gicv3_main.c 14.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
#include <gicv3.h>
37
#include "../common/gic_common_private.h"
38
39
40
41
42
#include "gicv3_private.h"

static const gicv3_driver_data_t *driver_data;
static unsigned int gicv2_compat;

43
44
45
46
47
48
49
/*
 * Redistributor power operations are weakly bound so that they can be
 * overridden
 */
#pragma weak gicv3_rdistif_off
#pragma weak gicv3_rdistif_on

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*******************************************************************************
 * This function initialises the ARM GICv3 driver in EL3 with provided platform
 * inputs.
 ******************************************************************************/
void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
{
	unsigned int gic_version;

	assert(plat_driver_data);
	assert(plat_driver_data->gicd_base);
	assert(plat_driver_data->gicr_base);
	assert(plat_driver_data->rdistif_num);
	assert(plat_driver_data->rdistif_base_addrs);

	assert(IS_IN_EL3());

	/*
	 * The platform should provide a list of at least one type of
	 * interrupts
	 */
	assert(plat_driver_data->g0_interrupt_array ||
	       plat_driver_data->g1s_interrupt_array);

	/*
	 * If there are no interrupts of a particular type, then the number of
	 * interrupts of that type should be 0 and vice-versa.
	 */
	assert(plat_driver_data->g0_interrupt_array ?
	       plat_driver_data->g0_interrupt_num :
	       plat_driver_data->g0_interrupt_num == 0);
	assert(plat_driver_data->g1s_interrupt_array ?
	       plat_driver_data->g1s_interrupt_num :
	       plat_driver_data->g1s_interrupt_num == 0);

	/* Check for system register support */
85
86
87
#ifdef AARCH32
	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
#else
88
89
	assert(read_id_aa64pfr0_el1() &
			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
90
#endif /* AARCH32 */
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

	/* The GIC version should be 3.0 */
	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
	gic_version &= PIDR2_ARCH_REV_MASK;
	assert(gic_version == ARCH_REV_GICV3);

	/*
	 * Find out whether the GIC supports the GICv2 compatibility mode. The
	 * ARE_S bit resets to 0 if supported
	 */
	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
	gicv2_compat >>= CTLR_ARE_S_SHIFT;
	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);

	/*
	 * Find the base address of each implemented Redistributor interface.
	 * The number of interfaces should be equal to the number of CPUs in the
	 * system. The memory for saving these addresses has to be allocated by
	 * the platform port
	 */
	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
					   plat_driver_data->rdistif_num,
					   plat_driver_data->gicr_base,
					   plat_driver_data->mpidr_to_core_pos);

	driver_data = plat_driver_data;

119
120
121
122
123
124
125
126
127
128
129
130
	/*
	 * The GIC driver data is initialized by the primary CPU with caches
	 * enabled. When the secondary CPU boots up, it initializes the
	 * GICC/GICR interface with the caches disabled. Hence flush the
	 * driver_data to ensure coherency. This is not required if the
	 * platform has HW_ASSISTED_COHERENCY enabled.
	 */
#if !HW_ASSISTED_COHERENCY
	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
#endif

131
132
133
134
135
136
137
138
139
140
141
	INFO("GICv3 %s legacy support detected."
			" ARM GICV3 driver initialized in EL3\n",
			gicv2_compat ? "with" : "without");
}

/*******************************************************************************
 * This function initialises the GIC distributor interface based upon the data
 * provided by the platform while initialising the driver.
 ******************************************************************************/
void gicv3_distif_init(void)
{
142
143
	unsigned int bitmap = 0;

144
145
	assert(driver_data);
	assert(driver_data->gicd_base);
146
147
	assert(driver_data->g1s_interrupt_array ||
	       driver_data->g0_interrupt_array);
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

	assert(IS_IN_EL3());

	/*
	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
	 * the ARE_S bit. The Distributor might generate a system error
	 * otherwise.
	 */
	gicd_clr_ctlr(driver_data->gicd_base,
		      CTLR_ENABLE_G0_BIT |
		      CTLR_ENABLE_G1S_BIT |
		      CTLR_ENABLE_G1NS_BIT,
		      RWP_TRUE);

	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
	gicd_set_ctlr(driver_data->gicd_base,
			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);

	/* Set the default attribute of all SPIs */
	gicv3_spis_configure_defaults(driver_data->gicd_base);

	/* Configure the G1S SPIs */
170
171
	if (driver_data->g1s_interrupt_array) {
		gicv3_secure_spis_configure(driver_data->gicd_base,
172
173
					driver_data->g1s_interrupt_num,
					driver_data->g1s_interrupt_array,
174
					INTR_GROUP1S);
175
176
		bitmap |= CTLR_ENABLE_G1S_BIT;
	}
177
178

	/* Configure the G0 SPIs */
179
180
	if (driver_data->g0_interrupt_array) {
		gicv3_secure_spis_configure(driver_data->gicd_base,
181
182
					driver_data->g0_interrupt_num,
					driver_data->g0_interrupt_array,
183
					INTR_GROUP0);
184
185
		bitmap |= CTLR_ENABLE_G0_BIT;
	}
186
187

	/* Enable the secure SPIs now that they have been configured */
188
	gicd_set_ctlr(driver_data->gicd_base, bitmap, RWP_TRUE);
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
}

/*******************************************************************************
 * This function initialises the GIC Redistributor interface of the calling CPU
 * (identified by the 'proc_num' parameter) based upon the data provided by the
 * platform while initialising the driver.
 ******************************************************************************/
void gicv3_rdistif_init(unsigned int proc_num)
{
	uintptr_t gicr_base;

	assert(driver_data);
	assert(proc_num < driver_data->rdistif_num);
	assert(driver_data->rdistif_base_addrs);
	assert(driver_data->gicd_base);
	assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT);
205
206
	assert(driver_data->g1s_interrupt_array ||
	       driver_data->g0_interrupt_array);
207
208
209

	assert(IS_IN_EL3());

210
211
212
	/* Power on redistributor */
	gicv3_rdistif_on(proc_num);

213
214
215
216
217
218
	gicr_base = driver_data->rdistif_base_addrs[proc_num];

	/* Set the default attribute of all SGIs and PPIs */
	gicv3_ppi_sgi_configure_defaults(gicr_base);

	/* Configure the G1S SGIs/PPIs */
219
220
221
222
223
224
	if (driver_data->g1s_interrupt_array) {
		gicv3_secure_ppi_sgi_configure(gicr_base,
					driver_data->g1s_interrupt_num,
					driver_data->g1s_interrupt_array,
					INTR_GROUP1S);
	}
225
226

	/* Configure the G0 SGIs/PPIs */
227
228
229
230
231
232
	if (driver_data->g0_interrupt_array) {
		gicv3_secure_ppi_sgi_configure(gicr_base,
					driver_data->g0_interrupt_num,
					driver_data->g0_interrupt_array,
					INTR_GROUP0);
	}
233
234
}

235
236
237
238
239
240
241
242
243
244
245
246
247
/*******************************************************************************
 * Functions to perform power operations on GIC Redistributor
 ******************************************************************************/
void gicv3_rdistif_off(unsigned int proc_num)
{
	return;
}

void gicv3_rdistif_on(unsigned int proc_num)
{
	return;
}

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*******************************************************************************
 * This function enables the GIC CPU interface of the calling CPU using only
 * system register accesses.
 ******************************************************************************/
void gicv3_cpuif_enable(unsigned int proc_num)
{
	uintptr_t gicr_base;
	unsigned int scr_el3;
	unsigned int icc_sre_el3;

	assert(driver_data);
	assert(proc_num < driver_data->rdistif_num);
	assert(driver_data->rdistif_base_addrs);
	assert(IS_IN_EL3());

	/* Mark the connected core as awake */
	gicr_base = driver_data->rdistif_base_addrs[proc_num];
	gicv3_rdistif_mark_core_awake(gicr_base);

	/* Disable the legacy interrupt bypass */
	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;

	/*
	 * Enable system register access for EL3 and allow lower exception
	 * levels to configure the same for themselves. If the legacy mode is
	 * not supported, the SRE bit is RAO/WI
	 */
	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);

	scr_el3 = read_scr_el3();

	/*
	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
	 * ICC_SRE_EL2 registers.
	 */
	write_scr_el3(scr_el3 | SCR_NS_BIT);
	isb();

	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
	write_icc_sre_el1(ICC_SRE_SRE_BIT);
	isb();

	/* Switch to secure state. */
	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
	isb();

	/* Program the idle priority in the PMR */
	write_icc_pmr_el1(GIC_PRI_MASK);

	/* Enable Group0 interrupts */
	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);

	/* Enable Group1 Secure interrupts */
	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
				IGRPEN1_EL3_ENABLE_G1S_BIT);

	/* Write the secure ICC_SRE_EL1 register */
	write_icc_sre_el1(ICC_SRE_SRE_BIT);
	isb();
}

/*******************************************************************************
 * This function disables the GIC CPU interface of the calling CPU using
 * only system register accesses.
 ******************************************************************************/
void gicv3_cpuif_disable(unsigned int proc_num)
{
	uintptr_t gicr_base;

	assert(driver_data);
	assert(proc_num < driver_data->rdistif_num);
	assert(driver_data->rdistif_base_addrs);

	assert(IS_IN_EL3());

	/* Disable legacy interrupt bypass */
	write_icc_sre_el3(read_icc_sre_el3() |
			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));

	/* Disable Group0 interrupts */
	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
			      ~IGRPEN1_EL1_ENABLE_G0_BIT);

332
	/* Disable Group1 Secure and Non-Secure interrupts */
333
	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
334
335
			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
			      IGRPEN1_EL3_ENABLE_G1S_BIT));
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

	/* Synchronise accesses to group enable registers */
	isb();

	/* Mark the connected core as asleep */
	gicr_base = driver_data->rdistif_base_addrs[proc_num];
	gicv3_rdistif_mark_core_asleep(gicr_base);
}

/*******************************************************************************
 * This function returns the id of the highest priority pending interrupt at
 * the GIC cpu interface.
 ******************************************************************************/
unsigned int gicv3_get_pending_interrupt_id(void)
{
	unsigned int id;

	assert(IS_IN_EL3());
	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;

	/*
	 * If the ID is special identifier corresponding to G1S or G1NS
	 * interrupt, then read the highest pending group 1 interrupt.
	 */
	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;

	return id;
}

/*******************************************************************************
 * This function returns the type of the highest priority pending interrupt at
 * the GIC cpu interface. The return values can be one of the following :
 *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
 *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
 *   0 - 1019           : The interrupt type is secure Group 0.
 *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
 *                            sufficient priority to be signaled
 ******************************************************************************/
unsigned int gicv3_get_pending_interrupt_type(void)
{
	assert(IS_IN_EL3());
	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
}

/*******************************************************************************
 * This function returns the type of the interrupt id depending upon the group
 * this interrupt has been configured under by the interrupt controller i.e.
 * group0 or group1 Secure / Non Secure. The return value can be one of the
 * following :
386
387
388
 *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
 *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
 *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
 *                   interrupt.
 ******************************************************************************/
unsigned int gicv3_get_interrupt_type(unsigned int id,
					  unsigned int proc_num)
{
	unsigned int igroup, grpmodr;
	uintptr_t gicr_base;

	assert(IS_IN_EL3());
	assert(driver_data);

	/* Ensure the parameters are valid */
	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
	assert(proc_num < driver_data->rdistif_num);

	/* All LPI interrupts are Group 1 non secure */
	if (id >= MIN_LPI_ID)
406
		return INTR_GROUP1NS;
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

	if (id < MIN_SPI_ID) {
		assert(driver_data->rdistif_base_addrs);
		gicr_base = driver_data->rdistif_base_addrs[proc_num];
		igroup = gicr_get_igroupr0(gicr_base, id);
		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
	} else {
		assert(driver_data->gicd_base);
		igroup = gicd_get_igroupr(driver_data->gicd_base, id);
		grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id);
	}

	/*
	 * If the IGROUP bit is set, then it is a Group 1 Non secure
	 * interrupt
	 */
	if (igroup)
424
		return INTR_GROUP1NS;
425
426
427

	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
	if (grpmodr)
428
		return INTR_GROUP1S;
429
430

	/* Else it is a Group 0 Secure interrupt */
431
	return INTR_GROUP0;
432
}