psci_common.c 34.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
#include <arch.h>
8
#include <arch_helpers.h>
9
10
11
#include <assert.h>
#include <bl_common.h>
#include <context.h>
12
#include <context_mgmt.h>
13
#include <debug.h>
14
#include <platform.h>
15
#include <string.h>
16
#include <utils.h>
17
#include "psci_private.h"
18

19
/*
20
21
 * SPD power management operations, expected to be supplied by the registered
 * SPD on successful SP initialization
22
 */
23
const spd_pm_ops_t *psci_spd_pm;
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/*
 * PSCI requested local power state map. This array is used to store the local
 * power states requested by a CPU for power levels from level 1 to
 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
 * CPU are the same.
 *
 * During state coordination, the platform is passed an array containing the
 * local states requested for a particular non cpu power domain by each cpu
 * within the domain.
 *
 * TODO: Dense packing of the requested states will cause cache thrashing
 * when multiple power domains write to it. If we allocate the requested
 * states at each power level in a cache-line aligned per-domain memory,
 * the cache thrashing can be avoided.
 */
static plat_local_state_t
	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];


45
/*******************************************************************************
46
47
48
49
50
 * Arrays that hold the platform's power domain tree information for state
 * management of power domains.
 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
 * which is an ancestor of a CPU power domain.
 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
51
 ******************************************************************************/
52
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
53
#if USE_COHERENT_MEM
54
__section("tzfw_coherent_mem")
55
56
#endif
;
57

58
59
/* Lock for PSCI state coordination */
DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
60

61
62
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];

63
64
65
/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
66
const plat_psci_ops_t *psci_plat_pm_ops;
67

68
69
70
/******************************************************************************
 * Check that the maximum power level supported by the platform makes sense
 *****************************************************************************/
71
72
73
CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
	assert_platform_max_pwrlvl_check);
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
 * The plat_local_state used by the platform is one of these types: RUN,
 * RETENTION and OFF. The platform can define further sub-states for each type
 * apart from RUN. This categorization is done to verify the sanity of the
 * psci_power_state passed by the platform and to print debug information. The
 * categorization is done on the basis of the following conditions:
 *
 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
 *
 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_RETN.
 *
 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_OFF.
 */
typedef enum plat_local_state_type {
	STATE_TYPE_RUN = 0,
	STATE_TYPE_RETN,
	STATE_TYPE_OFF
} plat_local_state_type_t;

96
97
98
99
100
101
102
103
104
105
106
107
108
/* Function used to categorize plat_local_state. */
static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
{
	if (state != 0U) {
		if (state > PLAT_MAX_RET_STATE) {
			return STATE_TYPE_OFF;
		} else {
			return STATE_TYPE_RETN;
		}
	} else {
		return STATE_TYPE_RUN;
	}
}
109
110
111
112
113

/******************************************************************************
 * Check that the maximum retention level supported by the platform is less
 * than the maximum off level.
 *****************************************************************************/
114
CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
115
116
117
118
119
120
121
122
		assert_platform_max_off_and_retn_state_check);

/******************************************************************************
 * This function ensures that the power state parameter in a CPU_SUSPEND request
 * is valid. If so, it returns the requested states for each power level.
 *****************************************************************************/
int psci_validate_power_state(unsigned int power_state,
			      psci_power_state_t *state_info)
123
{
124
	/* Check SBZ bits in power state are zero */
125
	if (psci_check_power_state(power_state) != 0U)
126
		return PSCI_E_INVALID_PARAMS;
127

128
	assert(psci_plat_pm_ops->validate_power_state != NULL);
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
	/* Validate the power_state using platform pm_ops */
	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
}

/******************************************************************************
 * This function retrieves the `psci_power_state_t` for system suspend from
 * the platform.
 *****************************************************************************/
void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
{
	/*
	 * Assert that the required pm_ops hook is implemented to ensure that
	 * the capability detected during psci_setup() is valid.
	 */
144
	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
145

146
147
148
149
	/*
	 * Query the platform for the power_state required for system suspend
	 */
	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
150
151
}

152
153
154
155
156
157
158
159
/*******************************************************************************
 * This function verifies that the all the other cores in the system have been
 * turned OFF and the current CPU is the last running CPU in the system.
 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
 * otherwise.
 ******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
160
	int cpu_idx, my_idx = (int) plat_my_core_pos();
161

162
163
164
	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
		if (cpu_idx == my_idx) {
			assert(psci_get_aff_info_state() == AFF_STATE_ON);
165
166
167
			continue;
		}

168
		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
169
170
171
172
173
174
			return 0;
	}

	return 1;
}

175
/*******************************************************************************
176
177
178
 * Routine to return the maximum power level to traverse to after a cpu has
 * been physically powered up. It is expected to be called immediately after
 * reset from assembler code.
179
 ******************************************************************************/
180
static unsigned int get_power_on_target_pwrlvl(void)
181
{
182
	unsigned int pwrlvl;
183
184

	/*
185
186
187
188
	 * Assume that this cpu was suspended and retrieve its target power
	 * level. If it is invalid then it could only have been turned off
	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
	 * cpu can be turned off to.
189
	 */
190
	pwrlvl = psci_get_suspend_pwrlvl();
191
	if (pwrlvl == PSCI_INVALID_PWR_LVL)
192
193
		pwrlvl = PLAT_MAX_PWR_LVL;
	return pwrlvl;
194
195
}

196
197
198
199
200
201
202
203
/******************************************************************************
 * Helper function to update the requested local power state array. This array
 * does not store the requested state for the CPU power level. Hence an
 * assertion is added to prevent us from accessing the wrong index.
 *****************************************************************************/
static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
					 unsigned int cpu_idx,
					 plat_local_state_t req_pwr_state)
204
{
205
206
207
208
	/*
	 * This should never happen, we have this here to avoid
	 * "array subscript is above array bounds" errors in GCC.
	 */
209
	assert(pwrlvl > PSCI_CPU_PWR_LVL);
210
211
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
212
	psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
213
#pragma GCC diagnostic pop
214
215
}

216
217
218
219
/******************************************************************************
 * This function initializes the psci_req_local_pwr_states.
 *****************************************************************************/
void psci_init_req_local_pwr_states(void)
220
{
221
	/* Initialize the requested state of all non CPU power domains as OFF */
222
223
224
225
226
227
228
229
230
	unsigned int pwrlvl;
	int core;

	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
		for (core = 0; core < PLATFORM_CORE_COUNT; core++) {
			psci_req_local_pwr_states[pwrlvl][core] =
				PLAT_MAX_OFF_STATE;
		}
	}
231
}
232

233
234
235
236
237
238
239
240
/******************************************************************************
 * Helper function to return a reference to an array containing the local power
 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
 * array will be the number of cpu power domains of which this power domain is
 * an ancestor. These requested states will be used to determine a suitable
 * target state for this power domain during psci state coordination. An
 * assertion is added to prevent us from accessing the CPU power level.
 *****************************************************************************/
241
static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
242
							 int cpu_idx)
243
244
{
	assert(pwrlvl > PSCI_CPU_PWR_LVL);
245

246
	return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
247
}
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
 * memory.
 *
 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
 * it's accessed by both cached and non-cached participants. To serve the common
 * minimum, perform a cache flush before read and after write so that non-cached
 * participants operate on latest data in main memory.
 *
 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
 * In both cases, no cache operations are required.
 */

/*
 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
 * after any required cache maintenance operation.
 */
static plat_local_state_t get_non_cpu_pd_node_local_state(
		unsigned int parent_idx)
{
270
#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY)
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
	flush_dcache_range(
			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
	return psci_non_cpu_pd_nodes[parent_idx].local_state;
}

/*
 * Update local state of non-CPU power domain node from a cached CPU; perform
 * any required cache maintenance operation afterwards.
 */
static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
		plat_local_state_t state)
{
	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
286
#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY)
287
288
289
290
291
292
	flush_dcache_range(
			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
}

293
294
295
296
297
298
/******************************************************************************
 * Helper function to return the current local power state of each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
 * function will be called after a cpu is powered on to find the local state
 * each power domain has emerged from.
 *****************************************************************************/
299
300
void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
				      psci_power_state_t *target_state)
301
{
302
	unsigned int parent_idx, lvl;
303
304
305
306
307
308
	plat_local_state_t *pd_state = target_state->pwr_domain_state;

	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local power state from node to state_info */
309
	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
310
		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
311
312
313
314
315
316
317
318
319
320
321
322
323
324
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the the higher levels to RUN */
	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}

/******************************************************************************
 * Helper function to set the target local power state that each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
 * enter. This function will be called after coordination of requested power
 * states has been done for each power level.
 *****************************************************************************/
325
static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
326
327
					const psci_power_state_t *target_state)
{
328
	unsigned int parent_idx, lvl;
329
330
331
	const plat_local_state_t *pd_state = target_state->pwr_domain_state;

	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
332

333
	/*
334
	 * Need to flush as local_state might be accessed with Data Cache
335
	 * disabled during power on
336
	 */
337
	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
338
339
340
341

	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local_state from state_info */
342
	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
343
		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
344
345
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}
346
347
}

348

349
/*******************************************************************************
350
 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
351
 ******************************************************************************/
352
void psci_get_parent_pwr_domain_nodes(int cpu_idx,
353
				      unsigned int end_lvl,
354
				      unsigned int *node_index)
355
356
{
	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
357
	unsigned int i;
358
	unsigned int *node = node_index;
359

360
361
362
	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
		*node = parent_node;
		node++;
363
364
365
366
367
368
369
370
371
		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
	}
}

/******************************************************************************
 * This function is invoked post CPU power up and initialization. It sets the
 * affinity info state, target power state and requested power state for the
 * current CPU and all its ancestor power domains to RUN.
 *****************************************************************************/
372
void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
373
{
374
	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
375
376
377
	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;

	/* Reset the local_state to RUN for the non cpu power domains. */
378
	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
379
380
		set_non_cpu_pd_node_local_state(parent_idx,
				PSCI_LOCAL_STATE_RUN);
381
382
383
384
385
386
387
388
389
390
		psci_set_req_local_pwr_state(lvl,
					     cpu_idx,
					     PSCI_LOCAL_STATE_RUN);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the affinity info state to ON */
	psci_set_aff_info_state(AFF_STATE_ON);

	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
391
	psci_flush_cpu_data(psci_svc_cpu_data);
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
}

/******************************************************************************
 * This function is passed the local power states requested for each power
 * domain (state_info) between the current CPU domain and its ancestors until
 * the target power level (end_pwrlvl). It updates the array of requested power
 * states with this information.
 *
 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
 * retrieves the states requested by all the cpus of which the power domain at
 * that level is an ancestor. It passes this information to the platform to
 * coordinate and return the target power state. If the target state for a level
 * is RUN then subsequent levels are not considered. At the CPU level, state
 * coordination is not required. Hence, the requested and the target states are
 * the same.
 *
 * The 'state_info' is updated with the target state for each level between the
 * CPU and the 'end_pwrlvl' and returned to the caller.
 *
 * This function will only be invoked with data cache enabled and while
 * powering down a core.
 *****************************************************************************/
414
415
void psci_do_state_coordination(unsigned int end_pwrlvl,
				psci_power_state_t *state_info)
416
{
417
	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
418
419
	int start_idx;
	unsigned int ncpus;
420
421
	plat_local_state_t target_state, *req_states;

422
	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
423
	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
424

425
426
	/* For level 0, the requested state will be equivalent
	   to target state */
427
	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

		/* First update the requested power state */
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);

		/* Get the requested power states for this power level */
		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
		req_states = psci_get_req_local_pwr_states(lvl, start_idx);

		/*
		 * Let the platform coordinate amongst the requested states at
		 * this power level and return the target local power state.
		 */
		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
		target_state = plat_get_target_pwr_state(lvl,
							 req_states,
							 ncpus);

		state_info->pwr_domain_state[lvl] = target_state;

		/* Break early if the negotiated target power state is RUN */
449
		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
450
451
452
453
			break;

		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}
454
455

	/*
456
457
458
459
	 * This is for cases when we break out of the above loop early because
	 * the target power state is RUN at a power level < end_pwlvl.
	 * We update the requested power state from state_info and then
	 * set the target state as RUN.
460
	 */
461
	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
462
463
464
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);
		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
465

466
	}
467

468
469
	/* Update the target state in the power domain nodes */
	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
470
471
}

472
473
474
475
476
477
478
479
480
481
482
483
484
/******************************************************************************
 * This function validates a suspend request by making sure that if a standby
 * state is requested then no power level is turned off and the highest power
 * level is placed in a standby/retention state.
 *
 * It also ensures that the state level X will enter is not shallower than the
 * state level X + 1 will enter.
 *
 * This validation will be enabled only for DEBUG builds as the platform is
 * expected to perform these validations as well.
 *****************************************************************************/
int psci_validate_suspend_req(const psci_power_state_t *state_info,
			      unsigned int is_power_down_state)
485
{
486
487
488
489
490
491
492
	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
	plat_local_state_t state;
	plat_local_state_type_t req_state_type, deepest_state_type;
	int i;

	/* Find the target suspend power level */
	target_lvl = psci_find_target_suspend_lvl(state_info);
493
	if (target_lvl == PSCI_INVALID_PWR_LVL)
494
495
		return PSCI_E_INVALID_PARAMS;

496
497
	/* All power domain levels are in a RUN state to begin with */
	deepest_state_type = STATE_TYPE_RUN;
498

499
	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
		state = state_info->pwr_domain_state[i];
		req_state_type = find_local_state_type(state);

		/*
		 * While traversing from the highest power level to the lowest,
		 * the state requested for lower levels has to be the same or
		 * deeper i.e. equal to or greater than the state at the higher
		 * levels. If this condition is true, then the requested state
		 * becomes the deepest state encountered so far.
		 */
		if (req_state_type < deepest_state_type)
			return PSCI_E_INVALID_PARAMS;
		deepest_state_type = req_state_type;
	}

	/* Find the highest off power level */
	max_off_lvl = psci_find_max_off_lvl(state_info);

	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
519
	max_retn_lvl = PSCI_INVALID_PWR_LVL;
520
521
522
523
524
525
526
527
	if (target_lvl != max_off_lvl)
		max_retn_lvl = target_lvl;

	/*
	 * If this is not a request for a power down state then max off level
	 * has to be invalid and max retention level has to be a valid power
	 * level.
	 */
528
529
530
	if ((is_power_down_state == 0U) &&
			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
531
532
533
534
535
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

536
537
538
539
540
/******************************************************************************
 * This function finds the highest power level which will be powered down
 * amongst all the power levels specified in the 'state_info' structure
 *****************************************************************************/
unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
541
{
542
	int i;
543

544
545
546
	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
			return (unsigned int) i;
547
548
	}

549
	return PSCI_INVALID_PWR_LVL;
550
551
552
553
554
555
556
557
558
559
}

/******************************************************************************
 * This functions finds the level of the highest power domain which will be
 * placed in a low power state during a suspend operation.
 *****************************************************************************/
unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
{
	int i;

560
561
562
	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
			return (unsigned int) i;
563
	}
564

565
	return PSCI_INVALID_PWR_LVL;
566
567
}

568
/*******************************************************************************
569
570
571
 * This function is passed a cpu_index and the highest level in the topology
 * tree that the operation should be applied to. It picks up locks in order of
 * increasing power domain level in the range specified.
572
 ******************************************************************************/
573
void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx)
574
{
575
	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
576
	unsigned int level;
577

578
	/* No locking required for level 0. Hence start locking from level 1 */
579
	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
580
581
		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
582
583
584
585
	}
}

/*******************************************************************************
586
587
588
 * This function is passed a cpu_index and the highest level in the topology
 * tree that the operation should be applied to. It releases the locks in order
 * of decreasing power domain level in the range specified.
589
 ******************************************************************************/
590
void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx)
591
{
592
	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
593
	unsigned int level;
594

595
596
	/* Get the parent nodes */
	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
597

598
	/* Unlock top down. No unlocking required for level 0. */
599
600
	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
		parent_idx = parent_nodes[level - 1U];
601
		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
602
603
604
	}
}

605
/*******************************************************************************
606
 * Simple routine to determine whether a mpidr is valid or not.
607
 ******************************************************************************/
608
int psci_validate_mpidr(u_register_t mpidr)
609
{
610
	if (plat_core_pos_by_mpidr(mpidr) < 0)
611
		return PSCI_E_INVALID_PARAMS;
612
613

	return PSCI_E_SUCCESS;
614
615
616
}

/*******************************************************************************
617
 * This function determines the full entrypoint information for the requested
618
 * PSCI entrypoint on power on/resume and returns it.
619
 ******************************************************************************/
Soby Mathew's avatar
Soby Mathew committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#ifdef AARCH32
static int psci_get_ns_ep_info(entry_point_info_t *ep,
			       uintptr_t entrypoint,
			       u_register_t context_id)
{
	u_register_t ep_attr;
	unsigned int aif, ee, mode;
	u_register_t scr = read_scr();
	u_register_t ns_sctlr, sctlr;

	/* Switch to non secure state */
	write_scr(scr | SCR_NS_BIT);
	isb();
	ns_sctlr = read_sctlr();

	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;

	/* Return to original state */
	write_scr(scr);
	isb();
	ee = 0;

	ep_attr = NON_SECURE | EP_ST_DISABLE;
	if (sctlr & SCTLR_EE_BIT) {
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);

	ep->pc = entrypoint;
650
	zeromem(&ep->args, sizeof(ep->args));
Soby Mathew's avatar
Soby Mathew committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
	ep->args.arg0 = context_id;

	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;

	/*
	 * TODO: Choose async. exception bits if HYP mode is not
	 * implemented according to the values of SCR.{AW, FW} bits
	 */
	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;

	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);

	return PSCI_E_SUCCESS;
}

#else
667
static int psci_get_ns_ep_info(entry_point_info_t *ep,
668
669
			       uintptr_t entrypoint,
			       u_register_t context_id)
670
{
671
	u_register_t ep_attr, sctlr;
672
	unsigned int daif, ee, mode;
673
674
	u_register_t ns_scr_el3 = read_scr_el3();
	u_register_t ns_sctlr_el1 = read_sctlr_el1();
675

676
677
	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
		read_sctlr_el2() : ns_sctlr_el1;
678
	ee = 0;
679

680
	ep_attr = NON_SECURE | EP_ST_DISABLE;
681
	if ((sctlr & SCTLR_EE_BIT) != 0U) {
682
683
684
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
685
	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
686

687
	ep->pc = entrypoint;
688
	zeromem(&ep->args, sizeof(ep->args));
689
	ep->args.arg0 = context_id;
690
691
692
693
694

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
695
	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
696
697
698
699
700

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
701
		if ((entrypoint & 0x1UL) != 0UL)
702
			return PSCI_E_INVALID_ADDRESS;
703

704
		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
705

706
		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
707
708
	} else {

709
710
		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
			MODE32_hyp : MODE32_svc;
711
712
713
714
715

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
716
717
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

718
		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
719
720
	}

721
	return PSCI_E_SUCCESS;
722
}
Soby Mathew's avatar
Soby Mathew committed
723
#endif
724

725
726
727
728
729
730
/*******************************************************************************
 * This function validates the entrypoint with the platform layer if the
 * appropriate pm_ops hook is exported by the platform and returns the
 * 'entry_point_info'.
 ******************************************************************************/
int psci_validate_entry_point(entry_point_info_t *ep,
731
732
			      uintptr_t entrypoint,
			      u_register_t context_id)
733
734
735
736
{
	int rc;

	/* Validate the entrypoint using platform psci_ops */
737
	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
738
739
740
741
742
743
744
745
746
747
748
749
750
751
		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
		if (rc != PSCI_E_SUCCESS)
			return PSCI_E_INVALID_ADDRESS;
	}

	/*
	 * Verify and derive the re-entry information for
	 * the non-secure world from the non-secure state from
	 * where this call originated.
	 */
	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
	return rc;
}

752
753
/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
754
755
756
757
758
759
 * traverses the node information and finds the highest power level powered
 * off and performs generic, architectural, platform setup and state management
 * to power on that power level and power levels below it.
 * e.g. For a cpu that's been powered on, it will call the platform specific
 * code to enable the gic cpu interface and for a cluster it will enable
 * coherency at the interconnect level in addition to gic cpu interface.
760
 ******************************************************************************/
Soby Mathew's avatar
Soby Mathew committed
761
void psci_warmboot_entrypoint(void)
762
{
763
764
	unsigned int end_pwrlvl;
	int cpu_idx = (int) plat_my_core_pos();
765
	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
766
767

	/*
768
769
	 * Verify that we have been explicitly turned ON or resumed from
	 * suspend.
770
	 */
771
772
	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
		ERROR("Unexpected affinity info state");
773
		panic();
774
	}
775
776

	/*
777
778
	 * Get the maximum power domain level to traverse to after this cpu
	 * has been physically powered up.
779
	 */
780
	end_pwrlvl = get_power_on_target_pwrlvl();
781
782

	/*
783
784
785
	 * This function acquires the lock corresponding to each power level so
	 * that by the time all locks are taken, the system topology is snapshot
	 * and state management can be done safely.
786
	 */
787
	psci_acquire_pwr_domain_locks(end_pwrlvl, cpu_idx);
788

789
790
	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);

791
#if ENABLE_PSCI_STAT
792
	plat_psci_stat_accounting_stop(&state_info);
793
794
#endif

795
	/*
796
797
798
799
800
801
802
803
804
805
	 * This CPU could be resuming from suspend or it could have just been
	 * turned on. To distinguish between these 2 cases, we examine the
	 * affinity state of the CPU:
	 *  - If the affinity state is ON_PENDING then it has just been
	 *    turned on.
	 *  - Else it is resuming from suspend.
	 *
	 * Depending on the type of warm reset identified, choose the right set
	 * of power management handler and perform the generic, architecture
	 * and platform specific handling.
806
	 */
807
808
809
810
	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
		psci_cpu_on_finish(cpu_idx, &state_info);
	else
		psci_cpu_suspend_finish(cpu_idx, &state_info);
811

812
	/*
813
814
	 * Set the requested and target state of this CPU and all the higher
	 * power domains which are ancestors of this CPU to run.
815
	 */
816
	psci_set_pwr_domains_to_run(end_pwrlvl);
817

818
819
820
821
822
823
824
#if ENABLE_PSCI_STAT
	/*
	 * Update PSCI stats.
	 * Caches are off when writing stats data on the power down path.
	 * Since caches are now enabled, it's necessary to do cache
	 * maintenance before reading that same data.
	 */
825
	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
826
827
#endif

828
	/*
829
	 * This loop releases the lock corresponding to each power level
830
831
	 * in the reverse order to which they were acquired.
	 */
832
	psci_release_pwr_domain_locks(end_pwrlvl, cpu_idx);
833
}
834
835
836
837
838
839

/*******************************************************************************
 * This function initializes the set of hooks that PSCI invokes as part of power
 * management operation. The power management hooks are expected to be provided
 * by the SPD, after it finishes all its initialization
 ******************************************************************************/
840
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
841
{
842
	assert(pm != NULL);
843
	psci_spd_pm = pm;
Soby Mathew's avatar
Soby Mathew committed
844

845
	if (pm->svc_migrate != NULL)
Soby Mathew's avatar
Soby Mathew committed
846
847
		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);

848
	if (pm->svc_migrate_info != NULL)
Soby Mathew's avatar
Soby Mathew committed
849
850
		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
				| define_psci_cap(PSCI_MIG_INFO_TYPE);
851
}
852

Soby Mathew's avatar
Soby Mathew committed
853
854
855
856
857
858
859
/*******************************************************************************
 * This function invokes the migrate info hook in the spd_pm_ops. It performs
 * the necessary return value validation. If the Secure Payload is UP and
 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
 * is resident through the mpidr parameter. Else the value of the parameter on
 * return is undefined.
 ******************************************************************************/
860
int psci_spd_migrate_info(u_register_t *mpidr)
Soby Mathew's avatar
Soby Mathew committed
861
862
863
{
	int rc;

864
	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
Soby Mathew's avatar
Soby Mathew committed
865
866
867
868
		return PSCI_E_NOT_SUPPORTED;

	rc = psci_spd_pm->svc_migrate_info(mpidr);

869
870
	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
Soby Mathew's avatar
Soby Mathew committed
871
872
873
874
875

	return rc;
}


876
/*******************************************************************************
877
 * This function prints the state of all power domains present in the
878
879
 * system
 ******************************************************************************/
880
void psci_print_power_domain_map(void)
881
882
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
883
	int idx;
884
885
886
	plat_local_state_t state;
	plat_local_state_type_t state_type;

887
	/* This array maps to the PSCI_STATE_X definitions in psci.h */
Soby Mathew's avatar
Soby Mathew committed
888
	static const char * const psci_state_type_str[] = {
889
		"ON",
890
		"RETENTION",
891
892
893
		"OFF",
	};

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
	INFO("PSCI Power Domain Map:\n");
	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
							idx++) {
		state_type = find_local_state_type(
				psci_non_cpu_pd_nodes[idx].local_state);
		INFO("  Domain Node : Level %u, parent_node %d,"
				" State %s (0x%x)\n",
				psci_non_cpu_pd_nodes[idx].level,
				psci_non_cpu_pd_nodes[idx].parent_node,
				psci_state_type_str[state_type],
				psci_non_cpu_pd_nodes[idx].local_state);
	}

	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
		state = psci_get_cpu_local_state_by_idx(idx);
		state_type = find_local_state_type(state);
910
		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
911
				" State %s (0x%x)\n",
912
				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
913
914
915
				psci_cpu_pd_nodes[idx].parent_node,
				psci_state_type_str[state_type],
				psci_get_cpu_local_state_by_idx(idx));
916
917
918
	}
#endif
}
919

920
921
922
923
924
925
926
927
928
/******************************************************************************
 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
 * have ever been powered up would have set its MPDIR value to something other
 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
 * meaningful only when called on the primary CPU during early boot.
 *****************************************************************************/
int psci_secondaries_brought_up(void)
{
929
	unsigned int idx, n_valid = 0U;
930

931
	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
932
933
934
935
		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
			n_valid++;
	}

936
	assert(n_valid > 0U);
937

938
	return (n_valid > 1U) ? 1 : 0;
939
940
}

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
/*******************************************************************************
 * Initiate power down sequence, by calling power down operations registered for
 * this CPU.
 ******************************************************************************/
void psci_do_pwrdown_sequence(unsigned int power_level)
{
#if HW_ASSISTED_COHERENCY
	/*
	 * With hardware-assisted coherency, the CPU drivers only initiate the
	 * power down sequence, without performing cache-maintenance operations
	 * in software. Data caches and MMU remain enabled both before and after
	 * this call.
	 */
	prepare_cpu_pwr_dwn(power_level);
#else
	/*
	 * Without hardware-assisted coherency, the CPU drivers disable data
	 * caches and MMU, then perform cache-maintenance operations in
	 * software.
	 *
	 * We ought to call prepare_cpu_pwr_dwn() to initiate power down
	 * sequence. We currently have data caches and MMU enabled, but the
	 * function will return with data caches and MMU disabled. We must
	 * ensure that the stack memory is flushed out to memory before we start
	 * popping from it again.
	 */
	psci_do_pwrdown_cache_maintenance(power_level);
#endif
}