user-guide.md 24.8 KB
Newer Older
1
2
3
4
5
6
ARM Trusted Firmware User Guide
===============================

Contents :

1.  Introduction
7
8
9
10
11
2.  Host machine requirements
3.  Tools
4.  Building the Trusted Firmware
5.  Obtaining the normal world software
6.  Running the software
12
13
14
15


1.  Introduction
----------------
16
17
18
19
20
This document describes how to build ARM Trusted Firmware and run it with a
tested set of other software components using defined configurations on ARM
Fixed Virtual Platform (FVP) models. It is possible to use other software
components, configurations and platforms but that is outside the scope of this
document.
21

22
This document should be used in conjunction with the [Firmware Design].
23
24


25
26
2.  Host machine requirements
-----------------------------
27

28
The minimum recommended machine specification for building the software and
29
30
31
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
32
33
34
35

The software has been tested on Ubuntu 12.04.02 (64-bit).  Packages used
for building the software were installed from that distribution unless
otherwise specified.
36
37


38
39
3.  Tools
---------
40
41
42

The following tools are required to use the ARM Trusted Firmware:

43
*   `git` package to obtain source code
44

45
*   `ia32-libs` package
46

47
48
*   `build-essential` and `uuid-dev` packages for building UEFI and the Firmware
    Image Package(FIP) tool
49

50
*   `bc` and `ncurses-dev` packages for building Linux
51
52
53

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
54
    `gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz` tools are used.
55

56
57
        wget http://releases.linaro.org/13.11/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
58

59
*   The Device Tree Compiler (DTC) included with Linux kernel 3.13 is used
60
    to build the Flattened Device Tree (FDT) source files (`.dts` files)
61
    provided with this software.
62

63
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.17.
64
65


66
67
4.  Building the Trusted Firmware
---------------------------------
68

69
To build the software for the FVPs, follow these steps:
70

71
1.  Clone the ARM Trusted Firmware repository from GitHub:
72
73
74
75
76
77
78

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

79
80
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
    build:
81

82
83
84
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
        make PLAT=fvp
85
86

    By default this produces a release version of the build. To produce a debug
87
88
89
    version instead, refer to the "Debugging options" section below. UEFI can be
    used as the BL3-3 image, refer to the "Obtaining the normal world software"
    section below.
90

91
92
93
94
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
95

96
97
98
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
99

100
    ... where `<platform>` currently defaults to `fvp` and `<build-type>` is
101
102
    either `debug` or `release`. A Firmare Image Package(FIP) will be created as
    part of the build. It contains all boot loader images except for `bl1.bin`.
103

104
105
     *   `build/<platform>/<build-type>/fip.bin`

106
107
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
108
109
110
111

4.  Copy the `bl1.bin` and `fip.bin` binary files to the directory from which
    the FVP will be launched. Symbolic links of the same names may be created
    instead.
112

113
114
5.  (Optional) Build products for a specific build variant can be removed using:

115
        make DEBUG=<D> PLAT=fvp clean
116
117
118
119
120
121

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
122
123


124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

Create a Firmware package that contains existing FVP BL2 and BL3-1 images:

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
       --bl2 build/fvp/debug/bl2.bin --bl31 build/fvp/debug/bl31.bin

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
      file: 'build/fvp/debug/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
      file: 'build/fvp/debug/bl31.bin'
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
      --bl2 build/fvp/release/bl2.bin

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
      file: 'build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
180
181
182

To compile a debug version and make the build more verbose use

183
184
185
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp DEBUG=1 V=1
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
might need to be recalculated (see the later memory layout section).

Extra debug options can be passed to the build system by setting `CFLAGS`:

201
202
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
203
    BL33=<path-to>/<bl33_image>                               \
204
    make PLAT=fvp DEBUG=1 V=1
205
206
207


NOTE: The Foundation FVP does not provide a debugger interface.
208
209


210
### Checking source code style
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
the project Makefile contains two targets, which both utilise the checkpatch.pl
script that ships with the Linux source tree.

To check the entire source tree, you must first download a copy of checkpatch.pl
(or the full Linux source), set the CHECKPATCH environment variable to point to
the script and build the target checkcodebase:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkcodebase

To just check the style on the files that differ between your local branch and
the remote master, use:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkpatch

If you wish to check your patch against something other than the remote master,
set the BASE_COMMIT variable to your desired branch.  By default, BASE_COMMIT
is set to 'origin/master'.


233
234
5.  Obtaining the normal world software
---------------------------------------
235

236
### Obtaining EDK2
237

238
239
240
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
241

242
243
Clone the [EDK2 source code][EDK2] from GitHub. This version supports the Base
and Foundation FVPs:
244
245
246

    git clone -n https://github.com/tianocore/edk2.git
    cd edk2
247
    git checkout c1cdcab9526506673b882017845a043cead8bc69
248
249


250
251
To build the software to be compatible with Foundation and Base FVPs, follow
these steps:
252

253
1.  Copy build config templates to local workspace
254

255
        # in edk2/
256
        . edksetup.sh
257

258
2.  Build the EDK2 host tools
259

260
261
        make -C BaseTools clean
        make -C BaseTools
262

263
3.  Build the EDK2 software
264

265
        CROSS_COMPILE=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
266
267
268
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"
269
270
271
272
273
274

    The EDK2 binary for use with the ARM Trusted Firmware can then be found
    here:

        Build/ArmVExpress-FVP-AArch64/DEBUG_ARMGCC/FV/FVP_AARCH64_EFI.fd

275
276
277
278
    This will build EDK2 for the default settings as used by the FVPs. The EDK2
    binary `FVP_AARCH64_EFI.fd` should be specified as `BL33` in in the `make`
    command line when building the Trusted Firmware. See the "Building the
    Trusted Firmware" section above.
279

280
281
282
4.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
283

284
285
286
5.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
287

288
289
290
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
291

292
    Then rebuild EDK2 as described in step 3, using the following flag:
293

294
295
296
297
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
298

299

300
### Obtaining a Linux kernel
301

302
303
The software has been verified using a Linux kernel based on version 3.13.
Patches have been applied in order to enable the CPU idle feature.
304

305
Preparing a Linux kernel for use on the FVPs with CPU idle support can
306
307
308
309
310
311
be done as follows (GICv2 support only):

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

312
313
314
    Not all CPU idle features are included in the mainline kernel yet. To
    use these, add the patches from Sudeep Holla's kernel, based on
    Linux 3.13:
315
316

        cd linux
317
318
        git remote add -f --tags arm64_idle_genfw_ref git://linux-arm.org/linux-skn.git
        git checkout -b cpuidle arm64_idle_genfw_ref
319
320
321
322
323
324
325

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

326
        # Enable CPU idle
327
        make ARCH=arm64 menuconfig
328
329
        # CPU Power Management ---> CPU Idle ---> [*] CPU idle PM support
        # CPU Power Management ---> CPU Idle ---> ARM64 CPU Idle Drivers ---> [*] Generic ARM64 CPU idle Driver
330

331
332
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
333
334

3.  Copy the Linux image `arch/arm64/boot/Image` to the working directory from
335
    where the FVP is launched. Alternatively a symbolic link may be used.
336

337
### Obtaining the Flattened Device Trees
338
339

Depending on the FVP configuration and Linux configuration used, different
340
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
341
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
342
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
343
and MMC support, and has only one CPU cluster.
344
345
346
347

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
348
    Base memory map configuration.
349
350
351

*   `fvp-base-gicv2legacy-psci.dtb`

352
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
353
354
355

*   `fvp-base-gicv3-psci.dtb`

356
357
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


373
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
374
is launched. Alternatively a symbolic link may be used.
375

376
### Obtaining a root file-system
377
378
379
380
381

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

382
#### Prepare VirtioBlock
383
384
385
386
387
388
389

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

    NOTE: The unpacked disk image grows to 2 GiB in size.

390
391
        wget http://releases.linaro.org/14.01/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.8_20140126-596.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.8_20140126-596.img.gz
392
393
394
395
396
397
398
399
400

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
401
402
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
403
404
405
406
407

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

408
    1.  In EDK2, edit the following file:
409
410
411
412
413
414
415
416
417
418
419
420
421
422

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
423
    passing it the correct command line option. In the FVPs the following
424
425
426
427
428
429
    option should be provided in addition to the ones described in the
    "Running the software" section below.

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

430
    On the Base FVPs:
431
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
432

433
    On the Foundation FVP:
434
        --block-device="<path-to>/<file-system-image>"
435
436


437
438
439
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

440
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
441
442
443
444
445

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

446
#### Prepare RAM-disk
447

448
To prepare a RAM-disk root file-system, do the following:
449
450
451

1.  Download the file-system image:

452
        wget http://releases.linaro.org/14.01/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140127-635.rootfs.tar.gz
453
454
455
456
457
458

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
459
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140127-635.rootfs.tar.gz | cpio -id"
460
461
462
463
464
465
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
466
    launched from. Alternatively a symbolic link may be used.
467
468


469
470
6.  Running the software
------------------------
471

472
This version of the ARM Trusted Firmware has been tested on the following ARM
473
474
FVPs (64-bit versions only).

475
*   `Foundation_v8` (Version 2.0, Build 0.8.5206)
476
477
478
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.4, Build 0.8.5405)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.4, Build 0.8.5405)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.4, Build 0.8.5405)
479
480
481

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
482
483
484
485
486

Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

487
488
489
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

490
### Running on the Foundation FVP
491
492
493
494
495
496
497

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

498
499
500
501
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

502
    <path-to>/Foundation_v8                   \
503
504
505
506
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --gicv3                                   \
507
508
509
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
510

511
512
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
513
514
515
516
517
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

518
### Running on the AEMv8 Base FVP
519
520
521
522
523
524
525
526
527

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

NOTE: Using `cache_state_modelled=1` makes booting very slow. The software will
still work (and run much faster) without this option but this will hide any
cache maintenance defects in the software.

NOTE: Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
528
if a Linux RAM-disk file-system is used (see the "Obtaining a root file-system"
529
530
531
532
section above).

NOTE: The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
533
534
section above).

535
536
537
538
539
540
541
542
543
544
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
    -C bp.secure_memory=0                                  \
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
545

546
### Running on the Cortex-A57-A53 Base FVP
547
548
549
550
551
552
553
554
555

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

NOTE: Using `cache_state_modelled=1` makes booting very slow. The software will
still work (and run much faster) without this option but this will hide any
cache maintenance defects in the software.

NOTE: Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
556
if a Linux RAM-disk file-system is used (see the "Obtaining a root file-system"
557
558
559
560
section above).

NOTE: The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
561
562
section above).

563
564
565
566
567
568
569
570
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
    -C bp.secure_memory=0                                  \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
571
572
573
574

### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
575
576
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
577
578
579
580
581
582

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

583
The AEMv8 Base FVP can be configured to support GICv2 at addresses
584
585
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
586
587
588
589
590
591

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

592
593
594
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
595
596
597

*   `SYS_ID.Build[15:12]`

598
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
599
    default value on the Base FVPs.
600
601
602

*   `SYS_ID.Build[15:12]`

603
604
605
606
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
607

608
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
609
BL3-3 images should be used.
610

611
612
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

613
614
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
615

616
617
618
619
620
621
622
623
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
624
625
626

Explicit configuration of the `SYS_ID` register is not required.

627
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
628

629
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
630
631
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
632
633
634
635
636
637
638
639
640
641
642
643
644
645

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
646
    -C bp.variant=0x0
647

648
649
650
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
651
652
653
654


- - - - - - - - - - - - - - - - - - - - - - - - - -

655
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
656
657


658
[Firmware Design]:  ./firmware-design.md
659

660
[ARM FVP website]:  http://www.arm.com/fvp
661
[Linaro Toolchain]: http://releases.linaro.org/13.09/components/toolchain/binaries/
662
[EDK2]:             http://github.com/tianocore/edk2
663
[DS-5]:             http://www.arm.com/products/tools/software-tools/ds-5/index.php