow entry into the
	 * TSP at the FIQ entry point using the 'cpu_context' structure.
	 * There is no need to save the secure system register context
	 * since the TSP is supposed to preserve it during S-EL1 interrupt
	 * handling.
	 */
	if (get_std_smc_active_flag(tsp_ctx->state)) {
		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						      CTX_SPSR_EL3);
		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						     CTX_ELR_EL3);
	}

	cm_el1_sysregs_context_restore(SECURE);
126
127
	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
128
129
130
131
132
133
134
135
136
137
138
	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
	 * instruction in normal world where the interrupt was generated is
	 * passed for debugging purposes. It is safe to retrieve this address
	 * from ELR_EL3 as the secure context will not take effect until
	 * el3_exit().
	 */
	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
}
139

140
141
142
143
144
145
146
/*******************************************************************************
 * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
 * (aarch32/aarch64) if not already known and initialises the context for entry
 * into the SP for its initialisation.
 ******************************************************************************/
int32_t tspd_setup(void)
{
Vikram Kanigiri's avatar
Vikram Kanigiri committed
147
	entry_point_info_t *tsp_ep_info;
148
149
150
151
152
153
154
155
156
157
	uint64_t mpidr = read_mpidr();
	uint32_t linear_id;

	linear_id = platform_get_core_pos(mpidr);

	/*
	 * Get information about the Secure Payload (BL32) image. Its
	 * absence is a critical failure.  TODO: Add support to
	 * conditionally include the SPD service
	 */
Vikram Kanigiri's avatar
Vikram Kanigiri committed
158
159
160
161
162
163
164
	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
	if (!tsp_ep_info) {
		WARN("No TSP provided by BL2 boot loader, Booting device"
			" without TSP initialization. SMC`s destined for TSP"
			" will return SMC_UNK\n");
		return 1;
	}
165

166
167
168
169
170
	/*
	 * If there's no valid entry point for SP, we return a non-zero value
	 * signalling failure initializing the service. We bail out without
	 * registering any handlers
	 */
Vikram Kanigiri's avatar
Vikram Kanigiri committed
171
	if (!tsp_ep_info->pc)
172
173
		return 1;

174
175
176
177
178
	/*
	 * We could inspect the SP image and determine it's execution
	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
	 * for the time being.
	 */
Vikram Kanigiri's avatar
Vikram Kanigiri committed
179
180
181
182
	tspd_init_tsp_ep_state(tsp_ep_info,
				TSP_AARCH64,
				tsp_ep_info->pc,
				&tspd_sp_context[linear_id]);
183

184
185
186
#if TSP_INIT_ASYNC
	bl31_set_next_image_type(SECURE);
#else
187
188
189
190
191
	/*
	 * All TSPD initialization done. Now register our init function with
	 * BL31 for deferred invocation
	 */
	bl31_register_bl32_init(&tspd_init);
192
#endif
Vikram Kanigiri's avatar
Vikram Kanigiri committed
193
	return 0;
194
195
196
197
198
199
200
201
202
}

/*******************************************************************************
 * This function passes control to the Secure Payload image (BL32) for the first
 * time on the primary cpu after a cold boot. It assumes that a valid secure
 * context has already been created by tspd_setup() which can be directly used.
 * It also assumes that a valid non-secure context has been initialised by PSCI
 * so it does not need to save and restore any non-secure state. This function
 * performs a synchronous entry into the Secure payload. The SP passes control
203
 * back to this routine through a SMC.
204
 ******************************************************************************/
205
int32_t tspd_init(void)
206
207
{
	uint64_t mpidr = read_mpidr();
208
	uint32_t linear_id = platform_get_core_pos(mpidr);
209
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
Vikram Kanigiri's avatar
Vikram Kanigiri committed
210
	entry_point_info_t *tsp_entry_point;
211
	uint64_t rc;
Vikram Kanigiri's avatar
Vikram Kanigiri committed
212
213
214
215
216
217
218
219
220

	/*
	 * Get information about the Secure Payload (BL32) image. Its
	 * absence is a critical failure.
	 */
	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
	assert(tsp_entry_point);

	cm_init_context(mpidr, tsp_entry_point);
221

222
	/*
223
224
	 * Arrange for an entry into the test secure payload. It will be
	 * returned via TSP_ENTRY_DONE case
225
	 */
226
227
	rc = tspd_synchronous_sp_entry(tsp_ctx);
	assert(rc != 0);
228

229
230
231
	return rc;
}

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*******************************************************************************
 * This function is responsible for handling all SMCs in the Trusted OS/App
 * range from the non-secure state as defined in the SMC Calling Convention
 * Document. It is also responsible for communicating with the Secure payload
 * to delegate work and return results back to the non-secure state. Lastly it
 * will also return any information that the secure payload needs to do the
 * work assigned to it.
 ******************************************************************************/
uint64_t tspd_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
250
	cpu_context_t *ns_cpu_context;
251
252
	unsigned long mpidr = read_mpidr();
	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
253
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
254
255
256
257
	uint64_t rc;
#if TSP_INIT_ASYNC
	entry_point_info_t *next_image_info;
#endif
258
259
260
261
262
263

	/* Determine which security state this SMC originated from */
	ns = is_caller_non_secure(flags);

	switch (smc_fid) {

264
265
266
267
268
269
270
271
272
	/*
	 * This function ID is used by TSP to indicate that it was
	 * preempted by a normal world IRQ.
	 *
	 */
	case TSP_PREEMPTED:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

273
		assert(handle == cm_get_context(SECURE));
274
275
		cm_el1_sysregs_context_save(SECURE);
		/* Get a reference to the non-secure context */
276
		ns_cpu_context = cm_get_context(NON_SECURE);
277
278
279
280
281
282
283
284
285
286
287
288
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since the TSP was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET1(ns_cpu_context, SMC_PREEMPTED);

289
290
291
292
293
294
295
296
297
	/*
	 * This function ID is used only by the TSP to indicate that it has
	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
	 * in the normal world.
	 */
	case TSP_HANDLED_S_EL1_FIQ:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

298
		assert(handle == cm_get_context(SECURE));
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

		/*
		 * Restore the relevant EL3 state which saved to service
		 * this SMC.
		 */
		if (get_std_smc_active_flag(tsp_ctx->state)) {
			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
				    CTX_SPSR_EL3,
				    tsp_ctx->saved_spsr_el3);
			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
				    CTX_ELR_EL3,
				    tsp_ctx->saved_elr_el3);
		}

		/* Get a reference to the non-secure context */
314
		ns_cpu_context = cm_get_context(NON_SECURE);
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since the TSP was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET0((uint64_t) ns_cpu_context);


	/*
	 * This function ID is used only by the TSP to indicate that it was
	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
	 * in the normal world.
	 */
	case TSP_EL3_FIQ:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

337
		assert(handle == cm_get_context(SECURE));
338
339
340
341
342
343
344
345

		/* Assert that standard SMC execution has been preempted */
		assert(get_std_smc_active_flag(tsp_ctx->state));

		/* Save the secure system register state */
		cm_el1_sysregs_context_save(SECURE);

		/* Get a reference to the non-secure context */
346
		ns_cpu_context = cm_get_context(NON_SECURE);
347
348
349
350
351
352
353
354
355
		assert(ns_cpu_context);

		/* Restore non-secure state */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);


356
357
358
359
360
361
362
363
364
365
366
367
	/*
	 * This function ID is used only by the SP to indicate it has
	 * finished initialising itself after a cold boot
	 */
	case TSP_ENTRY_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * Stash the SP entry points information. This is done
		 * only once on the primary cpu
		 */
368
369
		assert(tsp_vectors == NULL);
		tsp_vectors = (tsp_vectors_t *) x1;
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
		if (tsp_vectors) {
			set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);

			/*
			 * TSP has been successfully initialized. Register power
			 * managemnt hooks with PSCI
			 */
			psci_register_spd_pm_hook(&tspd_pm);

			/*
			 * Register an interrupt handler for S-EL1 interrupts
			 * when generated during code executing in the
			 * non-secure state.
			 */
			flags = 0;
			set_interrupt_rm_flag(flags, NON_SECURE);
			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
						tspd_sel1_interrupt_handler,
						flags);
			if (rc)
				panic();
		}


#if TSP_INIT_ASYNC
		/* Save the Secure EL1 system register context */
		assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
		cm_el1_sysregs_context_save(SECURE);

		/* Program EL3 registers to enable entry into the next EL */
		next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
		assert(next_image_info);
		assert(NON_SECURE ==
				GET_SECURITY_STATE(next_image_info->h.attr));

		cm_init_context(read_mpidr_el1(), next_image_info);
		cm_prepare_el3_exit(NON_SECURE);
		SMC_RET0(cm_get_context(NON_SECURE));
#else
410
411
412
413
414
415
		/*
		 * SP reports completion. The SPD must have initiated
		 * the original request through a synchronous entry
		 * into the SP. Jump back to the original C runtime
		 * context.
		 */
416
		tspd_synchronous_sp_exit(tsp_ctx, x1);
417
#endif
418

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. turning itself on in response to an earlier psci
	 *    cpu_on request
	 * 2. resuming itself after an earlier psci cpu_suspend
	 *    request.
	 */
	case TSP_ON_DONE:
	case TSP_RESUME_DONE:

	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. suspending itself after an earlier psci cpu_suspend
	 *    request.
	 * 2. turning itself off in response to an earlier psci
	 *    cpu_off request.
	 */
	case TSP_OFF_DONE:
	case TSP_SUSPEND_DONE:
440
441
	case TSP_SYSTEM_OFF_DONE:
	case TSP_SYSTEM_RESET_DONE:
442
443
444
445
446
447
448
449
450
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * SP reports completion. The SPD must have initiated the
		 * original request through a synchronous entry into the SP.
		 * Jump back to the original C runtime context, and pass x1 as
		 * return value to the caller
		 */
451
		tspd_synchronous_sp_exit(tsp_ctx, x1);
452

453
454
455
456
457
		/*
		 * Request from non-secure client to perform an
		 * arithmetic operation or response from secure
		 * payload to an earlier request.
		 */
458
459
460
461
462
463
464
465
466
	case TSP_FAST_FID(TSP_ADD):
	case TSP_FAST_FID(TSP_SUB):
	case TSP_FAST_FID(TSP_MUL):
	case TSP_FAST_FID(TSP_DIV):

	case TSP_STD_FID(TSP_ADD):
	case TSP_STD_FID(TSP_SUB):
	case TSP_STD_FID(TSP_MUL):
	case TSP_STD_FID(TSP_DIV):
467
468
469
470
471
472
473
		if (ns) {
			/*
			 * This is a fresh request from the non-secure client.
			 * The parameters are in x1 and x2. Figure out which
			 * registers need to be preserved, save the non-secure
			 * state and send the request to the secure payload.
			 */
474
			assert(handle == cm_get_context(NON_SECURE));
475
476
477
478
479

			/* Check if we are already preempted */
			if (get_std_smc_active_flag(tsp_ctx->state))
				SMC_RET1(handle, SMC_UNK);

480
481
482
			cm_el1_sysregs_context_save(NON_SECURE);

			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
483
			store_tsp_args(tsp_ctx, x1, x2);
484
485
486
487
488
489
490
491
492
493
494
495
496

			/*
			 * We are done stashing the non-secure context. Ask the
			 * secure payload to do the work now.
			 */

			/*
			 * Verify if there is a valid context to use, copy the
			 * operation type and parameters to the secure context
			 * and jump to the fast smc entry point in the secure
			 * payload. Entry into S-EL1 will take place upon exit
			 * from this function.
			 */
497
			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
498
499
500
501
502
503
504

			/* Set appropriate entry for SMC.
			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
			 * flags as appropriate.
			 */
			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
				cm_set_elr_el3(SECURE, (uint64_t)
505
						&tsp_vectors->fast_smc_entry);
506
507
508
			} else {
				set_std_smc_active_flag(tsp_ctx->state);
				cm_set_elr_el3(SECURE, (uint64_t)
509
						&tsp_vectors->std_smc_entry);
510
511
			}

512
513
			cm_el1_sysregs_context_restore(SECURE);
			cm_set_next_eret_context(SECURE);
514
			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
515
516
517
		} else {
			/*
			 * This is the result from the secure client of an
518
			 * earlier request. The results are in x1-x3. Copy it
519
520
521
			 * into the non-secure context, save the secure state
			 * and return to the non-secure state.
			 */
522
			assert(handle == cm_get_context(SECURE));
523
524
525
			cm_el1_sysregs_context_save(SECURE);

			/* Get a reference to the non-secure context */
526
			ns_cpu_context = cm_get_context(NON_SECURE);
527
528
529
530
531
			assert(ns_cpu_context);

			/* Restore non-secure state */
			cm_el1_sysregs_context_restore(NON_SECURE);
			cm_set_next_eret_context(NON_SECURE);
532
533
534
			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD)
				clr_std_smc_active_flag(tsp_ctx->state);
			SMC_RET3(ns_cpu_context, x1, x2, x3);
535
536
537
538
		}

		break;

539
540
541
542
543
		/*
		 * Request from non secure world to resume the preempted
		 * Standard SMC call.
		 */
	case TSP_FID_RESUME:
544
545
546
547
548
		/* RESUME should be invoked only by normal world */
		if (!ns) {
			assert(0);
			break;
		}
549

550
551
552
553
554
		/*
		 * This is a resume request from the non-secure client.
		 * save the non-secure state and send the request to
		 * the secure payload.
		 */
555
		assert(handle == cm_get_context(NON_SECURE));
556

557
558
559
		/* Check if we are already preempted before resume */
		if (!get_std_smc_active_flag(tsp_ctx->state))
			SMC_RET1(handle, SMC_UNK);
560

561
		cm_el1_sysregs_context_save(NON_SECURE);
562

563
564
565
566
		/*
		 * We are done stashing the non-secure context. Ask the
		 * secure payload to do the work now.
		 */
567

568
569
570
571
572
573
		/* We just need to return to the preempted point in
		 * TSP and the execution will resume as normal.
		 */
		cm_el1_sysregs_context_restore(SECURE);
		cm_set_next_eret_context(SECURE);
		SMC_RET0(&tsp_ctx->cpu_ctx);
574

575
576
577
578
579
580
581
582
583
584
		/*
		 * This is a request from the secure payload for more arguments
		 * for an ongoing arithmetic operation requested by the
		 * non-secure world. Simply return the arguments from the non-
		 * secure client in the original call.
		 */
	case TSP_GET_ARGS:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

585
586
		get_tsp_args(tsp_ctx, x1, x2);
		SMC_RET2(handle, x1, x2);
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
	case TOS_CALL_COUNT:
		/*
		 * Return the number of service function IDs implemented to
		 * provide service to non-secure
		 */
		SMC_RET1(handle, TSP_NUM_FID);

	case TOS_UID:
		/* Return TSP UID to the caller */
		SMC_UUID_RET(handle, tsp_uuid);

	case TOS_CALL_VERSION:
		/* Return the version of current implementation */
		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);

603
	default:
604
		break;
605
606
	}

607
	SMC_RET1(handle, SMC_UNK);
608
609
}

610
/* Define a SPD runtime service descriptor for fast SMC calls */
611
DECLARE_RT_SVC(
612
	tspd_fast,
613
614
615
616
617
618
619

	OEN_TOS_START,
	OEN_TOS_END,
	SMC_TYPE_FAST,
	tspd_setup,
	tspd_smc_handler
);
620
621
622
623
624
625
626
627
628
629
630

/* Define a SPD runtime service descriptor for standard SMC calls */
DECLARE_RT_SVC(
	tspd_std,

	OEN_TOS_START,
	OEN_TOS_END,
	SMC_TYPE_STD,
	NULL,
	tspd_smc_handler
);