context_mgmt.c 9.71 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
11
12
13
14
15
16
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <platform.h>
#include <platform_def.h>
#include <smcc_helpers.h>
#include <string.h>
17
#include <utils.h>
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload manages the context(s) corresponding to the secure state.
 * It also uses this library to get access to the non-secure
 * state cpu context pointers.
 ******************************************************************************/
void cm_init(void)
{
	/*
	 * The context management library has only global data to initialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

/*******************************************************************************
 * The following function initializes the cpu_context 'ctx' for
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianness and secure
 * timer availability for the new execution context.
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
{
	unsigned int security_state;
	uint32_t scr, sctlr;
	regs_t *reg_ctx;

	assert(ctx);

	security_state = GET_SECURITY_STATE(ep->h.attr);

	/* Clear any residual register values from the context */
64
	zeromem(ctx, sizeof(*ctx));
65

66
67
	reg_ctx = get_regs_ctx(ctx);

68
69
70
71
72
73
74
75
76
77
78
	/*
	 * Base the context SCR on the current value, adjust for entry point
	 * specific requirements
	 */
	scr = read_scr();
	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);

	if (security_state != SECURE)
		scr |= SCR_NS_BIT;

	if (security_state != SECURE) {
79
		/*
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
		 * Set up SCTLR for the Non-secure context.
		 *
		 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
		 *
		 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
		 *  required by PSCI specification)
		 *
		 * Set remaining SCTLR fields to their architecturally defined
		 * values. Some fields reset to an IMPLEMENTATION DEFINED value:
		 *
		 * SCTLR.TE: Set to zero so that exceptions to an Exception
		 *  Level executing at PL1 are taken to A32 state.
		 *
		 * SCTLR.V: Set to zero to select the normal exception vectors
		 *  with base address held in VBAR.
95
		 */
96
97
98
99
100
		assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
			(EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));

		sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
		sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
101
102
103
		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
	}

104
105
106
107
	/*
	 * The target exception level is based on the spsr mode requested. If
	 * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
	 */
108
109
110
	if (GET_M32(ep->spsr) == MODE32_hyp)
		scr |= SCR_HCE_BIT;

111
112
113
114
115
	/*
	 * Store the initialised values for SCTLR and SCR in the cpu_context.
	 * The Hyp mode registers are not part of the saved context and are
	 * set-up in cm_prepare_el3_exit().
	 */
116
117
118
119
120
121
122
123
124
125
126
	write_ctx_reg(reg_ctx, CTX_SCR, scr);
	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);

	/*
	 * Store the r0-r3 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
}

127
128
129
130
131
132
133
134
135
136
137
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
static void enable_extensions_nonsecure(int el2_unused)
{
#if IMAGE_BL32
#endif
}

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to hyp mode, HSCTLR is initialized
 * If execution is requested to non-secure PL1, and the CPU supports
 * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
 * registers.
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
173
	uint32_t hsctlr, scr;
174
	cpu_context_t *ctx = cm_get_context(security_state);
175
	int el2_unused = 0;
176
177
178
179
180
181
182

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
		if (scr & SCR_HCE_BIT) {
			/* Use SCTLR value to initialize HSCTLR */
183
			hsctlr = read_ctx_reg(get_regs_ctx(ctx),
184
						 CTX_NS_SCTLR);
185
			hsctlr |= HSCTLR_RES1;
186
187
188
189
190
191
192
			/* Temporarily set the NS bit to access HSCTLR */
			write_scr(read_scr() | SCR_NS_BIT);
			/*
			 * Make sure the write to SCR is complete so that
			 * we can access HSCTLR
			 */
			isb();
193
			write_hsctlr(hsctlr);
194
195
196
197
198
199
			isb();

			write_scr(read_scr() & ~SCR_NS_BIT);
			isb();
		} else if (read_id_pfr1() &
			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) {
200
201
			el2_unused = 1;

202
203
204
205
			/*
			 * Set the NS bit to access NS copies of certain banked
			 * registers
			 */
206
207
208
			write_scr(read_scr() | SCR_NS_BIT);
			isb();

209
210
211
212
213
214
215
216
			/*
			 * Hyp / PL2 present but unused, need to disable safely.
			 * HSCTLR can be ignored in this case.
			 *
			 * Set HCR to its architectural reset value so that
			 * Non-secure operations do not trap to Hyp mode.
			 */
			write_hcr(HCR_RESET_VAL);
217

218
219
220
221
222
223
224
			/*
			 * Set HCPTR to its architectural reset value so that
			 * Non-secure access from EL1 or EL0 to trace and to
			 * Advanced SIMD and floating point functionality does
			 * not trap to Hyp mode.
			 */
			write_hcptr(HCPTR_RESET_VAL);
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
			/*
			 * Initialise CNTHCTL. All fields are architecturally
			 * UNKNOWN on reset and are set to zero except for
			 * field(s) listed below.
			 *
			 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
			 *  Non-secure EL0 and EL1 accessed to the physical
			 *  timer registers.
			 *
			 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
			 *  Non-secure EL0 and EL1 accessed to the physical
			 *  counter registers.
			 */
			write_cnthctl(CNTHCTL_RESET_VAL |
					PL1PCEN_BIT | PL1PCTEN_BIT);
241

242
243
244
245
			/*
			 * Initialise CNTVOFF to zero as it resets to an
			 * IMPLEMENTATION DEFINED value.
			 */
246
247
			write64_cntvoff(0);

248
249
250
251
			/*
			 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
			 * respectively.
			 */
252
253
254
255
			write_vpidr(read_midr());
			write_vmpidr(read_mpidr());

			/*
256
257
258
259
260
261
262
263
264
265
266
			 * Initialise VTTBR, setting all fields rather than
			 * relying on the hw. Some fields are architecturally
			 * UNKNOWN at reset.
			 *
			 * VTTBR.VMID: Set to zero which is the architecturally
			 *  defined reset value. Even though EL1&0 stage 2
			 *  address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
267
			 */
268
269
270
			write64_vttbr(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
271
272

			/*
273
274
275
276
277
			 * Initialise HDCR, setting all the fields rather than
			 * relying on hw.
			 *
			 * HDCR.HPMN: Set to value of PMCR.N which is the
			 *  architecturally-defined reset value.
278
			 */
279
280
			write_hdcr(HDCR_RESET_VAL |
				((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT));
281
282

			/*
283
284
285
286
287
288
289
290
291
292
			 * Set HSTR to its architectural reset value so that
			 * access to system registers in the cproc=1111
			 * encoding space do not trap to Hyp mode.
			 */
			write_hstr(HSTR_RESET_VAL);
			/*
			 * Set CNTHP_CTL to its architectural reset value to
			 * disable the EL2 physical timer and prevent timer
			 * interrupts. Some fields are architecturally UNKNOWN
			 * on reset and are set to zero.
293
			 */
294
			write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
295
296
297
298
299
			isb();

			write_scr(read_scr() & ~SCR_NS_BIT);
			isb();
		}
300
		enable_extensions_nonsecure(el2_unused);
301
302
	}
}