gicv3_helpers.c 13.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
#include "gicv3_private.h"

/*
 * Accessor to read the GIC Distributor IGRPMODR corresponding to the
 * interrupt `id`, 32 interrupt IDs at a time.
 */
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
{
	unsigned n = id >> IGRPMODR_SHIFT;
	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
}

/*
 * Accessor to write the GIC Distributor IGRPMODR corresponding to the
 * interrupt `id`, 32 interrupt IDs at a time.
 */
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
{
	unsigned n = id >> IGRPMODR_SHIFT;
	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
}

/*
 * Accessor to get the bit corresponding to interrupt ID
 * in GIC Distributor IGRPMODR.
 */
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_igrpmodr(base, id);

	return (reg_val >> bit_num) & 0x1;
}

/*
 * Accessor to set the bit corresponding to interrupt ID
 * in GIC Distributor IGRPMODR.
 */
void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_igrpmodr(base, id);

	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
}

/*
 * Accessor to clear the bit corresponding to interrupt ID
 * in GIC Distributor IGRPMODR.
 */
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_igrpmodr(base, id);

	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
}

/*
 * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
 * interrupt `id`, 4 interrupts IDs at a time.
 */
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
{
	unsigned n = id >> IPRIORITYR_SHIFT;
	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
}

/*
 * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
 * interrupt `id`, 4 interrupts IDs at a time.
 */
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
{
	unsigned n = id >> IPRIORITYR_SHIFT;
	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
}

/*
 * Accessor to get the bit corresponding to interrupt ID
 * from GIC Re-distributor IGROUPR0.
 */
unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
	unsigned int reg_val = gicr_read_igroupr0(base);

	return (reg_val >> bit_num) & 0x1;
}

/*
 * Accessor to set the bit corresponding to interrupt ID
 * in GIC Re-distributor IGROUPR0.
 */
void gicr_set_igroupr0(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
	unsigned int reg_val = gicr_read_igroupr0(base);

	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
}

/*
 * Accessor to clear the bit corresponding to interrupt ID
 * in GIC Re-distributor IGROUPR0.
 */
void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
	unsigned int reg_val = gicr_read_igroupr0(base);

	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
}

/*
 * Accessor to get the bit corresponding to interrupt ID
 * from GIC Re-distributor IGRPMODR0.
 */
unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
	unsigned int reg_val = gicr_read_igrpmodr0(base);

	return (reg_val >> bit_num) & 0x1;
}

/*
 * Accessor to set the bit corresponding to interrupt ID
 * in GIC Re-distributor IGRPMODR0.
 */
void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
	unsigned int reg_val = gicr_read_igrpmodr0(base);

	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
}

/*
 * Accessor to clear the bit corresponding to interrupt ID
 * in GIC Re-distributor IGRPMODR0.
 */
void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
	unsigned int reg_val = gicr_read_igrpmodr0(base);

	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
}

/*
 * Accessor to set the bit corresponding to interrupt ID
 * in GIC Re-distributor ISENABLER0.
 */
void gicr_set_isenabler0(uintptr_t base, unsigned int id)
{
	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);

	gicr_write_isenabler0(base, (1 << bit_num));
}

197
198
199
200
201
202
203
204
205
/*
 * Accessor to set the byte corresponding to interrupt ID
 * in GIC Re-distributor IPRIORITYR.
 */
void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
{
	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
}

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/******************************************************************************
 * This function marks the core as awake in the re-distributor and
 * ensures that the interface is active.
 *****************************************************************************/
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
{
	/*
	 * The WAKER_PS_BIT should be changed to 0
	 * only when WAKER_CA_BIT is 1.
	 */
	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);

	/* Mark the connected core as awake */
	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);

	/* Wait till the WAKER_CA_BIT changes to 0 */
	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
		;
}


/******************************************************************************
 * This function marks the core as asleep in the re-distributor and ensures
 * that the interface is quiescent.
 *****************************************************************************/
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
{
	/* Mark the connected core as asleep */
	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);

	/* Wait till the WAKER_CA_BIT changes to 1 */
	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
		;
}


/*******************************************************************************
 * This function probes the Redistributor frames when the driver is initialised
 * and saves their base addresses. These base addresses are used later to
 * initialise each Redistributor interface.
 ******************************************************************************/
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
					unsigned int rdistif_num,
					uintptr_t gicr_base,
					mpidr_hash_fn mpidr_to_core_pos)
{
	unsigned long mpidr;
	unsigned int proc_num;
	unsigned long long typer_val;
	uintptr_t rdistif_base = gicr_base;

	assert(rdistif_base_addrs);

	/*
	 * Iterate over the Redistributor frames. Store the base address of each
	 * frame in the platform provided array. Use the "Processor Number"
	 * field to index into the array if the platform has not provided a hash
	 * function to convert an MPIDR (obtained from the "Affinity Value"
	 * field into a linear index.
	 */
	do {
		typer_val = gicr_read_typer(rdistif_base);
		if (mpidr_to_core_pos) {
			mpidr = mpidr_from_gicr_typer(typer_val);
			proc_num = mpidr_to_core_pos(mpidr);
		} else {
			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
				TYPER_PROC_NUM_MASK;
		}
		assert(proc_num < rdistif_num);
		rdistif_base_addrs[proc_num] = rdistif_base;
		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
	} while (!(typer_val & TYPER_LAST_BIT));
}

/*******************************************************************************
 * Helper function to configure the default attributes of SPIs.
 ******************************************************************************/
void gicv3_spis_configure_defaults(uintptr_t gicd_base)
{
	unsigned int index, num_ints;

	num_ints = gicd_read_typer(gicd_base);
	num_ints &= TYPER_IT_LINES_NO_MASK;
	num_ints = (num_ints + 1) << 5;

	/*
	 * Treat all SPIs as G1NS by default. The number of interrupts is
	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
	 */
	for (index = MIN_SPI_ID; index < num_ints; index += 32)
		gicd_write_igroupr(gicd_base, index, ~0U);

	/* Setup the default SPI priorities doing four at a time */
	for (index = MIN_SPI_ID; index < num_ints; index += 4)
		gicd_write_ipriorityr(gicd_base,
				      index,
				      GICD_IPRIORITYR_DEF_VAL);

	/*
	 * Treat all SPIs as level triggered by default, write 16 at
	 * a time
	 */
	for (index = MIN_SPI_ID; index < num_ints; index += 16)
		gicd_write_icfgr(gicd_base, index, 0);
}

/*******************************************************************************
 * Helper function to configure secure G0 and G1S SPIs.
 ******************************************************************************/
void gicv3_secure_spis_configure(uintptr_t gicd_base,
				     unsigned int num_ints,
				     const unsigned int *sec_intr_list,
				     unsigned int int_grp)
{
	unsigned int index, irq_num;
	uint64_t gic_affinity_val;

324
	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
325
326
327
328
329
330
331
332
333
334
335
	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
	assert(num_ints ? (uintptr_t)sec_intr_list : 1);

	for (index = 0; index < num_ints; index++) {
		irq_num = sec_intr_list[index];
		if (irq_num >= MIN_SPI_ID) {

			/* Configure this interrupt as a secure interrupt */
			gicd_clr_igroupr(gicd_base, irq_num);

			/* Configure this interrupt as G0 or a G1S interrupt */
336
			if (int_grp == INTR_GROUP1S)
337
338
339
340
341
				gicd_set_igrpmodr(gicd_base, irq_num);
			else
				gicd_clr_igrpmodr(gicd_base, irq_num);

			/* Set the priority of this interrupt */
342
			gicd_set_ipriorityr(gicd_base,
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
					      irq_num,
					      GIC_HIGHEST_SEC_PRIORITY);

			/* Target SPIs to the primary CPU */
			gic_affinity_val =
				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
			gicd_write_irouter(gicd_base,
					   irq_num,
					   gic_affinity_val);

			/* Enable this interrupt */
			gicd_set_isenabler(gicd_base, irq_num);
		}
	}

}

/*******************************************************************************
 * Helper function to configure the default attributes of SPIs.
 ******************************************************************************/
void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
{
	unsigned int index;

	/*
	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
	 * more scalable approach as it avoids clearing the enable bits in the
	 * GICD_CTLR
	 */
	gicr_write_icenabler0(gicr_base, ~0);
	gicr_wait_for_pending_write(gicr_base);

	/* Treat all SGIs/PPIs as G1NS by default. */
	gicr_write_igroupr0(gicr_base, ~0U);

	/* Setup the default PPI/SGI priorities doing four at a time */
	for (index = 0; index < MIN_SPI_ID; index += 4)
		gicr_write_ipriorityr(gicr_base,
				      index,
				      GICD_IPRIORITYR_DEF_VAL);

	/* Configure all PPIs as level triggered by default */
	gicr_write_icfgr1(gicr_base, 0);
}

/*******************************************************************************
 * Helper function to configure secure G0 and G1S SPIs.
 ******************************************************************************/
void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
					unsigned int num_ints,
					const unsigned int *sec_intr_list,
					unsigned int int_grp)
{
	unsigned int index, irq_num;

398
	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
399
400
401
402
403
404
405
406
407
408
409
	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
	assert(num_ints ? (uintptr_t)sec_intr_list : 1);

	for (index = 0; index < num_ints; index++) {
		irq_num = sec_intr_list[index];
		if (irq_num < MIN_SPI_ID) {

			/* Configure this interrupt as a secure interrupt */
			gicr_clr_igroupr0(gicr_base, irq_num);

			/* Configure this interrupt as G0 or a G1S interrupt */
410
			if (int_grp == INTR_GROUP1S)
411
412
413
414
415
				gicr_set_igrpmodr0(gicr_base, irq_num);
			else
				gicr_clr_igrpmodr0(gicr_base, irq_num);

			/* Set the priority of this interrupt */
416
			gicr_set_ipriorityr(gicr_base,
417
418
419
420
421
422
423
424
					    irq_num,
					    GIC_HIGHEST_SEC_PRIORITY);

			/* Enable this interrupt */
			gicr_set_isenabler0(gicr_base, irq_num);
		}
	}
}