gicv3_main.c 37.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
11
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gicv3.h>
12
#include <interrupt_props.h>
13
#include <spinlock.h>
14
15
#include "gicv3_private.h"

16
const gicv3_driver_data_t *gicv3_driver_data;
17
18
static unsigned int gicv2_compat;

19
20
21
22
23
24
25
/*
 * Spinlock to guard registers needing read-modify-write. APIs protected by this
 * spinlock are used either at boot time (when only a single CPU is active), or
 * when the system is fully coherent.
 */
spinlock_t gic_lock;

26
27
28
29
30
31
32
/*
 * Redistributor power operations are weakly bound so that they can be
 * overridden
 */
#pragma weak gicv3_rdistif_off
#pragma weak gicv3_rdistif_on

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

/* Helper macros to save and restore GICD registers to and from the context */
#define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
	do {								\
		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
				int_id += (1 << REG##_SHIFT)) {		\
			gicd_write_##reg(base, int_id,			\
				ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \
		}							\
	} while (0)

#define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
	do {								\
		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
				int_id += (1 << REG##_SHIFT)) {		\
			ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\
					gicd_read_##reg(base, int_id);	\
		}							\
	} while (0)


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*******************************************************************************
 * This function initialises the ARM GICv3 driver in EL3 with provided platform
 * inputs.
 ******************************************************************************/
void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
{
	unsigned int gic_version;

	assert(plat_driver_data);
	assert(plat_driver_data->gicd_base);
	assert(plat_driver_data->gicr_base);
	assert(plat_driver_data->rdistif_num);
	assert(plat_driver_data->rdistif_base_addrs);

	assert(IS_IN_EL3());

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#if !ERROR_DEPRECATED
	if (plat_driver_data->interrupt_props == NULL) {
		/* Interrupt properties array size must be 0 */
		assert(plat_driver_data->interrupt_props_num == 0);

		/*
		 * The platform should provide a list of at least one type of
		 * interrupt.
		 */
		assert(plat_driver_data->g0_interrupt_array ||
				plat_driver_data->g1s_interrupt_array);

		/*
		 * If there are no interrupts of a particular type, then the
		 * number of interrupts of that type should be 0 and vice-versa.
		 */
		assert(plat_driver_data->g0_interrupt_array ?
				plat_driver_data->g0_interrupt_num :
				plat_driver_data->g0_interrupt_num == 0);
		assert(plat_driver_data->g1s_interrupt_array ?
				plat_driver_data->g1s_interrupt_num :
				plat_driver_data->g1s_interrupt_num == 0);
	}
#else
	assert(plat_driver_data->interrupt_props != NULL);
	assert(plat_driver_data->interrupt_props_num > 0);
#endif
97
98

	/* Check for system register support */
99
100
101
#ifdef AARCH32
	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
#else
102
103
	assert(read_id_aa64pfr0_el1() &
			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
104
#endif /* AARCH32 */
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

	/* The GIC version should be 3.0 */
	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
	gic_version &= PIDR2_ARCH_REV_MASK;
	assert(gic_version == ARCH_REV_GICV3);

	/*
	 * Find out whether the GIC supports the GICv2 compatibility mode. The
	 * ARE_S bit resets to 0 if supported
	 */
	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
	gicv2_compat >>= CTLR_ARE_S_SHIFT;
	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);

	/*
	 * Find the base address of each implemented Redistributor interface.
	 * The number of interfaces should be equal to the number of CPUs in the
	 * system. The memory for saving these addresses has to be allocated by
	 * the platform port
	 */
	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
					   plat_driver_data->rdistif_num,
					   plat_driver_data->gicr_base,
					   plat_driver_data->mpidr_to_core_pos);

131
	gicv3_driver_data = plat_driver_data;
132

133
134
135
136
	/*
	 * The GIC driver data is initialized by the primary CPU with caches
	 * enabled. When the secondary CPU boots up, it initializes the
	 * GICC/GICR interface with the caches disabled. Hence flush the
137
	 * driver data to ensure coherency. This is not required if the
138
139
140
	 * platform has HW_ASSISTED_COHERENCY enabled.
	 */
#if !HW_ASSISTED_COHERENCY
141
142
143
144
	flush_dcache_range((uintptr_t) &gicv3_driver_data,
			sizeof(gicv3_driver_data));
	flush_dcache_range((uintptr_t) gicv3_driver_data,
			sizeof(*gicv3_driver_data));
145
146
#endif

147
148
149
150
151
152
153
154
155
156
157
	INFO("GICv3 %s legacy support detected."
			" ARM GICV3 driver initialized in EL3\n",
			gicv2_compat ? "with" : "without");
}

/*******************************************************************************
 * This function initialises the GIC distributor interface based upon the data
 * provided by the platform while initialising the driver.
 ******************************************************************************/
void gicv3_distif_init(void)
{
158
159
	unsigned int bitmap = 0;

160
161
	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
162
163
164
165
166
167
168
169

	assert(IS_IN_EL3());

	/*
	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
	 * the ARE_S bit. The Distributor might generate a system error
	 * otherwise.
	 */
170
	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
171
172
173
174
175
176
		      CTLR_ENABLE_G0_BIT |
		      CTLR_ENABLE_G1S_BIT |
		      CTLR_ENABLE_G1NS_BIT,
		      RWP_TRUE);

	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
177
	gicd_set_ctlr(gicv3_driver_data->gicd_base,
178
179
180
			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);

	/* Set the default attribute of all SPIs */
181
	gicv3_spis_configure_defaults(gicv3_driver_data->gicd_base);
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#if !ERROR_DEPRECATED
	if (gicv3_driver_data->interrupt_props != NULL) {
#endif
		bitmap = gicv3_secure_spis_configure_props(
				gicv3_driver_data->gicd_base,
				gicv3_driver_data->interrupt_props,
				gicv3_driver_data->interrupt_props_num);
#if !ERROR_DEPRECATED
	} else {
		assert(gicv3_driver_data->g1s_interrupt_array ||
				gicv3_driver_data->g0_interrupt_array);

		/* Configure the G1S SPIs */
		if (gicv3_driver_data->g1s_interrupt_array) {
			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
198
199
					gicv3_driver_data->g1s_interrupt_num,
					gicv3_driver_data->g1s_interrupt_array,
200
					INTR_GROUP1S);
201
202
			bitmap |= CTLR_ENABLE_G1S_BIT;
		}
203

204
205
206
		/* Configure the G0 SPIs */
		if (gicv3_driver_data->g0_interrupt_array) {
			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
207
208
					gicv3_driver_data->g0_interrupt_num,
					gicv3_driver_data->g0_interrupt_array,
209
					INTR_GROUP0);
210
211
			bitmap |= CTLR_ENABLE_G0_BIT;
		}
212
	}
213
#endif
214
215

	/* Enable the secure SPIs now that they have been configured */
216
	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
217
218
219
220
221
222
223
224
225
226
}

/*******************************************************************************
 * This function initialises the GIC Redistributor interface of the calling CPU
 * (identified by the 'proc_num' parameter) based upon the data provided by the
 * platform while initialising the driver.
 ******************************************************************************/
void gicv3_rdistif_init(unsigned int proc_num)
{
	uintptr_t gicr_base;
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
227
228
	unsigned int bitmap = 0;
	uint32_t ctlr;
229

230
231
232
233
	assert(gicv3_driver_data);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
	assert(gicv3_driver_data->gicd_base);
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
234
235
236

	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
	assert(ctlr & CTLR_ARE_S_BIT);
237
238
239

	assert(IS_IN_EL3());

240
241
242
	/* Power on redistributor */
	gicv3_rdistif_on(proc_num);

243
	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
244
245
246
247

	/* Set the default attribute of all SGIs and PPIs */
	gicv3_ppi_sgi_configure_defaults(gicr_base);

248
249
250
#if !ERROR_DEPRECATED
	if (gicv3_driver_data->interrupt_props != NULL) {
#endif
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
251
		bitmap = gicv3_secure_ppi_sgi_configure_props(gicr_base,
252
253
254
255
256
257
258
259
260
261
				gicv3_driver_data->interrupt_props,
				gicv3_driver_data->interrupt_props_num);
#if !ERROR_DEPRECATED
	} else {
		assert(gicv3_driver_data->g1s_interrupt_array ||
		       gicv3_driver_data->g0_interrupt_array);

		/* Configure the G1S SGIs/PPIs */
		if (gicv3_driver_data->g1s_interrupt_array) {
			gicv3_secure_ppi_sgi_configure(gicr_base,
262
263
					gicv3_driver_data->g1s_interrupt_num,
					gicv3_driver_data->g1s_interrupt_array,
264
					INTR_GROUP1S);
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
265
			bitmap |= CTLR_ENABLE_G1S_BIT;
266
		}
267

268
269
270
		/* Configure the G0 SGIs/PPIs */
		if (gicv3_driver_data->g0_interrupt_array) {
			gicv3_secure_ppi_sgi_configure(gicr_base,
271
272
					gicv3_driver_data->g0_interrupt_num,
					gicv3_driver_data->g0_interrupt_array,
273
					INTR_GROUP0);
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
274
			bitmap |= CTLR_ENABLE_G0_BIT;
275
		}
276
	}
277
#endif
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
278
279
280
281

	/* Enable interrupt groups as required, if not already */
	if ((ctlr & bitmap) != bitmap)
		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
282
283
}

284
285
286
287
288
289
290
291
292
293
294
295
296
/*******************************************************************************
 * Functions to perform power operations on GIC Redistributor
 ******************************************************************************/
void gicv3_rdistif_off(unsigned int proc_num)
{
	return;
}

void gicv3_rdistif_on(unsigned int proc_num)
{
	return;
}

297
298
299
300
301
302
303
304
305
306
/*******************************************************************************
 * This function enables the GIC CPU interface of the calling CPU using only
 * system register accesses.
 ******************************************************************************/
void gicv3_cpuif_enable(unsigned int proc_num)
{
	uintptr_t gicr_base;
	unsigned int scr_el3;
	unsigned int icc_sre_el3;

307
308
309
	assert(gicv3_driver_data);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
310
311
312
	assert(IS_IN_EL3());

	/* Mark the connected core as awake */
313
	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
	gicv3_rdistif_mark_core_awake(gicr_base);

	/* Disable the legacy interrupt bypass */
	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;

	/*
	 * Enable system register access for EL3 and allow lower exception
	 * levels to configure the same for themselves. If the legacy mode is
	 * not supported, the SRE bit is RAO/WI
	 */
	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);

	scr_el3 = read_scr_el3();

	/*
	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
	 * ICC_SRE_EL2 registers.
	 */
	write_scr_el3(scr_el3 | SCR_NS_BIT);
	isb();

	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
	write_icc_sre_el1(ICC_SRE_SRE_BIT);
	isb();

	/* Switch to secure state. */
	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
	isb();

	/* Program the idle priority in the PMR */
	write_icc_pmr_el1(GIC_PRI_MASK);

	/* Enable Group0 interrupts */
	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);

	/* Enable Group1 Secure interrupts */
	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
				IGRPEN1_EL3_ENABLE_G1S_BIT);

	/* Write the secure ICC_SRE_EL1 register */
	write_icc_sre_el1(ICC_SRE_SRE_BIT);
	isb();
}

/*******************************************************************************
 * This function disables the GIC CPU interface of the calling CPU using
 * only system register accesses.
 ******************************************************************************/
void gicv3_cpuif_disable(unsigned int proc_num)
{
	uintptr_t gicr_base;

367
368
369
	assert(gicv3_driver_data);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
370
371
372
373
374
375
376
377
378
379
380

	assert(IS_IN_EL3());

	/* Disable legacy interrupt bypass */
	write_icc_sre_el3(read_icc_sre_el3() |
			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));

	/* Disable Group0 interrupts */
	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
			      ~IGRPEN1_EL1_ENABLE_G0_BIT);

381
	/* Disable Group1 Secure and Non-Secure interrupts */
382
	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
383
384
			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
			      IGRPEN1_EL3_ENABLE_G1S_BIT));
385
386
387
388
389

	/* Synchronise accesses to group enable registers */
	isb();

	/* Mark the connected core as asleep */
390
	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
	gicv3_rdistif_mark_core_asleep(gicr_base);
}

/*******************************************************************************
 * This function returns the id of the highest priority pending interrupt at
 * the GIC cpu interface.
 ******************************************************************************/
unsigned int gicv3_get_pending_interrupt_id(void)
{
	unsigned int id;

	assert(IS_IN_EL3());
	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;

	/*
	 * If the ID is special identifier corresponding to G1S or G1NS
	 * interrupt, then read the highest pending group 1 interrupt.
	 */
	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;

	return id;
}

/*******************************************************************************
 * This function returns the type of the highest priority pending interrupt at
 * the GIC cpu interface. The return values can be one of the following :
 *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
 *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
 *   0 - 1019           : The interrupt type is secure Group 0.
 *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
 *                            sufficient priority to be signaled
 ******************************************************************************/
unsigned int gicv3_get_pending_interrupt_type(void)
{
	assert(IS_IN_EL3());
	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
}

/*******************************************************************************
 * This function returns the type of the interrupt id depending upon the group
 * this interrupt has been configured under by the interrupt controller i.e.
 * group0 or group1 Secure / Non Secure. The return value can be one of the
 * following :
435
436
437
 *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
 *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
 *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
438
439
440
441
442
443
444
445
446
 *                   interrupt.
 ******************************************************************************/
unsigned int gicv3_get_interrupt_type(unsigned int id,
					  unsigned int proc_num)
{
	unsigned int igroup, grpmodr;
	uintptr_t gicr_base;

	assert(IS_IN_EL3());
447
	assert(gicv3_driver_data);
448
449
450

	/* Ensure the parameters are valid */
	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
451
	assert(proc_num < gicv3_driver_data->rdistif_num);
452
453
454

	/* All LPI interrupts are Group 1 non secure */
	if (id >= MIN_LPI_ID)
455
		return INTR_GROUP1NS;
456
457

	if (id < MIN_SPI_ID) {
458
459
		assert(gicv3_driver_data->rdistif_base_addrs);
		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
460
461
462
		igroup = gicr_get_igroupr0(gicr_base, id);
		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
	} else {
463
464
465
		assert(gicv3_driver_data->gicd_base);
		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
466
467
468
469
470
471
472
	}

	/*
	 * If the IGROUP bit is set, then it is a Group 1 Non secure
	 * interrupt
	 */
	if (igroup)
473
		return INTR_GROUP1NS;
474
475
476

	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
	if (grpmodr)
477
		return INTR_GROUP1S;
478
479

	/* Else it is a Group 0 Secure interrupt */
480
	return INTR_GROUP0;
481
}
482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*****************************************************************************
 * Function to save and disable the GIC ITS register context. The power
 * management of GIC ITS is implementation-defined and this function doesn't
 * save any memory structures required to support ITS. As the sequence to save
 * this state is implementation defined, it should be executed in platform
 * specific code. Calling this function alone and then powering down the GIC and
 * ITS without implementing the aforementioned platform specific code will
 * corrupt the ITS state.
 *
 * This function must be invoked after the GIC CPU interface is disabled.
 *****************************************************************************/
void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx)
{
	int i;

	assert(gicv3_driver_data);
	assert(IS_IN_EL3());
	assert(its_ctx);
	assert(gits_base);

	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);

	/* Disable the ITS */
	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
					(~GITS_CTLR_ENABLED_BIT));

	/* Wait for quiescent state */
	gits_wait_for_quiescent_bit(gits_base);

	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);

	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
}

/*****************************************************************************
 * Function to restore the GIC ITS register context. The power
 * management of GIC ITS is implementation defined and this function doesn't
 * restore any memory structures required to support ITS. The assumption is
 * that these structures are in memory and are retained during system suspend.
 *
 * This must be invoked before the GIC CPU interface is enabled.
 *****************************************************************************/
void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx)
{
	int i;

	assert(gicv3_driver_data);
	assert(IS_IN_EL3());
	assert(its_ctx);
	assert(gits_base);

	/* Assert that the GITS is disabled and quiescent */
	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0);
Soby Mathew's avatar
Soby Mathew committed
538
	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0);
539
540
541
542
543
544
545
546
547
548
549
550

	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);

	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);

	/* Restore the ITS CTLR but leave the ITS disabled */
	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
			(~GITS_CTLR_ENABLED_BIT));
}

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/*****************************************************************************
 * Function to save the GIC Redistributor register context. This function
 * must be invoked after CPU interface disable and prior to Distributor save.
 *****************************************************************************/
void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx)
{
	uintptr_t gicr_base;
	unsigned int int_id;

	assert(gicv3_driver_data);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
	assert(IS_IN_EL3());
	assert(rdist_ctx);

	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];

	/*
	 * Wait for any write to GICR_CTLR to complete before trying to save any
	 * state.
	 */
	gicr_wait_for_pending_write(gicr_base);

	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);

	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);

	rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base);
	rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base);
	rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base);
	rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base);
	rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base);
	rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base);
	rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base);
	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
			int_id += (1 << IPRIORITYR_SHIFT)) {
		rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] =
				gicr_read_ipriorityr(gicr_base, int_id);
	}


	/*
	 * Call the pre-save hook that implements the IMP DEF sequence that may
	 * be required on some GIC implementations. As this may need to access
	 * the Redistributor registers, we pass it proc_num.
	 */
	gicv3_distif_pre_save(proc_num);
}

/*****************************************************************************
 * Function to restore the GIC Redistributor register context. We disable
 * LPI and per-cpu interrupts before we start restore of the Redistributor.
 * This function must be invoked after Distributor restore but prior to
 * CPU interface enable. The pending and active interrupts are restored
 * after the interrupts are fully configured and enabled.
 *****************************************************************************/
void gicv3_rdistif_init_restore(unsigned int proc_num,
				const gicv3_redist_ctx_t * const rdist_ctx)
{
	uintptr_t gicr_base;
	unsigned int int_id;

	assert(gicv3_driver_data);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
	assert(IS_IN_EL3());
	assert(rdist_ctx);

	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];

	/* Power on redistributor */
	gicv3_rdistif_on(proc_num);

	/*
	 * Call the post-restore hook that implements the IMP DEF sequence that
	 * may be required on some GIC implementations. As this may need to
	 * access the Redistributor registers, we pass it proc_num.
	 */
	gicv3_distif_post_restore(proc_num);

	/*
	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
	 * more scalable approach as it avoids clearing the enable bits in the
	 * GICD_CTLR
	 */
	gicr_write_icenabler0(gicr_base, ~0);
	/* Wait for pending writes to GICR_ICENABLER */
	gicr_wait_for_pending_write(gicr_base);

	/*
	 * Disable the LPIs to avoid unpredictable behavior when writing to
	 * GICR_PROPBASER and GICR_PENDBASER.
	 */
	gicr_write_ctlr(gicr_base,
			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));

	/* Restore registers' content */
	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);

	gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0);

	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
			int_id += (1 << IPRIORITYR_SHIFT)) {
		gicr_write_ipriorityr(gicr_base, int_id,
		rdist_ctx->gicr_ipriorityr[
				(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]);
	}

	gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0);
	gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1);
	gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0);
	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);

	/* Restore after group and priorities are set */
	gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0);
	gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0);

	/*
	 * Wait for all writes to the Distributor to complete before enabling
	 * the SGI and PPIs.
	 */
	gicr_wait_for_upstream_pending_write(gicr_base);
	gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0);

	/*
	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
	 * the first write to GICR_CTLR was still in flight (this write only
	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
	 * bit).
	 */
	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
	gicr_wait_for_pending_write(gicr_base);
}

/*****************************************************************************
 * Function to save the GIC Distributor register context. This function
 * must be invoked after CPU interface disable and Redistributor save.
 *****************************************************************************/
void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
{
	unsigned int num_ints;

	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(IS_IN_EL3());
	assert(dist_ctx);

	uintptr_t gicd_base = gicv3_driver_data->gicd_base;

	num_ints = gicd_read_typer(gicd_base);
	num_ints &= TYPER_IT_LINES_NO_MASK;
	num_ints = (num_ints + 1) << 5;

	assert(num_ints <= MAX_SPI_ID + 1);

	/* Wait for pending write to complete */
	gicd_wait_for_pending_write(gicd_base);

	/* Save the GICD_CTLR */
	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);

	/* Save GICD_IGROUPR for INTIDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);

	/* Save GICD_ISENABLER for INT_IDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);

	/* Save GICD_ISPENDR for INTIDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);

	/* Save GICD_ISACTIVER for INTIDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);

	/* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);

	/* Save GICD_ICFGR for INTIDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);

	/* Save GICD_IGRPMODR for INTIDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);

	/* Save GICD_NSACR for INTIDs 32 - 1020 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);

	/* Save GICD_IROUTER for INTIDs 32 - 1024 */
	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);

	/*
	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
	 * driver.
	 */
}

/*****************************************************************************
 * Function to restore the GIC Distributor register context. We disable G0, G1S
 * and G1NS interrupt groups before we start restore of the Distributor. This
 * function must be invoked prior to Redistributor restore and CPU interface
 * enable. The pending and active interrupts are restored after the interrupts
 * are fully configured and enabled.
 *****************************************************************************/
void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
{
	unsigned int num_ints = 0;

	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(IS_IN_EL3());
	assert(dist_ctx);

	uintptr_t gicd_base = gicv3_driver_data->gicd_base;

	/*
	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
	 * the ARE_S bit. The Distributor might generate a system error
	 * otherwise.
	 */
	gicd_clr_ctlr(gicd_base,
		      CTLR_ENABLE_G0_BIT |
		      CTLR_ENABLE_G1S_BIT |
		      CTLR_ENABLE_G1NS_BIT,
		      RWP_TRUE);

	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);

	num_ints = gicd_read_typer(gicd_base);
	num_ints &= TYPER_IT_LINES_NO_MASK;
	num_ints = (num_ints + 1) << 5;

	assert(num_ints <= MAX_SPI_ID + 1);

	/* Restore GICD_IGROUPR for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);

	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);

	/* Restore GICD_ICFGR for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);

	/* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);

	/* Restore GICD_NSACR for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);

	/* Restore GICD_IROUTER for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);

	/*
	 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are
	 * configured.
	 */

	/* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);

	/* Restore GICD_ISPENDR for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);

	/* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */
	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);

	/* Restore the GICD_CTLR */
	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
	gicd_wait_for_pending_write(gicd_base);

}
824
825
826
827
828
829
830
831
832

/*******************************************************************************
 * This function gets the priority of the interrupt the processor is currently
 * servicing.
 ******************************************************************************/
unsigned int gicv3_get_running_priority(void)
{
	return read_icc_rpr_el1();
}
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

/*******************************************************************************
 * This function checks if the interrupt identified by id is active (whether the
 * state is either active, or active and pending). The proc_num is used if the
 * interrupt is SGI or PPI and programs the corresponding Redistributor
 * interface.
 ******************************************************************************/
unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
{
	unsigned int value;

	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
	assert(id <= MAX_SPI_ID);

	if (id < MIN_SPI_ID) {
		/* For SGIs and PPIs */
		value = gicr_get_isactiver0(
				gicv3_driver_data->rdistif_base_addrs[proc_num], id);
	} else {
		value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
	}

	return value;
}
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

/*******************************************************************************
 * This function enables the interrupt identified by id. The proc_num
 * is used if the interrupt is SGI or PPI, and programs the corresponding
 * Redistributor interface.
 ******************************************************************************/
void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
{
	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
	assert(id <= MAX_SPI_ID);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before enabling interrupt.
	 */
	dsbishst();
	if (id < MIN_SPI_ID) {
		/* For SGIs and PPIs */
		gicr_set_isenabler0(
				gicv3_driver_data->rdistif_base_addrs[proc_num],
				id);
	} else {
		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
	}
}

/*******************************************************************************
 * This function disables the interrupt identified by id. The proc_num
 * is used if the interrupt is SGI or PPI, and programs the corresponding
 * Redistributor interface.
 ******************************************************************************/
void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
{
	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
	assert(id <= MAX_SPI_ID);

	/*
	 * Disable interrupt, and ensure that any shared variable updates
	 * depending on out of band interrupt trigger are observed afterwards.
	 */
	if (id < MIN_SPI_ID) {
		/* For SGIs and PPIs */
		gicr_set_icenabler0(
				gicv3_driver_data->rdistif_base_addrs[proc_num],
				id);

		/* Write to clear enable requires waiting for pending writes */
		gicr_wait_for_pending_write(
				gicv3_driver_data->rdistif_base_addrs[proc_num]);
	} else {
		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);

		/* Write to clear enable requires waiting for pending writes */
		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
	}

	dsbishst();
}
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

/*******************************************************************************
 * This function sets the interrupt priority as supplied for the given interrupt
 * id.
 ******************************************************************************/
void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
		unsigned int priority)
{
	uintptr_t gicr_base;

	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);
	assert(id <= MAX_SPI_ID);

	if (id < MIN_SPI_ID) {
		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
		gicr_set_ipriorityr(gicr_base, id, priority);
	} else {
		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
	}
}
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

/*******************************************************************************
 * This function assigns group for the interrupt identified by id. The proc_num
 * is used if the interrupt is SGI or PPI, and programs the corresponding
 * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
 ******************************************************************************/
void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
		unsigned int type)
{
	unsigned int igroup = 0, grpmod = 0;
	uintptr_t gicr_base;

	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);

	switch (type) {
	case INTR_GROUP1S:
		igroup = 0;
		grpmod = 1;
		break;
	case INTR_GROUP0:
		igroup = 0;
		grpmod = 0;
		break;
	case INTR_GROUP1NS:
		igroup = 1;
		grpmod = 0;
		break;
	default:
		assert(0);
	}

	if (id < MIN_SPI_ID) {
		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
		if (igroup)
			gicr_set_igroupr0(gicr_base, id);
		else
			gicr_clr_igroupr0(gicr_base, id);

		if (grpmod)
			gicr_set_igrpmodr0(gicr_base, id);
		else
			gicr_clr_igrpmodr0(gicr_base, id);
	} else {
		/* Serialize read-modify-write to Distributor registers */
		spin_lock(&gic_lock);
		if (igroup)
			gicd_set_igroupr(gicv3_driver_data->gicd_base, id);
		else
			gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);

		if (grpmod)
			gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id);
		else
			gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
		spin_unlock(&gic_lock);
	}
}
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

/*******************************************************************************
 * This function raises the specified Secure Group 0 SGI.
 *
 * The target parameter must be a valid MPIDR in the system.
 ******************************************************************************/
void gicv3_raise_secure_g0_sgi(int sgi_num, u_register_t target)
{
	unsigned int tgt, aff3, aff2, aff1, aff0;
	uint64_t sgi_val;

	/* Verify interrupt number is in the SGI range */
	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));

	/* Extract affinity fields from target */
	aff0 = MPIDR_AFFLVL0_VAL(target);
	aff1 = MPIDR_AFFLVL1_VAL(target);
	aff2 = MPIDR_AFFLVL2_VAL(target);
	aff3 = MPIDR_AFFLVL3_VAL(target);

	/*
	 * Make target list from affinity 0, and ensure GICv3 SGI can target
	 * this PE.
	 */
	assert(aff0 < GICV3_MAX_SGI_TARGETS);
	tgt = BIT(aff0);

	/* Raise SGI to PE specified by its affinity */
	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
			tgt);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before raising SGI.
	 */
	dsbishst();
	write_icc_sgi0r_el1(sgi_val);
	isb();
}
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

/*******************************************************************************
 * This function sets the interrupt routing for the given SPI interrupt id.
 * The interrupt routing is specified in routing mode and mpidr.
 *
 * The routing mode can be either of:
 *  - GICV3_IRM_ANY
 *  - GICV3_IRM_PE
 *
 * The mpidr is the affinity of the PE to which the interrupt will be routed,
 * and is ignored for routing mode GICV3_IRM_ANY.
 ******************************************************************************/
void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
{
	unsigned long long aff;
	uint64_t router;

	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);

	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);

	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);

	/*
	 * In implementations that do not require 1 of N distribution of SPIs,
	 * IRM might be RAZ/WI. Read back and verify IRM bit.
	 */
	if (irm == GICV3_IRM_ANY) {
		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
		if (!((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK)) {
			ERROR("GICv3 implementation doesn't support routing ANY\n");
			panic();
		}
	}
}
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

/*******************************************************************************
 * This function clears the pending status of an interrupt identified by id.
 * The proc_num is used if the interrupt is SGI or PPI, and programs the
 * corresponding Redistributor interface.
 ******************************************************************************/
void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
{
	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);

	/*
	 * Clear pending interrupt, and ensure that any shared variable updates
	 * depending on out of band interrupt trigger are observed afterwards.
	 */
	if (id < MIN_SPI_ID) {
		/* For SGIs and PPIs */
		gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
				id);
	} else {
		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
	}
	dsbishst();
}

/*******************************************************************************
 * This function sets the pending status of an interrupt identified by id.
 * The proc_num is used if the interrupt is SGI or PPI and programs the
 * corresponding Redistributor interface.
 ******************************************************************************/
void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
{
	assert(gicv3_driver_data);
	assert(gicv3_driver_data->gicd_base);
	assert(proc_num < gicv3_driver_data->rdistif_num);
	assert(gicv3_driver_data->rdistif_base_addrs);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before setting interrupt pending.
	 */
	dsbishst();
	if (id < MIN_SPI_ID) {
		/* For SGIs and PPIs */
		gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
				id);
	} else {
		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
	}
}
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

/*******************************************************************************
 * This function sets the PMR register with the supplied value. Returns the
 * original PMR.
 ******************************************************************************/
unsigned int gicv3_set_pmr(unsigned int mask)
{
	unsigned int old_mask;

	old_mask = read_icc_pmr_el1();

	/*
	 * Order memory updates w.r.t. PMR write, and ensure they're visible
	 * before potential out of band interrupt trigger because of PMR update.
	 * PMR system register writes are self-synchronizing, so no ISB required
	 * thereafter.
	 */
	dsbishst();
	write_icc_pmr_el1(mask);

	return old_mask;
}