plat_ble_setup.c 22.6 KB
Newer Older
1
2
3
4
5
6
7
/*
 * Copyright (C) 2018 Marvell International Ltd.
 *
 * SPDX-License-Identifier:     BSD-3-Clause
 * https://spdx.org/licenses
 */

8
9
10
11
12
13
14
15
#include <common/debug.h>
#include <drivers/marvell/ap807_clocks_init.h>
#include <drivers/marvell/aro.h>
#include <drivers/marvell/ccu.h>
#include <drivers/marvell/io_win.h>
#include <drivers/marvell/mochi/ap_setup.h>
#include <drivers/marvell/mochi/cp110_setup.h>

16
#include <armada_common.h>
17
18
19
20
21
22
23
24
25
#include <mv_ddr_if.h>
#include <mvebu_def.h>
#include <plat_marvell.h>

/* Register for skip image use */
#define SCRATCH_PAD_REG2		0xF06F00A8
#define SCRATCH_PAD_SKIP_VAL		0x01
#define NUM_OF_GPIO_PER_REG 32

26
27
#define MMAP_SAVE_AND_CONFIG		0
#define MMAP_RESTORE_SAVED		1
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

/* SAR clock settings */
#define MVEBU_AP_GEN_MGMT_BASE		(MVEBU_RFU_BASE + 0x8000)
#define MVEBU_AP_SAR_REG_BASE(r)	(MVEBU_AP_GEN_MGMT_BASE + 0x200 +\
								((r) << 2))

#define SAR_CLOCK_FREQ_MODE_OFFSET	(0)
#define SAR_CLOCK_FREQ_MODE_MASK	(0x1f << SAR_CLOCK_FREQ_MODE_OFFSET)
#define SAR_PIDI_LOW_SPEED_OFFSET	(20)
#define SAR_PIDI_LOW_SPEED_MASK		(1 << SAR_PIDI_LOW_SPEED_OFFSET)
#define SAR_PIDI_LOW_SPEED_SHIFT	(15)
#define SAR_PIDI_LOW_SPEED_SET		(1 << SAR_PIDI_LOW_SPEED_SHIFT)

#define FREQ_MODE_AP_SAR_REG_NUM	(0)
#define SAR_CLOCK_FREQ_MODE(v)		(((v) & SAR_CLOCK_FREQ_MODE_MASK) >> \
					SAR_CLOCK_FREQ_MODE_OFFSET)

45
#define AVS_I2C_EEPROM_ADDR		0x57	/* EEPROM */
46
47
48
49
#define AVS_EN_CTRL_REG			(MVEBU_AP_GEN_MGMT_BASE + 0x130)
#define AVS_ENABLE_OFFSET		(0)
#define AVS_SOFT_RESET_OFFSET		(2)
#define AVS_TARGET_DELTA_OFFSET		(21)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

#ifndef MVEBU_SOC_AP807
	/* AP806 SVC bits */
	#define AVS_LOW_VDD_LIMIT_OFFSET	(4)
	#define AVS_HIGH_VDD_LIMIT_OFFSET	(12)
	#define AVS_VDD_LOW_LIMIT_MASK	(0xFF << AVS_LOW_VDD_LIMIT_OFFSET)
	#define AVS_VDD_HIGH_LIMIT_MASK	(0xFF << AVS_HIGH_VDD_LIMIT_OFFSET)
#else
	/* AP807 SVC bits */
	#define AVS_LOW_VDD_LIMIT_OFFSET	(3)
	#define AVS_HIGH_VDD_LIMIT_OFFSET	(13)
	#define AVS_VDD_LOW_LIMIT_MASK	(0x3FF << AVS_LOW_VDD_LIMIT_OFFSET)
	#define AVS_VDD_HIGH_LIMIT_MASK	(0x3FF << AVS_HIGH_VDD_LIMIT_OFFSET)
#endif

65
66
67
68
69
70
71
72
73
74
75
76
/* VDD limit is 0.9V for A70x0 @ CPU frequency < 1600MHz */
#define AVS_A7K_LOW_CLK_VALUE		((0x80 << AVS_TARGET_DELTA_OFFSET) | \
					 (0x1A << AVS_HIGH_VDD_LIMIT_OFFSET) | \
					 (0x1A << AVS_LOW_VDD_LIMIT_OFFSET) | \
					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
					 (0x1 << AVS_ENABLE_OFFSET))
/* VDD limit is 1.0V for all A80x0 devices */
#define AVS_A8K_CLK_VALUE		((0x80 << AVS_TARGET_DELTA_OFFSET) | \
					 (0x24 << AVS_HIGH_VDD_LIMIT_OFFSET) | \
					 (0x24 << AVS_LOW_VDD_LIMIT_OFFSET) | \
					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
					 (0x1 << AVS_ENABLE_OFFSET))
77
78
79
/* VDD limit is 0.82V for all A3900 devices
 * AVS offsets are not the same as in A70x0
 */
80
81
82
83
84
#define AVS_A3900_CLK_VALUE		((0x80 << 24) | \
					 (0x2c2 << 13) | \
					 (0x2c2 << 3) | \
					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
					 (0x1 << AVS_ENABLE_OFFSET))
85
86
87
88
89
90
/* VDD is 0.88V for 2GHz clock */
#define AVS_A3900_HIGH_CLK_VALUE	((0x80 << 24) | \
					 (0x2f5 << 13) | \
					 (0x2f5 << 3) | \
					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
					 (0x1 << AVS_ENABLE_OFFSET))
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

#define MVEBU_AP_EFUSE_SRV_CTRL_REG	(MVEBU_AP_GEN_MGMT_BASE + 0x8)
#define EFUSE_SRV_CTRL_LD_SELECT_OFFS	6
#define EFUSE_SRV_CTRL_LD_SEL_USER_MASK	(1 << EFUSE_SRV_CTRL_LD_SELECT_OFFS)


/*
 * - Identification information in the LD-0 eFuse:
 *	DRO:           LD0[74:65] - Not used by the SW
 *	Revision:      LD0[78:75] - Not used by the SW
 *	Bin:           LD0[80:79] - Not used by the SW
 *	SW Revision:   LD0[115:113]
 *	Cluster 1 PWR: LD0[193] - if set to 1, power down CPU Cluster-1
 *				  resulting in 2 CPUs active only (7020)
 */
#define MVEBU_AP_LD_EFUSE_BASE		(MVEBU_AP_GEN_MGMT_BASE + 0xF00)
/* Bits [94:63] - 32 data bits total */
#define MVEBU_AP_LD0_94_63_EFUSE_OFFS	(MVEBU_AP_LD_EFUSE_BASE + 0x8)
/* Bits [125:95] - 31 data bits total, 32nd bit is parity for bits [125:63] */
#define MVEBU_AP_LD0_125_95_EFUSE_OFFS	(MVEBU_AP_LD_EFUSE_BASE + 0xC)
/* Bits [220:189] - 32 data bits total */
#define MVEBU_AP_LD0_220_189_EFUSE_OFFS	(MVEBU_AP_LD_EFUSE_BASE + 0x18)
/* Offsets for the above 2 fields combined into single 64-bit value [125:63] */
#define EFUSE_AP_LD0_DRO_OFFS		2		/* LD0[74:65] */
#define EFUSE_AP_LD0_DRO_MASK		0x3FF
#define EFUSE_AP_LD0_REVID_OFFS		12		/* LD0[78:75] */
#define EFUSE_AP_LD0_REVID_MASK		0xF
#define EFUSE_AP_LD0_BIN_OFFS		16		/* LD0[80:79] */
#define EFUSE_AP_LD0_BIN_MASK		0x3
#define EFUSE_AP_LD0_SWREV_OFFS		50		/* LD0[115:113] */
#define EFUSE_AP_LD0_SWREV_MASK		0x7

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#ifndef MVEBU_SOC_AP807
	/* AP806 AVS work points in the LD0 eFuse
	 * SVC1 work point:     LD0[88:81]
	 * SVC2 work point:     LD0[96:89]
	 * SVC3 work point:     LD0[104:97]
	 * SVC4 work point:     LD0[112:105]
	 */
	#define EFUSE_AP_LD0_SVC1_OFFS		18	/* LD0[88:81] */
	#define EFUSE_AP_LD0_SVC2_OFFS		26	/* LD0[96:89] */
	#define EFUSE_AP_LD0_SVC3_OFFS		34	/* LD0[104:97] */
	#define EFUSE_AP_LD0_WP_MASK		0xFF
#else
	/* AP807 AVS work points in the LD0 eFuse
	 * SVC1 work point:     LD0[91:81]
	 * SVC2 work point:     LD0[102:92]
	 * SVC3 work point:     LD0[113:103]
	 */
	#define EFUSE_AP_LD0_SVC1_OFFS		17	/* LD0[91:81] */
	#define EFUSE_AP_LD0_SVC2_OFFS		28	/* LD0[102:92] */
	#define EFUSE_AP_LD0_SVC3_OFFS		39	/* LD0[113:103] */
	#define EFUSE_AP_LD0_WP_MASK		0x3FF
#endif

146
#define EFUSE_AP_LD0_SVC4_OFFS			42	/* LD0[112:105] */
147

148
#define EFUSE_AP_LD0_CLUSTER_DOWN_OFFS		4
149

150
151
152
153
154
155
156
#if MARVELL_SVC_TEST
#define MVEBU_CP_MPP_CTRL37_OFFS	20
#define MVEBU_CP_MPP_CTRL38_OFFS	24
#define MVEBU_CP_MPP_I2C_FUNC		2
#define MVEBU_MPP_CTRL_MASK		0xf
#endif

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/* Return the AP revision of the chip */
static unsigned int ble_get_ap_type(void)
{
	unsigned int chip_rev_id;

	chip_rev_id = mmio_read_32(MVEBU_CSS_GWD_CTRL_IIDR2_REG);
	chip_rev_id = ((chip_rev_id & GWD_IIDR2_CHIP_ID_MASK) >>
			GWD_IIDR2_CHIP_ID_OFFSET);

	return chip_rev_id;
}

/******************************************************************************
 * The routine allows to save the CCU and IO windows configuration during DRAM
 * setup and restore them afterwards before exiting the BLE stage.
 * Such window configuration is required since not all default settings coming
 * from the HW and the BootROM allow access to peripherals connected to
 * all available CPn components.
 * For instance, when the boot device is located on CP0, the IO window to CP1
 * is not opened automatically by the HW and if the DRAM SPD is located on CP1
 * i2c channel, it cannot be read at BLE stage.
 * Therefore the DRAM init procedure have to provide access to all available
 * CPn peripherals during the BLE stage by setting the CCU IO window to all
 * CPnph addresses and by enabling the IO windows accordingly.
 * Additionally this function configures the CCU GCR to DRAM, which allows
 * usage or more than 4GB DRAM as it configured by the default CCU DRAM window.
 *
 * IN:
 *	MMAP_SAVE_AND_CONFIG	- save the existing configuration and update it
 *	MMAP_RESTORE_SAVED	- restore saved configuration
 * OUT:
 *	NONE
 ****************************************************************************
 */
static void ble_plat_mmap_config(int restore)
{
	if (restore == MMAP_RESTORE_SAVED) {
		/* Restore all orig. settings that were modified by BLE stage */
		ccu_restore_win_all(MVEBU_AP0);
		/* Restore CCU */
		iow_restore_win_all(MVEBU_AP0);
		return;
	}

	/* Store original values */
	ccu_save_win_all(MVEBU_AP0);
	/* Save CCU */
	iow_save_win_all(MVEBU_AP0);

	init_ccu(MVEBU_AP0);
	/* The configuration saved, now all the changes can be done */
	init_io_win(MVEBU_AP0);
}

/****************************************************************************
 * Setup Adaptive Voltage Switching - this is required for some platforms
 ****************************************************************************
 */
215
#if !MARVELL_SVC_TEST
216
217
static void ble_plat_avs_config(void)
{
218
219
	uint32_t freq_mode, device_id;
	uint32_t avs_val = 0;
220

221
222
223
	freq_mode =
		SAR_CLOCK_FREQ_MODE(mmio_read_32(MVEBU_AP_SAR_REG_BASE(
						 FREQ_MODE_AP_SAR_REG_NUM)));
224
225
	/* Check which SoC is running and act accordingly */
	if (ble_get_ap_type() == CHIP_ID_AP807) {
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
		/* Increase CPU voltage for higher CPU clock */
		if (freq_mode == CPU_2000_DDR_1200_RCLK_1200)
			avs_val = AVS_A3900_HIGH_CLK_VALUE;
		else
			avs_val = AVS_A3900_CLK_VALUE;
	} else {
		/* Check which SoC is running and act accordingly */
		device_id = cp110_device_id_get(MVEBU_CP_REGS_BASE(0));
		switch (device_id) {
		case MVEBU_80X0_DEV_ID:
		case MVEBU_80X0_CP115_DEV_ID:
			/* Always fix the default AVS value on A80x0 */
			avs_val = AVS_A8K_CLK_VALUE;
			break;
		case MVEBU_70X0_DEV_ID:
		case MVEBU_70X0_CP115_DEV_ID:
			/* Fix AVS for CPU clocks lower than 1600MHz on A70x0 */
			if ((freq_mode > CPU_1600_DDR_900_RCLK_900_2) &&
			    (freq_mode < CPU_DDR_RCLK_INVALID))
				avs_val = AVS_A7K_LOW_CLK_VALUE;
			break;
		default:
			ERROR("Unsupported Device ID 0x%x\n", device_id);
			return;
		}
251
252
	}

253
254
255
	if (avs_val) {
		VERBOSE("AVS: Setting AVS CTRL to 0x%x\n", avs_val);
		mmio_write_32(AVS_EN_CTRL_REG, avs_val);
256
257
	}
}
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#endif
/******************************************************************************
 * Update or override current AVS work point value using data stored in EEPROM
 * This is only required by QA/validation flows and activated by
 * MARVELL_SVC_TEST flag.
 *
 * The function is expected to be called twice.
 *
 * First time with AVS value of 0 for testing if the EEPROM requests completely
 * override the AVS value and bypass the eFuse test
 *
 * Second time - with non-zero AVS value obtained from eFuses as an input.
 * In this case the EEPROM may contain AVS correction value (either positive
 * or negative) that is added to the input AVS value and returned back for
 * further processing.
 ******************************************************************************
 */
static uint32_t avs_update_from_eeprom(uint32_t avs_workpoint)
{
	uint32_t new_wp = avs_workpoint;
#if MARVELL_SVC_TEST
	/* ---------------------------------------------------------------------
	 * EEPROM  |  Data description (avs_step)
	 * address |
	 * ---------------------------------------------------------------------
	 * 0x120   | AVS workpoint correction value
	 *         | if not 0 and not 0xff, correct the AVS taken from eFuse
	 *         | by the number of steps indicated by bit[6:0]
	 *         | bit[7] defines correction direction.
	 *         | If bit[7]=1, add the value from bit[6:0] to AVS workpoint,
	 *         | othervise substruct this value from AVS workpoint.
	 * ---------------------------------------------------------------------
	 * 0x121   | AVS workpoint override value
	 *         | Override the AVS workpoint with the value stored in this
	 *         | byte. When running on AP806, the AVS workpoint is 7 bits
	 *         | wide and override value is valid when bit[6:0] holds
	 *         | value greater than zero and smaller than 0x33.
	 *         | When running on AP807, the AVS workpoint is 10 bits wide.
	 *         | Additional 2 MSB bits are supplied by EEPROM byte 0x122.
	 *         | AVS override value is valid when byte @ 0x121 and bit[1:0]
	 *         | of byte @ 0x122 combined have non-zero value.
	 * ---------------------------------------------------------------------
	 * 0x122   | Extended AVS workpoint override value
	 *         | Valid only for AP807 platforms and must be less than 0x4
	 * ---------------------------------------------------------------------
	 */
	static uint8_t  avs_step[3] = {0};
	uintptr_t reg;
	uint32_t val;
	unsigned int ap_type = ble_get_ap_type();

	/* Always happens on second call to this function */
	if (avs_workpoint != 0) {
		/* Get correction steps from the EEPROM */
		if ((avs_step[0] != 0) && (avs_step[0] != 0xff)) {
			NOTICE("AVS request to step %s by 0x%x from old 0x%x\n",
				avs_step[0] & 0x80 ? "DOWN" : "UP",
				avs_step[0] & 0x7f, new_wp);
			if (avs_step[0] & 0x80)
				new_wp -= avs_step[0] & 0x7f;
			else
				new_wp += avs_step[0] & 0x7f;
		}

		return new_wp;
	}

	/* AVS values are located in EEPROM
	 * at CP0 i2c bus #0, device 0x57 offset 0x120
	 * The SDA and SCK pins of CP0 i2c-0: MPP[38:37], i2c function 0x2.
	 */
	reg = MVEBU_CP_MPP_REGS(0, 4);
	val = mmio_read_32(reg);
	val &= ~((MVEBU_MPP_CTRL_MASK << MVEBU_CP_MPP_CTRL37_OFFS) |
		 (MVEBU_MPP_CTRL_MASK << MVEBU_CP_MPP_CTRL38_OFFS));
	val |= (MVEBU_CP_MPP_I2C_FUNC << MVEBU_CP_MPP_CTRL37_OFFS) |
		(MVEBU_CP_MPP_I2C_FUNC << MVEBU_CP_MPP_CTRL38_OFFS);
	mmio_write_32(reg, val);

	/* Init CP0 i2c-0 */
	i2c_init((void *)(MVEBU_CP0_I2C_BASE));

	/* Read EEPROM only once at the fist call! */
	i2c_read(AVS_I2C_EEPROM_ADDR, 0x120, 2, avs_step, 3);
	NOTICE("== SVC test build ==\n");
	NOTICE("EEPROM holds values 0x%x, 0x%x and 0x%x\n",
		avs_step[0], avs_step[1], avs_step[2]);

	/* Override the AVS value? */
	if ((ap_type != CHIP_ID_AP807) && (avs_step[1] < 0x33)) {
		/* AP806 - AVS is 7 bits */
		new_wp = avs_step[1];

	} else if (ap_type == CHIP_ID_AP807 && (avs_step[2] < 0x4)) {
		/* AP807 - AVS is 10 bits */
		new_wp = avs_step[2];
		new_wp <<= 8;
		new_wp |= avs_step[1];
	}

	if (new_wp == 0)
		NOTICE("Ignore BAD AVS Override value in EEPROM!\n");
	else
		NOTICE("Override AVS by EEPROM value 0x%x\n", new_wp);
#endif /* MARVELL_SVC_TEST */
	return new_wp;
}
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

/****************************************************************************
 * SVC flow - v0.10
 * The feature is intended to configure AVS value according to eFuse values
 * that are burned individually for each SoC during the test process.
 * Primary AVS value is stored in HD efuse and processed on power on
 * by the HW engine
 * Secondary AVS value is located in LD efuse and contains 4 work points for
 * various CPU frequencies.
 * The Secondary AVS value is only taken into account if the SW Revision stored
 * in the efuse is greater than 0 and the CPU is running in a certain speed.
 ****************************************************************************
 */
static void ble_plat_svc_config(void)
{
	uint32_t reg_val, avs_workpoint, freq_pidi_mode;
	uint64_t efuse;
	uint32_t device_id, single_cluster;
383
384
	uint16_t  svc[4], perr[4], i, sw_ver;
	unsigned int ap_type;
385

386
387
388
389
390
	/* Set access to LD0 */
	avs_workpoint = avs_update_from_eeprom(0);
	if (avs_workpoint)
		goto set_aws_wp;

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
	/* Set access to LD0 */
	reg_val = mmio_read_32(MVEBU_AP_EFUSE_SRV_CTRL_REG);
	reg_val &= ~EFUSE_SRV_CTRL_LD_SELECT_OFFS;
	mmio_write_32(MVEBU_AP_EFUSE_SRV_CTRL_REG, reg_val);

	/* Obtain the value of LD0[125:63] */
	efuse = mmio_read_32(MVEBU_AP_LD0_125_95_EFUSE_OFFS);
	efuse <<= 32;
	efuse |= mmio_read_32(MVEBU_AP_LD0_94_63_EFUSE_OFFS);

	/* SW Revision:
	 * Starting from SW revision 1 the SVC flow is supported.
	 * SW version 0 (efuse not programmed) should follow the
	 * regular AVS update flow.
	 */
	sw_ver = (efuse >> EFUSE_AP_LD0_SWREV_OFFS) & EFUSE_AP_LD0_SWREV_MASK;
	if (sw_ver < 1) {
		NOTICE("SVC: SW Revision 0x%x. SVC is not supported\n", sw_ver);
409
410
411
412
#if MARVELL_SVC_TEST
		NOTICE("SVC_TEST: AVS bypassed\n");

#else
413
		ble_plat_avs_config();
414
#endif
415
416
417
418
419
420
421
422
423
424
425
426
427
		return;
	}

	/* Frequency mode from SAR */
	freq_pidi_mode = SAR_CLOCK_FREQ_MODE(
				mmio_read_32(
					MVEBU_AP_SAR_REG_BASE(
						FREQ_MODE_AP_SAR_REG_NUM)));

	/* Decode all SVC work points */
	svc[0] = (efuse >> EFUSE_AP_LD0_SVC1_OFFS) & EFUSE_AP_LD0_WP_MASK;
	svc[1] = (efuse >> EFUSE_AP_LD0_SVC2_OFFS) & EFUSE_AP_LD0_WP_MASK;
	svc[2] = (efuse >> EFUSE_AP_LD0_SVC3_OFFS) & EFUSE_AP_LD0_WP_MASK;
428
429
430
431
432
433
434
435
436
437
438
439
440

	/* Fetch AP type to distinguish between AP806 and AP807 */
	ap_type = ble_get_ap_type();

	if (ap_type != CHIP_ID_AP807) {
		svc[3] = (efuse >> EFUSE_AP_LD0_SVC4_OFFS)
			 & EFUSE_AP_LD0_WP_MASK;
		INFO("SVC: Efuse WP: [0]=0x%x, [1]=0x%x, [2]=0x%x, [3]=0x%x\n",
		     svc[0], svc[1], svc[2], svc[3]);
	} else {
		INFO("SVC: Efuse WP: [0]=0x%x, [1]=0x%x, [2]=0x%x\n",
		     svc[0], svc[1], svc[2]);
	}
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

	/* Validate parity of SVC workpoint values */
	for (i = 0; i < 4; i++) {
		uint8_t parity, bit;

		perr[i] = 0;

		for (bit = 1, parity = svc[i] & 1; bit < 7; bit++)
			parity ^= (svc[i] >> bit) & 1;

		/* Starting from SW version 2, the parity check is mandatory */
		if ((sw_ver > 1) && (parity != ((svc[i] >> 7) & 1)))
			perr[i] = 1; /* register the error */
	}

	single_cluster = mmio_read_32(MVEBU_AP_LD0_220_189_EFUSE_OFFS);
	single_cluster = (single_cluster >> EFUSE_AP_LD0_CLUSTER_DOWN_OFFS) & 1;

	device_id = cp110_device_id_get(MVEBU_CP_REGS_BASE(0));
	if (device_id == MVEBU_80X0_DEV_ID ||
	    device_id == MVEBU_80X0_CP115_DEV_ID) {
		/* A8040/A8020 */
		NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
			single_cluster == 0 ? "8040" : "8020", freq_pidi_mode);
		switch (freq_pidi_mode) {
		case CPU_1800_DDR_1200_RCLK_1200:
		case CPU_1800_DDR_1050_RCLK_1050:
			if (perr[1])
				goto perror;
			avs_workpoint = svc[1];
			break;
		case CPU_1600_DDR_1050_RCLK_1050:
		case CPU_1600_DDR_900_RCLK_900_2:
			if (perr[2])
				goto perror;
			avs_workpoint = svc[2];
			break;
		case CPU_1300_DDR_800_RCLK_800:
		case CPU_1300_DDR_650_RCLK_650:
			if (perr[3])
				goto perror;
			avs_workpoint = svc[3];
			break;
		case CPU_2000_DDR_1200_RCLK_1200:
		case CPU_2000_DDR_1050_RCLK_1050:
		default:
			if (perr[0])
				goto perror;
			avs_workpoint = svc[0];
			break;
		}
	} else if (device_id == MVEBU_70X0_DEV_ID ||
		   device_id == MVEBU_70X0_CP115_DEV_ID) {
		/* A7040/A7020/A6040 */
		NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
			single_cluster == 0 ? "7040" : "7020", freq_pidi_mode);
		switch (freq_pidi_mode) {
		case CPU_1400_DDR_800_RCLK_800:
			if (single_cluster) {/* 7020 */
				if (perr[1])
					goto perror;
				avs_workpoint = svc[1];
			} else {
				if (perr[0])
					goto perror;
				avs_workpoint = svc[0];
			}
			break;
		case CPU_1200_DDR_800_RCLK_800:
			if (single_cluster) {/* 7020 */
				if (perr[2])
					goto perror;
				avs_workpoint = svc[2];
			} else {
				if (perr[1])
					goto perror;
				avs_workpoint = svc[1];
			}
			break;
		case CPU_800_DDR_800_RCLK_800:
		case CPU_1000_DDR_800_RCLK_800:
			if (single_cluster) {/* 7020 */
				if (perr[3])
					goto perror;
				avs_workpoint = svc[3];
			} else {
				if (perr[2])
					goto perror;
				avs_workpoint = svc[2];
			}
			break;
		case CPU_600_DDR_800_RCLK_800:
			if (perr[3])
				goto perror;
			avs_workpoint = svc[3]; /* Same for 6040 and 7020 */
			break;
		case CPU_1600_DDR_800_RCLK_800: /* 7020 only */
		default:
			if (single_cluster) {/* 7020 */
				if (perr[0])
					goto perror;
				avs_workpoint = svc[0];
			} else
				avs_workpoint = 0;
			break;
		}
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
	} else if (device_id == MVEBU_3900_DEV_ID) {
		NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
		       "3900", freq_pidi_mode);
		switch (freq_pidi_mode) {
		case CPU_1600_DDR_1200_RCLK_1200:
			if (perr[0])
				goto perror;
			avs_workpoint = svc[0];
			break;
		case CPU_1300_DDR_800_RCLK_800:
			if (perr[1])
				goto perror;
			avs_workpoint = svc[1];
			break;
		default:
			if (perr[0])
				goto perror;
			avs_workpoint = svc[0];
			break;
		}
567
568
569
570
571
572
573
574
575
576
577
578
	} else {
		ERROR("SVC: Unsupported Device ID 0x%x\n", device_id);
		return;
	}

	/* Set AVS control if needed */
	if (avs_workpoint == 0) {
		ERROR("SVC: AVS work point not changed\n");
		return;
	}

	/* Remove parity bit */
579
580
	if (ap_type != CHIP_ID_AP807)
		avs_workpoint &= 0x7F;
581

582
583
584
585
	/* Update WP from EEPROM if needed */
	avs_workpoint = avs_update_from_eeprom(avs_workpoint);

set_aws_wp:
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
	reg_val  = mmio_read_32(AVS_EN_CTRL_REG);
	NOTICE("SVC: AVS work point changed from 0x%x to 0x%x\n",
		(reg_val & AVS_VDD_LOW_LIMIT_MASK) >> AVS_LOW_VDD_LIMIT_OFFSET,
		avs_workpoint);
	reg_val &= ~(AVS_VDD_LOW_LIMIT_MASK | AVS_VDD_HIGH_LIMIT_MASK);
	reg_val |= 0x1 << AVS_ENABLE_OFFSET;
	reg_val |= avs_workpoint << AVS_HIGH_VDD_LIMIT_OFFSET;
	reg_val |= avs_workpoint << AVS_LOW_VDD_LIMIT_OFFSET;
	mmio_write_32(AVS_EN_CTRL_REG, reg_val);
	return;

perror:
	ERROR("Failed SVC WP[%d] parity check!\n", i);
	ERROR("Ignoring the WP values\n");
}

#if PLAT_RECOVERY_IMAGE_ENABLE
static int ble_skip_image_i2c(struct skip_image *skip_im)
{
	ERROR("skipping image using i2c is not supported\n");
	/* not supported */
	return 0;
}

static int ble_skip_image_other(struct skip_image *skip_im)
{
	ERROR("implementation missing for skip image request\n");
	/* not supported, make your own implementation */
	return 0;
}

static int ble_skip_image_gpio(struct skip_image *skip_im)
{
	unsigned int val;
	unsigned int mpp_address = 0;
	unsigned int offset = 0;

	switch (skip_im->info.test.cp_ap) {
	case(CP):
		mpp_address = MVEBU_CP_GPIO_DATA_IN(skip_im->info.test.cp_index,
						    skip_im->info.gpio.num);
		if (skip_im->info.gpio.num > NUM_OF_GPIO_PER_REG)
			offset = skip_im->info.gpio.num - NUM_OF_GPIO_PER_REG;
		else
			offset = skip_im->info.gpio.num;
		break;
	case(AP):
		mpp_address = MVEBU_AP_GPIO_DATA_IN;
		offset = skip_im->info.gpio.num;
		break;
	}

	val = mmio_read_32(mpp_address);
	val &= (1 << offset);
	if ((!val && skip_im->info.gpio.button_state == HIGH) ||
	    (val && skip_im->info.gpio.button_state == LOW)) {
		mmio_write_32(SCRATCH_PAD_REG2, SCRATCH_PAD_SKIP_VAL);
		return 1;
	}

	return 0;
}

/*
 * This function checks if there's a skip image request:
 * return values:
 * 1: (true) images request been made.
 * 0: (false) no image request been made.
 */
static int  ble_skip_current_image(void)
{
	struct skip_image *skip_im;

	/*fetching skip image info*/
	skip_im = (struct skip_image *)plat_marvell_get_skip_image_data();

	if (skip_im == NULL)
		return 0;

	/* check if skipping image request has already been made */
	if (mmio_read_32(SCRATCH_PAD_REG2) == SCRATCH_PAD_SKIP_VAL)
		return 0;

	switch (skip_im->detection_method) {
	case GPIO:
		return ble_skip_image_gpio(skip_im);
	case I2C:
		return ble_skip_image_i2c(skip_im);
	case USER_DEFINED:
		return ble_skip_image_other(skip_im);
	}

	return 0;
}
#endif


int ble_plat_setup(int *skip)
{
	int ret;
686
	unsigned int freq_mode;
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

	/* Power down unused CPUs */
	plat_marvell_early_cpu_powerdown();

	/*
	 * Save the current CCU configuration and make required changes:
	 * - Allow access to DRAM larger than 4GB
	 * - Open memory access to all CPn peripherals
	 */
	ble_plat_mmap_config(MMAP_SAVE_AND_CONFIG);

#if PLAT_RECOVERY_IMAGE_ENABLE
	/* Check if there's a skip request to bootRom recovery Image */
	if (ble_skip_current_image()) {
		/* close memory access to all CPn peripherals. */
		ble_plat_mmap_config(MMAP_RESTORE_SAVED);
		*skip = 1;
		return 0;
	}
#endif
	/* Do required CP-110 setups for BLE stage */
	cp110_ble_init(MVEBU_CP_REGS_BASE(0));

	/* Setup AVS */
	ble_plat_svc_config();

713
714
715
716
717
	/* read clk option from sampled-at-reset register */
	freq_mode =
		SAR_CLOCK_FREQ_MODE(mmio_read_32(MVEBU_AP_SAR_REG_BASE(
						 FREQ_MODE_AP_SAR_REG_NUM)));

718
719
	/* work with PLL clock driver in AP807 */
	if (ble_get_ap_type() == CHIP_ID_AP807)
720
		ap807_clocks_init(freq_mode);
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

	/* Do required AP setups for BLE stage */
	ap_ble_init();

	/* Update DRAM topology (scan DIMM SPDs) */
	plat_marvell_dram_update_topology();

	/* Kick it in */
	ret = dram_init();

	/* Restore the original CCU configuration before exit from BLE */
	ble_plat_mmap_config(MMAP_RESTORE_SAVED);

	return ret;
}