amu.c 4.58 KB
Newer Older
1
/*
2
 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <amu.h>
8
#include <amu_private.h>
9
10
#include <arch.h>
#include <arch_helpers.h>
11
#include <assert.h>
12
13
#include <platform.h>
#include <pubsub_events.h>
14

15
16
#define AMU_GROUP0_NR_COUNTERS	4

17
18
19
20
21
22
23
struct amu_ctx {
	uint64_t group0_cnts[AMU_GROUP0_NR_COUNTERS];
	uint64_t group1_cnts[AMU_GROUP1_NR_COUNTERS];
};

static struct amu_ctx amu_ctxs[PLATFORM_CORE_COUNT];

24
int amu_supported(void)
25
26
27
28
{
	uint64_t features;

	features = read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT;
29
30
	return (features & ID_AA64PFR0_AMU_MASK) == 1;
}
31

32
33
34
35
36
37
38
39
/*
 * Enable counters.  This function is meant to be invoked
 * by the context management library before exiting from EL3.
 */
void amu_enable(int el2_unused)
{
	uint64_t v;

40
	if (amu_supported() == 0)
41
42
43
		return;

	if (el2_unused) {
44
		/*
45
46
		 * CPTR_EL2.TAM: Set to zero so any accesses to
		 * the Activity Monitor registers do not trap to EL2.
47
		 */
48
49
50
		v = read_cptr_el2();
		v &= ~CPTR_EL2_TAM_BIT;
		write_cptr_el2(v);
51
	}
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	/*
	 * CPTR_EL3.TAM: Set to zero so that any accesses to
	 * the Activity Monitor registers do not trap to EL3.
	 */
	v = read_cptr_el3();
	v &= ~TAM_BIT;
	write_cptr_el3(v);

	/* Enable group 0 counters */
	write_amcntenset0_el0(AMU_GROUP0_COUNTERS_MASK);
	/* Enable group 1 counters */
	write_amcntenset1_el0(AMU_GROUP1_COUNTERS_MASK);
}

/* Read the group 0 counter identified by the given `idx`. */
uint64_t amu_group0_cnt_read(int idx)
{
70
	assert(amu_supported() != 0);
71
72
73
74
75
76
77
78
	assert(idx >= 0 && idx < AMU_GROUP0_NR_COUNTERS);

	return amu_group0_cnt_read_internal(idx);
}

/* Write the group 0 counter identified by the given `idx` with `val`. */
void amu_group0_cnt_write(int idx, uint64_t val)
{
79
	assert(amu_supported() != 0);
80
81
82
83
84
85
86
87
88
	assert(idx >= 0 && idx < AMU_GROUP0_NR_COUNTERS);

	amu_group0_cnt_write_internal(idx, val);
	isb();
}

/* Read the group 1 counter identified by the given `idx`. */
uint64_t amu_group1_cnt_read(int idx)
{
89
	assert(amu_supported() != 0);
90
91
92
93
94
95
96
97
	assert(idx >= 0 && idx < AMU_GROUP1_NR_COUNTERS);

	return amu_group1_cnt_read_internal(idx);
}

/* Write the group 1 counter identified by the given `idx` with `val`. */
void amu_group1_cnt_write(int idx, uint64_t val)
{
98
	assert(amu_supported() != 0);
99
100
101
102
103
104
105
106
107
108
109
110
	assert(idx >= 0 && idx < AMU_GROUP1_NR_COUNTERS);

	amu_group1_cnt_write_internal(idx, val);
	isb();
}

/*
 * Program the event type register for the given `idx` with
 * the event number `val`.
 */
void amu_group1_set_evtype(int idx, unsigned int val)
{
111
	assert(amu_supported() != 0);
112
113
114
115
	assert (idx >= 0 && idx < AMU_GROUP1_NR_COUNTERS);

	amu_group1_set_evtype_internal(idx, val);
	isb();
116
}
117
118
119
120
121
122

static void *amu_context_save(const void *arg)
{
	struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()];
	int i;

123
	if (amu_supported() == 0)
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
		return (void *)-1;

	/* Assert that group 0/1 counter configuration is what we expect */
	assert(read_amcntenset0_el0() == AMU_GROUP0_COUNTERS_MASK &&
	       read_amcntenset1_el0() == AMU_GROUP1_COUNTERS_MASK);

	assert((sizeof(int) * 8) - __builtin_clz(AMU_GROUP1_COUNTERS_MASK)
		<= AMU_GROUP1_NR_COUNTERS);

	/*
	 * Disable group 0/1 counters to avoid other observers like SCP sampling
	 * counter values from the future via the memory mapped view.
	 */
	write_amcntenclr0_el0(AMU_GROUP0_COUNTERS_MASK);
	write_amcntenclr1_el0(AMU_GROUP1_COUNTERS_MASK);
	isb();

	/* Save group 0 counters */
	for (i = 0; i < AMU_GROUP0_NR_COUNTERS; i++)
		ctx->group0_cnts[i] = amu_group0_cnt_read(i);

	/* Save group 1 counters */
	for (i = 0; i < AMU_GROUP1_NR_COUNTERS; i++)
		ctx->group1_cnts[i] = amu_group1_cnt_read(i);

	return 0;
}

static void *amu_context_restore(const void *arg)
{
	struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()];
	int i;

157
	if (amu_supported() == 0)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
		return (void *)-1;

	/* Counters were disabled in `amu_context_save()` */
	assert(read_amcntenset0_el0() == 0 && read_amcntenset1_el0() == 0);

	assert((sizeof(int) * 8) - __builtin_clz(AMU_GROUP1_COUNTERS_MASK)
		<= AMU_GROUP1_NR_COUNTERS);

	/* Restore group 0 counters */
	for (i = 0; i < AMU_GROUP0_NR_COUNTERS; i++)
		if (AMU_GROUP0_COUNTERS_MASK & (1U << i))
			amu_group0_cnt_write(i, ctx->group0_cnts[i]);

	/* Restore group 1 counters */
	for (i = 0; i < AMU_GROUP1_NR_COUNTERS; i++)
		if (AMU_GROUP1_COUNTERS_MASK & (1U << i))
			amu_group1_cnt_write(i, ctx->group1_cnts[i]);

	/* Restore group 0/1 counter configuration */
	write_amcntenset0_el0(AMU_GROUP0_COUNTERS_MASK);
	write_amcntenset1_el0(AMU_GROUP1_COUNTERS_MASK);

	return 0;
}

SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save);
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);