psci_common.c 18.3 KB
Newer Older
1
/*
Dan Handley's avatar
Dan Handley committed
2
 * Copyright (c) 2013, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>
39
#include <runtime_svc.h>
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

/*******************************************************************************
 * Arrays that contains information needs to resume a cpu's execution when woken
 * out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next
 * free index in the 'psci_ns_entry_info' & 'psci_secure_context' arrays. Each
 * cpu is allocated a single entry in each array during startup.
 ******************************************************************************/
secure_context psci_secure_context[PSCI_NUM_AFFS];
ns_entry_info psci_ns_entry_info[PSCI_NUM_AFFS];
unsigned int psci_ns_einfo_idx;

/*******************************************************************************
 * Grand array that holds the platform's topology information for state
 * management of affinity instances. Each node (aff_map_node) in the array
 * corresponds to an affinity instance e.g. cluster, cpu within an mpidr
 ******************************************************************************/
aff_map_node psci_aff_map[PSCI_NUM_AFFS]
__attribute__ ((section("tzfw_coherent_mem")));

/*******************************************************************************
 * In a system, a certain number of affinity instances are present at an
 * affinity level. The cumulative number of instances across all levels are
 * stored in 'psci_aff_map'. The topology tree has been flattenned into this
 * array. To retrieve nodes, information about the extents of each affinity
 * level i.e. start index and end index needs to be present. 'psci_aff_limits'
 * stores this information.
 ******************************************************************************/
aff_limits_node psci_aff_limits[MPIDR_MAX_AFFLVL + 1];

/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
plat_pm_ops *psci_plat_pm_ops;

/*******************************************************************************
 * Simple routine to retrieve the maximum affinity level supported by the
 * platform and check that it makes sense.
 ******************************************************************************/
int get_max_afflvl()
{
	int aff_lvl;

	aff_lvl = plat_get_max_afflvl();
	assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);

	return aff_lvl;
}

/*******************************************************************************
 * Simple routine to set the id of an affinity instance at a given level in the
 * mpidr.
 ******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
				 unsigned char aff_inst,
				 int aff_lvl)
{
	unsigned long aff_shift;

	assert(aff_lvl <= MPIDR_AFFLVL3);

	/*
	 * Decide the number of bits to shift by depending upon
	 * the affinity level
	 */
	aff_shift = get_afflvl_shift(aff_lvl);

	/* Clear the existing affinity instance & set the new one*/
	mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
	mpidr |= aff_inst << aff_shift;

	return mpidr;
}

/*******************************************************************************
 * Simple routine to determine whether an affinity instance at a given level
 * in an mpidr exists or not.
 ******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
	aff_map_node *node;

	node = psci_get_aff_map_node(mpidr, level);
	if (node && (node->state & PSCI_AFF_PRESENT))
		return PSCI_E_SUCCESS;
	else
		return PSCI_E_INVALID_PARAMS;
}

/*******************************************************************************
 * Simple routine to determine the first affinity level instance that is present
 * between the start and end affinity levels. This helps to skip handling of
 * absent affinity levels while performing psci operations.
 * The start level can be > or <= to the end level depending upon whether this
 * routine is expected to search top down or bottom up.
 ******************************************************************************/
int psci_get_first_present_afflvl(unsigned long mpidr,
				  int start_afflvl,
				  int end_afflvl,
				  aff_map_node **node)
{
	int level;

	/* Check whether we have to search up or down */
	if (start_afflvl <= end_afflvl) {
		for (level = start_afflvl; level <= end_afflvl; level++) {
			*node = psci_get_aff_map_node(mpidr, level);
			if (*node && ((*node)->state & PSCI_AFF_PRESENT))
				break;
		}
	} else {
		for (level = start_afflvl; level >= end_afflvl; level--) {
			*node = psci_get_aff_map_node(mpidr, level);
			if (*node && ((*node)->state & PSCI_AFF_PRESENT))
				break;
		}
	}

	return level;
}

/*******************************************************************************
 * Recursively change the affinity state between the current and target affinity
 * levels. The target state matters only if we are starting from affinity level
 * 0 i.e. a cpu otherwise the state depends upon the state of the lower affinity
 * levels.
 ******************************************************************************/
int psci_change_state(unsigned long mpidr,
		      int cur_afflvl,
		      int tgt_afflvl,
		      unsigned int tgt_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int state;
	aff_map_node *aff_node;

	/* Sanity check the affinity levels */
	assert(tgt_afflvl >= cur_afflvl);

	aff_node = psci_get_aff_map_node(mpidr, cur_afflvl);
	assert(aff_node);

	/* TODO: Check whether the affinity level is present or absent*/

	if (cur_afflvl == MPIDR_AFFLVL0) {
		psci_set_state(aff_node->state, tgt_state);
	} else {
		state = psci_calculate_affinity_state(aff_node);
		psci_set_state(aff_node->state, state);
	}

	if (cur_afflvl != tgt_afflvl)
		psci_change_state(mpidr, cur_afflvl + 1, tgt_afflvl, tgt_state);

	return rc;
}

/*******************************************************************************
 * This routine does the heavy lifting for psci_change_state(). It examines the
 * state of each affinity instance at the next lower affinity level and decides
 * it's final state accordingly. If a lower affinity instance is ON then the
 * higher affinity instance is ON. If all the lower affinity instances are OFF
 * then the higher affinity instance is OFF. If atleast one lower affinity
 * instance is SUSPENDED then the higher affinity instance is SUSPENDED. If only
 * a single lower affinity instance is ON_PENDING then the higher affinity
 * instance in ON_PENDING as well.
 ******************************************************************************/
unsigned int psci_calculate_affinity_state(aff_map_node *aff_node)
{
	int ctr;
	unsigned int aff_count, hi_aff_state;
	unsigned long tempidr;
	aff_map_node *lo_aff_node;

	/* Cannot calculate lowest affinity state. It's simply assigned */
	assert(aff_node->level > MPIDR_AFFLVL0);

	/*
	 * Find the number of affinity instances at level X-1 e.g. number of
	 * cpus in a cluster. The level X state depends upon the state of each
	 * instance at level X-1
	 */
	hi_aff_state = PSCI_STATE_OFF;
	aff_count = plat_get_aff_count(aff_node->level - 1, aff_node->mpidr);
	for (ctr = 0; ctr < aff_count; ctr++) {

		/*
		 * Create a mpidr for each lower affinity level (X-1). Use their
		 * states to influence the higher affinity state (X).
		 */
		tempidr = mpidr_set_aff_inst(aff_node->mpidr,
					     ctr,
					     aff_node->level - 1);
		lo_aff_node = psci_get_aff_map_node(tempidr,
						    aff_node->level - 1);
		assert(lo_aff_node);

		/* Continue only if the cpu exists within the cluster */
		if (!(lo_aff_node->state & PSCI_AFF_PRESENT))
			continue;

		switch (psci_get_state(lo_aff_node->state)) {

		/*
		 * If any lower affinity is on within the cluster, then
		 * the higher affinity is on.
		 */
		case PSCI_STATE_ON:
			return PSCI_STATE_ON;

		/*
		 * At least one X-1 needs to be suspended for X to be suspended
		 * but it's effectively on for the affinity_info call.
		 * SUSPEND > ON_PENDING > OFF.
		 */
		case PSCI_STATE_SUSPEND:
			hi_aff_state = PSCI_STATE_SUSPEND;
			continue;

		/*
		 * Atleast one X-1 needs to be on_pending & the rest off for X
		 * to be on_pending. ON_PENDING > OFF.
		 */
		case PSCI_STATE_ON_PENDING:
			if (hi_aff_state != PSCI_STATE_SUSPEND)
				hi_aff_state = PSCI_STATE_ON_PENDING;
			continue;

		/* Higher affinity is off if all lower affinities are off. */
		case PSCI_STATE_OFF:
			continue;

		default:
			assert(0);
		}
	}

	return hi_aff_state;
}

/*******************************************************************************
 * This function retrieves all the stashed information needed to correctly
 * resume a cpu's execution in the non-secure state after it has been physically
 * powered on i.e. turned ON or resumed from SUSPEND
 ******************************************************************************/
284
void psci_get_ns_entry_info(unsigned int index)
285
286
{
	unsigned long sctlr = 0, scr, el_status, id_aa64pfr0;
287
	gp_regs *ns_gp_regs;
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

	scr = read_scr();

	/* Switch to the non-secure view of the registers */
	write_scr(scr | SCR_NS_BIT);

	/* Find out which EL we are going to */
	id_aa64pfr0 = read_id_aa64pfr0_el1();
	el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
		ID_AA64PFR0_ELX_MASK;

	/* Restore endianess */
	if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT)
		sctlr |= SCTLR_EE_BIT;
	else
		sctlr &= ~SCTLR_EE_BIT;

	/* Turn off MMU and Caching */
	sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT);

	/* Set the register width */
	if (psci_ns_entry_info[index].scr & SCR_RW_BIT)
		scr |= SCR_RW_BIT;
	else
		scr &= ~SCR_RW_BIT;

	scr |= SCR_NS_BIT;

	if (el_status)
		write_sctlr_el2(sctlr);
	else
		write_sctlr_el1(sctlr);

	/* Fulfill the cpu_on entry reqs. as per the psci spec */
	write_scr(scr);
	write_elr(psci_ns_entry_info[index].eret_info.entrypoint);

325
326
327
328
329
330
331
332
333
334
335
336
337
338
	/*
	 * Set the general purpose registers to ~0 upon entry into the
	 * non-secure world except for x0 which should contain the
	 * context id & spsr. This is done directly on the "would be"
	 * stack pointer. Prior to entry into the non-secure world, an
	 * offset equivalent to the size of the 'gp_regs' structure is
	 * added to the sp. This general purpose register context is
	 * retrieved then.
	 */
	ns_gp_regs = (gp_regs *) platform_get_stack(read_mpidr());
	ns_gp_regs--;
	memset(ns_gp_regs, ~0, sizeof(*ns_gp_regs));
	ns_gp_regs->x0 = psci_ns_entry_info[index].context_id;
	ns_gp_regs->spsr = psci_ns_entry_info[index].eret_info.spsr;
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
}

/*******************************************************************************
 * This function retrieves and stashes all the information needed to correctly
 * resume a cpu's execution in the non-secure state after it has been physically
 * powered on i.e. turned ON or resumed from SUSPEND. This is done prior to
 * turning it on or before suspending it.
 ******************************************************************************/
int psci_set_ns_entry_info(unsigned int index,
			   unsigned long entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int rw, mode, ee, spsr = 0;
	unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr();
	unsigned long el_status;

	/* Figure out what mode do we enter the non-secure world in */
	el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
		ID_AA64PFR0_ELX_MASK;

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
	rw = scr & SCR_RW_BIT;
	if (rw) {

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if (entrypoint & 0x1)
			return PSCI_E_INVALID_PARAMS;

		if (el_status && (scr & SCR_HCE_BIT)) {
			mode = MODE_EL2;
			ee = read_sctlr_el2() & SCTLR_EE_BIT;
		} else {
			mode = MODE_EL1;
			ee = read_sctlr_el1() & SCTLR_EE_BIT;
		}

		spsr = DAIF_DBG_BIT | DAIF_ABT_BIT;
		spsr |= DAIF_IRQ_BIT | DAIF_FIQ_BIT;
		spsr <<= PSR_DAIF_SHIFT;
		spsr |= make_spsr(mode, MODE_SP_ELX, !rw);

		psci_ns_entry_info[index].sctlr |= ee;
		psci_ns_entry_info[index].scr |= SCR_RW_BIT;
	} else {

		/* Check whether aarch32 has to be entered in Thumb mode */
		if (entrypoint & 0x1)
			spsr = SPSR32_T_BIT;

		if (el_status && (scr & SCR_HCE_BIT)) {
			mode = AARCH32_MODE_HYP;
			ee = read_sctlr_el2() & SCTLR_EE_BIT;
		} else {
			mode = AARCH32_MODE_SVC;
			ee = read_sctlr_el1() & SCTLR_EE_BIT;
		}

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
		spsr |= DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
		spsr <<= PSR_DAIF_SHIFT;
		if(ee)
			spsr |= SPSR32_EE_BIT;
		spsr |= mode;

		/* Ensure that the CSPR.E and SCTLR.EE bits match */
		psci_ns_entry_info[index].sctlr |= ee;
		psci_ns_entry_info[index].scr &= ~SCR_RW_BIT;
	}

	psci_ns_entry_info[index].eret_info.entrypoint = entrypoint;
	psci_ns_entry_info[index].eret_info.spsr = spsr;
	psci_ns_entry_info[index].context_id = context_id;

	return rc;
}

/*******************************************************************************
 * An affinity level could be on, on_pending, suspended or off. These are the
 * logical states it can be in. Physically either it's off or on. When it's in
 * the state on_pending then it's about to be turned on. It's not possible to
 * tell whether that's actually happenned or not. So we err on the side of
 * caution & treat the affinity level as being turned off.
 ******************************************************************************/
inline unsigned int psci_get_phys_state(unsigned int aff_state)
{
	return (aff_state != PSCI_STATE_ON ? PSCI_STATE_OFF : PSCI_STATE_ON);
}

unsigned int psci_get_aff_phys_state(aff_map_node *aff_node)
{
	unsigned int aff_state;

	aff_state = psci_get_state(aff_node->state);
	return psci_get_phys_state(aff_state);
}

/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
 * recurses through all the affinity levels performing generic, architectural,
 * platform setup and state management e.g. for a cluster that's been powered
 * on, it will call the platform specific code which will enable coherency at
 * the interconnect level. For a cpu it could mean turning on the MMU etc.
 *
 * This function traverses from the lowest to the highest affinity level
 * implemented by the platform. Since it's recursive, for each call the
 * 'cur_afflvl' & 'tgt_afflvl' parameters keep track of which level we are at
 * and which level we need to get to respectively. Locks are picked up along the
 * way so that when the lowest affinity level is hit, state management can be
 * safely done. Prior to this, each affinity level does it's bookeeping as per
 * the state out of reset.
 *
 * CAUTION: This function is called with coherent stacks so that coherency and
 * the mmu can be turned on safely.
 ******************************************************************************/
unsigned int psci_afflvl_power_on_finish(unsigned long mpidr,
					 int cur_afflvl,
					 int tgt_afflvl,
					 afflvl_power_on_finisher *pon_handlers)
{
	unsigned int prev_state, next_state, rc = PSCI_E_SUCCESS;
	aff_map_node *aff_node;
	int level;

	mpidr &= MPIDR_AFFINITY_MASK;;

	/*
	 * Some affinity instances at levels between the current and
	 * target levels could be absent in the mpidr. Skip them and
	 * start from the first present instance.
	 */
	level = psci_get_first_present_afflvl(mpidr,
					      cur_afflvl,
					      tgt_afflvl,
					      &aff_node);
	/*
	 * Return if there are no more affinity instances beyond this
	 * level to process. Else ensure that the returned affinity
	 * node makes sense.
	 */
	if (aff_node == NULL)
		return rc;

	assert(level == aff_node->level);

	/*
	 * This function acquires the lock corresponding to each
	 * affinity level so that by the time we hit the highest
	 * affinity level, the system topology is snapshot and state
	 * management can be done safely.
	 */
	bakery_lock_get(mpidr, &aff_node->lock);

	/* Keep the old and new state handy */
	prev_state = psci_get_state(aff_node->state);
	next_state = PSCI_STATE_ON;

	/* Perform generic, architecture and platform specific handling */
	rc = pon_handlers[level](mpidr, aff_node, prev_state);
	if (rc != PSCI_E_SUCCESS) {
		psci_set_state(aff_node->state, prev_state);
		goto exit;
	}

	/*
	 * State management: Update the states if this is the highest
	 * affinity level requested else pass the job to the next level.
	 */
	if (aff_node->level != tgt_afflvl) {
		rc = psci_afflvl_power_on_finish(mpidr,
						 level + 1,
						 tgt_afflvl,
						 pon_handlers);
	} else {
		psci_change_state(mpidr, MPIDR_AFFLVL0, tgt_afflvl, next_state);
	}

	/* If all has gone as per plan then this cpu should be marked as ON */
	if (level == MPIDR_AFFLVL0) {
		next_state = psci_get_state(aff_node->state);
		assert(next_state == PSCI_STATE_ON);
	}

exit:
	bakery_lock_release(mpidr, &aff_node->lock);
	return rc;
}