psci_afflvl_suspend.c 14.4 KB
Newer Older
1
/*
Dan Handley's avatar
Dan Handley committed
2
 * Copyright (c) 2013, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>

typedef int (*afflvl_suspend_handler)(unsigned long,
				      aff_map_node *,
				      unsigned long,
				      unsigned long,
				      unsigned int);

/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
static int psci_afflvl0_suspend(unsigned long mpidr,
				aff_map_node *cpu_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	unsigned int index, plat_state;
	unsigned long psci_entrypoint, sctlr = read_sctlr();
	int rc = PSCI_E_SUCCESS;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
	 * Arch. management: Save the secure context, flush the
	 * L1 caches and exit intra-cluster coherency et al
	 */
	psci_secure_context[index].sctlr = read_sctlr();
	psci_secure_context[index].scr = read_scr();
	psci_secure_context[index].cptr = read_cptr();
	psci_secure_context[index].cpacr = read_cpacr();
	psci_secure_context[index].cntfrq = read_cntfrq_el0();
	psci_secure_context[index].mair = read_mair();
	psci_secure_context[index].tcr = read_tcr();
	psci_secure_context[index].ttbr = read_ttbr0();
	psci_secure_context[index].vbar = read_vbar();
85
86
	psci_secure_context[index].pstate =
		read_daif() & (DAIF_ABT_BIT | DAIF_DBG_BIT);
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
	sctlr &= ~SCTLR_C_BIT;
	write_sctlr(sctlr);

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {
		plat_state = psci_get_aff_phys_state(cpu_node);
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

static int psci_afflvl1_suspend(unsigned long mpidr,
				aff_map_node *cluster_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
	plat_state = psci_get_aff_phys_state(cluster_node);

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
	 * Plat. Management. Allow the platform to do it's cluster
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


static int psci_afflvl2_suspend(unsigned long mpidr,
				aff_map_node *system_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
	plat_state = psci_get_aff_phys_state(system_node);

	/*
	 * Plat. Management : Allow the platform to do it's bookeeping
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

static const afflvl_suspend_handler psci_afflvl_suspend_handlers[] = {
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
 * This function implements the core of the processing required to suspend a cpu
 * It'S assumed that along with suspending the cpu, higher affinity levels will
 * be suspended as far as possible. Suspending a cpu is equivalent to physically
 * powering it down, but the cpu is still available to the OS for scheduling.
 * We first need to determine the new state off all the affinity instances in
 * the mpidr corresponding to the target cpu. Action will be taken on the basis
 * of this new state. To do the state change we first need to acquire the locks
 * for all the implemented affinity level to be able to snapshot the system
 * state. Then we need to start suspending affinity levels from the lowest to
 * the highest (e.g. a cpu needs to be suspended before a cluster can be). To
 * achieve this flow, we start acquiring the locks from the highest to the
 * lowest affinity level. Once we reach affinity level 0, we do the state change
 * followed by the actions corresponding to the new state for affinity level 0.
 * Actions as per the updated state for higher affinity levels are performed as
 * we unwind back to highest affinity level.
 ******************************************************************************/
int psci_afflvl_suspend(unsigned long mpidr,
			unsigned long entrypoint,
			unsigned long context_id,
			unsigned int power_state,
			int cur_afflvl,
			int tgt_afflvl)
{
	int rc = PSCI_E_SUCCESS, level;
	unsigned int prev_state, next_state;
	aff_map_node *aff_node;

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
	 * Some affinity instances at levels between the current and
	 * target levels could be absent in the mpidr. Skip them and
	 * start from the first present instance.
	 */
	level = psci_get_first_present_afflvl(mpidr,
					      cur_afflvl,
					      tgt_afflvl,
					      &aff_node);

	/*
	 * Return if there are no more affinity instances beyond this
	 * level to process. Else ensure that the returned affinity
	 * node makes sense.
	 */
	if (aff_node == NULL)
		return rc;

	assert(level == aff_node->level);

	/*
	 * This function acquires the lock corresponding to each
	 * affinity level so that state management can be done safely.
	 */
	bakery_lock_get(mpidr, &aff_node->lock);

	/* Keep the old state and the next one handy */
	prev_state = psci_get_state(aff_node->state);
	next_state = PSCI_STATE_SUSPEND;

	/*
	 * We start from the highest affinity level and work our way
	 * downwards to the lowest i.e. MPIDR_AFFLVL0.
	 */
	if (aff_node->level == tgt_afflvl) {
		psci_change_state(mpidr,
				  tgt_afflvl,
				  get_max_afflvl(),
				  next_state);
	} else {
		rc = psci_afflvl_suspend(mpidr,
					 entrypoint,
					 context_id,
					 power_state,
					 level - 1,
					 tgt_afflvl);
		if (rc != PSCI_E_SUCCESS) {
			psci_set_state(aff_node->state, prev_state);
			goto exit;
		}
	}

	/*
	 * Perform generic, architecture and platform specific
	 * handling
	 */
	rc = psci_afflvl_suspend_handlers[level](mpidr,
						 aff_node,
						 entrypoint,
						 context_id,
						 power_state);
	if (rc != PSCI_E_SUCCESS) {
		psci_set_state(aff_node->state, prev_state);
		goto exit;
	}

	/*
	 * If all has gone as per plan then this cpu should be
	 * marked as OFF
	 */
	if (level == MPIDR_AFFLVL0) {
		next_state = psci_get_state(aff_node->state);
		assert(next_state == PSCI_STATE_SUSPEND);
	}

exit:
	bakery_lock_release(mpidr, &aff_node->lock);
	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
						aff_map_node *cpu_node,
						unsigned int prev_state)
{
	unsigned int index, plat_state, rc = 0;

	assert(cpu_node->level == MPIDR_AFFLVL0);

	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
		plat_state = psci_get_phys_state(prev_state);
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	index = cpu_node->data;

	/*
	 * Arch. management: Restore the stashed secure architectural
	 * context in the right order.
	 */
	write_vbar(psci_secure_context[index].vbar);
375
	write_daif(read_daif() | psci_secure_context[index].pstate);
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
	write_mair(psci_secure_context[index].mair);
	write_tcr(psci_secure_context[index].tcr);
	write_ttbr0(psci_secure_context[index].ttbr);
	write_sctlr(psci_secure_context[index].sctlr);

	/* MMU and coherency should be enabled by now */
	write_scr(psci_secure_context[index].scr);
	write_cptr(psci_secure_context[index].cptr);
	write_cpacr(psci_secure_context[index].cpacr);
	write_cntfrq_el0(psci_secure_context[index].cntfrq);

	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
	 * call to set this cpu on it's way.
	 */
392
	psci_get_ns_entry_info(index);
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_suspend_finish(unsigned long mpidr,
						aff_map_node *cluster_node,
						unsigned int prev_state)
{
	unsigned int rc = 0;
	unsigned int plat_state;

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
		plat_state = psci_get_phys_state(prev_state);
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	return rc;
}


static unsigned int psci_afflvl2_suspend_finish(unsigned long mpidr,
						aff_map_node *system_node,
						unsigned int target_afflvl)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
		plat_state = psci_get_phys_state(system_node->state);
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	return rc;
}

const afflvl_power_on_finisher psci_afflvl_suspend_finishers[] = {
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};