psci_common.c 19.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include <arch.h>
32
#include <arch_helpers.h>
33
34
35
#include <assert.h>
#include <bl_common.h>
#include <context.h>
36
#include <context_mgmt.h>
37
38
#include <debug.h>
#include "psci_private.h"
39

40
/*
41
42
 * SPD power management operations, expected to be supplied by the registered
 * SPD on successful SP initialization
43
 */
44
const spd_pm_ops_t *psci_spd_pm;
45

46
47
48
/*******************************************************************************
 * Arrays that contains information needs to resume a cpu's execution when woken
 * out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next
49
 * free index in the 'psci_ns_entry_info' & 'psci_suspend_context' arrays. Each
50
51
 * cpu is allocated a single entry in each array during startup.
 ******************************************************************************/
52
53
suspend_context_t psci_suspend_context[PSCI_NUM_AFFS];
ns_entry_info_t psci_ns_entry_info[PSCI_NUM_AFFS];
54
55
56
57
58
59
60
unsigned int psci_ns_einfo_idx;

/*******************************************************************************
 * Grand array that holds the platform's topology information for state
 * management of affinity instances. Each node (aff_map_node) in the array
 * corresponds to an affinity instance e.g. cluster, cpu within an mpidr
 ******************************************************************************/
61
aff_map_node_t psci_aff_map[PSCI_NUM_AFFS]
62
63
64
65
66
67
68
69
70
71
__attribute__ ((section("tzfw_coherent_mem")));

/*******************************************************************************
 * In a system, a certain number of affinity instances are present at an
 * affinity level. The cumulative number of instances across all levels are
 * stored in 'psci_aff_map'. The topology tree has been flattenned into this
 * array. To retrieve nodes, information about the extents of each affinity
 * level i.e. start index and end index needs to be present. 'psci_aff_limits'
 * stores this information.
 ******************************************************************************/
72
aff_limits_node_t psci_aff_limits[MPIDR_MAX_AFFLVL + 1];
73
74
75
76

/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
77
plat_pm_ops_t *psci_plat_pm_ops;
78

79
80
81
82
83
84
85
86
87
88
/*******************************************************************************
 * Routine to return the maximum affinity level to traverse to after a cpu has
 * been physically powered up. It is expected to be called immediately after
 * reset from assembler code. It has to find its 'aff_map_node' instead of
 * getting it as an argument.
 * TODO: Calling psci_get_aff_map_node() with the MMU disabled is slow. Add
 * support to allow faster access to the target affinity level.
 ******************************************************************************/
int get_power_on_target_afflvl(unsigned long mpidr)
{
89
	aff_map_node_t *node;
90
	unsigned int state;
91
	int afflvl;
92
93

	/* Retrieve our node from the topology tree */
94
95
	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
96
97
98
99
100
101
102
	assert(node);

	/*
	 * Return the maximum supported affinity level if this cpu was off.
	 * Call the handler in the suspend code if this cpu had been suspended.
	 * Any other state is invalid.
	 */
103
	state = psci_get_state(node);
104
105
106
	if (state == PSCI_STATE_ON_PENDING)
		return get_max_afflvl();

107
108
109
110
111
	if (state == PSCI_STATE_SUSPEND) {
		afflvl = psci_get_aff_map_node_suspend_afflvl(node);
		assert(afflvl != PSCI_INVALID_DATA);
		return afflvl;
	}
112
113
114
	return PSCI_E_INVALID_PARAMS;
}

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*******************************************************************************
 * Simple routine to retrieve the maximum affinity level supported by the
 * platform and check that it makes sense.
 ******************************************************************************/
int get_max_afflvl()
{
	int aff_lvl;

	aff_lvl = plat_get_max_afflvl();
	assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);

	return aff_lvl;
}

/*******************************************************************************
 * Simple routine to set the id of an affinity instance at a given level in the
 * mpidr.
 ******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
				 unsigned char aff_inst,
				 int aff_lvl)
{
	unsigned long aff_shift;

	assert(aff_lvl <= MPIDR_AFFLVL3);

	/*
	 * Decide the number of bits to shift by depending upon
	 * the affinity level
	 */
	aff_shift = get_afflvl_shift(aff_lvl);

	/* Clear the existing affinity instance & set the new one*/
	mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
	mpidr |= aff_inst << aff_shift;

	return mpidr;
}

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*******************************************************************************
 * This function sanity checks a range of affinity levels.
 ******************************************************************************/
int psci_check_afflvl_range(int start_afflvl, int end_afflvl)
{
	/* Sanity check the parameters passed */
	if (end_afflvl > MPIDR_MAX_AFFLVL)
		return PSCI_E_INVALID_PARAMS;

	if (start_afflvl < MPIDR_AFFLVL0)
		return PSCI_E_INVALID_PARAMS;

	if (end_afflvl < start_afflvl)
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * This function is passed an array of pointers to affinity level nodes in the
 * topology tree for an mpidr. It picks up locks for each affinity level bottom
 * up in the range specified.
 ******************************************************************************/
void psci_acquire_afflvl_locks(unsigned long mpidr,
			       int start_afflvl,
			       int end_afflvl,
180
			       mpidr_aff_map_nodes_t mpidr_nodes)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
{
	int level;

	for (level = start_afflvl; level <= end_afflvl; level++) {
		if (mpidr_nodes[level] == NULL)
			continue;
		bakery_lock_get(mpidr, &mpidr_nodes[level]->lock);
	}
}

/*******************************************************************************
 * This function is passed an array of pointers to affinity level nodes in the
 * topology tree for an mpidr. It releases the lock for each affinity level top
 * down in the range specified.
 ******************************************************************************/
void psci_release_afflvl_locks(unsigned long mpidr,
			       int start_afflvl,
			       int end_afflvl,
199
			       mpidr_aff_map_nodes_t mpidr_nodes)
200
201
202
203
204
205
206
207
208
209
{
	int level;

	for (level = end_afflvl; level >= start_afflvl; level--) {
		if (mpidr_nodes[level] == NULL)
			continue;
		bakery_lock_release(mpidr, &mpidr_nodes[level]->lock);
	}
}

210
211
212
213
214
215
/*******************************************************************************
 * Simple routine to determine whether an affinity instance at a given level
 * in an mpidr exists or not.
 ******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
216
	aff_map_node_t *node;
217
218
219
220
221
222
223
224
225
226
227
228
229

	node = psci_get_aff_map_node(mpidr, level);
	if (node && (node->state & PSCI_AFF_PRESENT))
		return PSCI_E_SUCCESS;
	else
		return PSCI_E_INVALID_PARAMS;
}

/*******************************************************************************
 * This function retrieves all the stashed information needed to correctly
 * resume a cpu's execution in the non-secure state after it has been physically
 * powered on i.e. turned ON or resumed from SUSPEND
 ******************************************************************************/
230
void psci_get_ns_entry_info(unsigned int index)
231
232
{
	unsigned long sctlr = 0, scr, el_status, id_aa64pfr0;
233
	uint64_t mpidr = read_mpidr();
234
235
	cpu_context_t *ns_entry_context;
	gp_regs_t *ns_entry_gpregs;
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

	scr = read_scr();

	/* Find out which EL we are going to */
	id_aa64pfr0 = read_id_aa64pfr0_el1();
	el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
		ID_AA64PFR0_ELX_MASK;

	/* Restore endianess */
	if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT)
		sctlr |= SCTLR_EE_BIT;
	else
		sctlr &= ~SCTLR_EE_BIT;

	/* Turn off MMU and Caching */
	sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT);

	/* Set the register width */
	if (psci_ns_entry_info[index].scr & SCR_RW_BIT)
		scr |= SCR_RW_BIT;
	else
		scr &= ~SCR_RW_BIT;

	scr |= SCR_NS_BIT;

	if (el_status)
		write_sctlr_el2(sctlr);
	else
		write_sctlr_el1(sctlr);

	/* Fulfill the cpu_on entry reqs. as per the psci spec */
267
	ns_entry_context = (cpu_context_t *) cm_get_context(mpidr, NON_SECURE);
268
	assert(ns_entry_context);
269

270
	/*
271
272
	 * Setup general purpose registers to return the context id and
	 * prevent leakage of secure information into the normal world.
273
	 */
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
	ns_entry_gpregs = get_gpregs_ctx(ns_entry_context);
	write_ctx_reg(ns_entry_gpregs,
		      CTX_GPREG_X0,
		      psci_ns_entry_info[index].context_id);

	/*
	 * Tell the context management library to setup EL3 system registers to
	 * be able to ERET into the ns state, and SP_EL3 points to the right
	 * context to exit from EL3 correctly.
	 */
	cm_set_el3_eret_context(NON_SECURE,
			psci_ns_entry_info[index].eret_info.entrypoint,
			psci_ns_entry_info[index].eret_info.spsr,
			scr);

	cm_set_next_eret_context(NON_SECURE);
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
}

/*******************************************************************************
 * This function retrieves and stashes all the information needed to correctly
 * resume a cpu's execution in the non-secure state after it has been physically
 * powered on i.e. turned ON or resumed from SUSPEND. This is done prior to
 * turning it on or before suspending it.
 ******************************************************************************/
int psci_set_ns_entry_info(unsigned int index,
			   unsigned long entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int rw, mode, ee, spsr = 0;
	unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr();
	unsigned long el_status;

	/* Figure out what mode do we enter the non-secure world in */
	el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
		ID_AA64PFR0_ELX_MASK;

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
	rw = scr & SCR_RW_BIT;
	if (rw) {

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if (entrypoint & 0x1)
			return PSCI_E_INVALID_PARAMS;

		if (el_status && (scr & SCR_HCE_BIT)) {
			mode = MODE_EL2;
			ee = read_sctlr_el2() & SCTLR_EE_BIT;
		} else {
			mode = MODE_EL1;
			ee = read_sctlr_el1() & SCTLR_EE_BIT;
		}

		spsr = DAIF_DBG_BIT | DAIF_ABT_BIT;
		spsr |= DAIF_IRQ_BIT | DAIF_FIQ_BIT;
		spsr <<= PSR_DAIF_SHIFT;
		spsr |= make_spsr(mode, MODE_SP_ELX, !rw);

		psci_ns_entry_info[index].sctlr |= ee;
		psci_ns_entry_info[index].scr |= SCR_RW_BIT;
	} else {

		/* Check whether aarch32 has to be entered in Thumb mode */
		if (entrypoint & 0x1)
			spsr = SPSR32_T_BIT;

		if (el_status && (scr & SCR_HCE_BIT)) {
			mode = AARCH32_MODE_HYP;
			ee = read_sctlr_el2() & SCTLR_EE_BIT;
		} else {
			mode = AARCH32_MODE_SVC;
			ee = read_sctlr_el1() & SCTLR_EE_BIT;
		}

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
		spsr |= DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
		spsr <<= PSR_DAIF_SHIFT;
360
		if (ee)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
			spsr |= SPSR32_EE_BIT;
		spsr |= mode;

		/* Ensure that the CSPR.E and SCTLR.EE bits match */
		psci_ns_entry_info[index].sctlr |= ee;
		psci_ns_entry_info[index].scr &= ~SCR_RW_BIT;
	}

	psci_ns_entry_info[index].eret_info.entrypoint = entrypoint;
	psci_ns_entry_info[index].eret_info.spsr = spsr;
	psci_ns_entry_info[index].context_id = context_id;

	return rc;
}

376
377
378
379
/*******************************************************************************
 * This function takes a pointer to an affinity node in the topology tree and
 * returns its state. State of a non-leaf node needs to be calculated.
 ******************************************************************************/
380
unsigned short psci_get_state(aff_map_node_t *node)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
{
	assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);

	/* A cpu node just contains the state which can be directly returned */
	if (node->level == MPIDR_AFFLVL0)
		return (node->state >> PSCI_STATE_SHIFT) & PSCI_STATE_MASK;

	/*
	 * For an affinity level higher than a cpu, the state has to be
	 * calculated. It depends upon the value of the reference count
	 * which is managed by each node at the next lower affinity level
	 * e.g. for a cluster, each cpu increments/decrements the reference
	 * count. If the reference count is 0 then the affinity level is
	 * OFF else ON.
	 */
	if (node->ref_count)
		return PSCI_STATE_ON;
	else
		return PSCI_STATE_OFF;
}

/*******************************************************************************
 * This function takes a pointer to an affinity node in the topology tree and
 * a target state. State of a non-leaf node needs to be converted to a reference
 * count. State of a leaf node can be set directly.
 ******************************************************************************/
407
void psci_set_state(aff_map_node_t *node, unsigned short state)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
{
	assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);

	/*
	 * For an affinity level higher than a cpu, the state is used
	 * to decide whether the reference count is incremented or
	 * decremented. Entry into the ON_PENDING state does not have
	 * effect.
	 */
	if (node->level > MPIDR_AFFLVL0) {
		switch (state) {
		case PSCI_STATE_ON:
			node->ref_count++;
			break;
		case PSCI_STATE_OFF:
		case PSCI_STATE_SUSPEND:
			node->ref_count--;
			break;
		case PSCI_STATE_ON_PENDING:
			/*
			 * An affinity level higher than a cpu will not undergo
			 * a state change when it is about to be turned on
			 */
			return;
		default:
			assert(0);
		}
	} else {
		node->state &= ~(PSCI_STATE_MASK << PSCI_STATE_SHIFT);
		node->state |= (state & PSCI_STATE_MASK) << PSCI_STATE_SHIFT;
	}
}

441
442
/*******************************************************************************
 * An affinity level could be on, on_pending, suspended or off. These are the
443
444
 * logical states it can be in. Physically either it is off or on. When it is in
 * the state on_pending then it is about to be turned on. It is not possible to
445
446
447
 * tell whether that's actually happenned or not. So we err on the side of
 * caution & treat the affinity level as being turned off.
 ******************************************************************************/
448
unsigned short psci_get_phys_state(aff_map_node_t *node)
449
{
450
	unsigned int state;
451

452
453
	state = psci_get_state(node);
	return get_phys_state(state);
454
455
}

456
457
458
459
460
/*******************************************************************************
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the physical power on handler for the corresponding
 * affinity levels
 ******************************************************************************/
461
static int psci_call_power_on_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
462
463
				       int start_afflvl,
				       int end_afflvl,
464
				       afflvl_power_on_finisher_t *pon_handlers,
465
466
467
				       unsigned long mpidr)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
468
	aff_map_node_t *node;
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

	for (level = end_afflvl; level >= start_afflvl; level--) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * If we run into any trouble while powering up an
		 * affinity instance, then there is no recovery path
		 * so simply return an error and let the caller take
		 * care of the situation.
		 */
		rc = pon_handlers[level](mpidr, node);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

489
490
/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
491
 * traverses through all the affinity levels performing generic, architectural,
492
493
494
495
 * platform setup and state management e.g. for a cluster that's been powered
 * on, it will call the platform specific code which will enable coherency at
 * the interconnect level. For a cpu it could mean turning on the MMU etc.
 *
496
497
498
499
500
501
502
503
 * The state of all the relevant affinity levels is changed after calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is exiting from.
 *
 * The affinity level specific handlers are called in descending order i.e. from
 * the highest to the lowest affinity level implemented by the platform because
 * to turn on affinity level X it is neccesary to turn on affinity level X + 1
 * first.
504
505
506
507
 *
 * CAUTION: This function is called with coherent stacks so that coherency and
 * the mmu can be turned on safely.
 ******************************************************************************/
508
509
510
void psci_afflvl_power_on_finish(unsigned long mpidr,
				 int start_afflvl,
				 int end_afflvl,
511
				 afflvl_power_on_finisher_t *pon_handlers)
512
{
513
	mpidr_aff_map_nodes_t mpidr_nodes;
514
	int rc;
515

516
	mpidr &= MPIDR_AFFINITY_MASK;
517
518

	/*
519
520
521
522
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect. Either case is an irrecoverable error.
523
	 */
524
525
526
527
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
528
529
	if (rc != PSCI_E_SUCCESS)
		panic();
530
531

	/*
532
533
534
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
535
	 */
536
537
538
539
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
540
541

	/* Perform generic, architecture and platform specific handling */
542
543
544
545
546
	rc = psci_call_power_on_handlers(mpidr_nodes,
					 start_afflvl,
					 end_afflvl,
					 pon_handlers,
					 mpidr);
547
548
	if (rc != PSCI_E_SUCCESS)
		panic();
549

550
551
552
553
554
555
556
557
	/*
	 * This loop releases the lock corresponding to each affinity level
	 * in the reverse order to which they were acquired.
	 */
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
558
}
559
560
561
562
563
564

/*******************************************************************************
 * This function initializes the set of hooks that PSCI invokes as part of power
 * management operation. The power management hooks are expected to be provided
 * by the SPD, after it finishes all its initialization
 ******************************************************************************/
565
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
566
567
568
{
	psci_spd_pm = pm;
}