fvp_pm.c 10.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch_helpers.h>
32
#include <arm_config.h>
33
#include <assert.h>
34
#include <debug.h>
35
#include <errno.h>
36
37
#include <mmio.h>
#include <platform.h>
38
#include <plat_arm.h>
39
#include <psci.h>
40
#include <v2m_def.h>
41
#include "drivers/pwrc/fvp_pwrc.h"
42
43
#include "fvp_def.h"
#include "fvp_private.h"
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#if ARM_RECOM_STATE_ID_ENC
/*
 *  The table storing the valid idle power states. Ensure that the
 *  array entries are populated in ascending order of state-id to
 *  enable us to use binary search during power state validation.
 *  The table must be terminated by a NULL entry.
 */
const unsigned int arm_pm_idle_states[] = {
	/* State-id - 0x01 */
	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
			ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
	/* State-id - 0x02 */
	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
			ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
	/* State-id - 0x22 */
	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
			ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
	0,
};
#endif

67
68
69
70
/*******************************************************************************
 * Function which implements the common FVP specific operations to power down a
 * cpu in response to a CPU_OFF or CPU_SUSPEND request.
 ******************************************************************************/
71
static void fvp_cpu_pwrdwn_common(void)
72
73
{
	/* Prevent interrupts from spuriously waking up this cpu */
74
	plat_arm_gic_cpuif_disable();
75
76
77
78
79
80
81
82
83

	/* Program the power controller to power off this cpu. */
	fvp_pwrc_write_ppoffr(read_mpidr_el1());
}

/*******************************************************************************
 * Function which implements the common FVP specific operations to power down a
 * cluster in response to a CPU_OFF or CPU_SUSPEND request.
 ******************************************************************************/
84
static void fvp_cluster_pwrdwn_common(void)
85
86
87
88
{
	uint64_t mpidr = read_mpidr_el1();

	/* Disable coherency if this cluster is to be turned off */
89
	fvp_cci_disable();
90
91
92
93
94

	/* Program the power controller to turn the cluster off */
	fvp_pwrc_write_pcoffr(mpidr);
}

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
{
	unsigned long mpidr;

	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_OFF);

	/* Get the mpidr for this cpu */
	mpidr = read_mpidr_el1();

	/* Perform the common cluster specific operations */
	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
					ARM_LOCAL_STATE_OFF) {
		/*
		 * This CPU might have woken up whilst the cluster was
		 * attempting to power down. In this case the FVP power
		 * controller will have a pending cluster power off request
		 * which needs to be cleared by writing to the PPONR register.
		 * This prevents the power controller from interpreting a
		 * subsequent entry of this cpu into a simple wfi as a power
		 * down request.
		 */
		fvp_pwrc_write_pponr(mpidr);

		/* Enable coherency if this cluster was off */
		fvp_cci_enable();
	}

	/*
	 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
	 * with a cpu power down unless the bit is set again
	 */
	fvp_pwrc_clr_wen(mpidr);
}


131
/*******************************************************************************
132
 * FVP handler called when a CPU is about to enter standby.
133
 ******************************************************************************/
134
void fvp_cpu_standby(plat_local_state_t cpu_state)
135
{
136
137
138

	assert(cpu_state == ARM_LOCAL_STATE_RET);

139
140
141
142
143
	/*
	 * Enter standby state
	 * dsb is good practice before using wfi to enter low power states
	 */
	dsb();
144
145
146
	wfi();
}

147
/*******************************************************************************
148
149
 * FVP handler called when a power domain is about to be turned on. The
 * mpidr determines the CPU to be turned on.
150
 ******************************************************************************/
151
int fvp_pwr_domain_on(u_register_t mpidr)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
{
	int rc = PSCI_E_SUCCESS;
	unsigned int psysr;

	/*
	 * Ensure that we do not cancel an inflight power off request
	 * for the target cpu. That would leave it in a zombie wfi.
	 * Wait for it to power off, program the jump address for the
	 * target cpu and then program the power controller to turn
	 * that cpu on
	 */
	do {
		psysr = fvp_pwrc_read_psysr(mpidr);
	} while (psysr & PSYSR_AFF_L0);

	fvp_pwrc_write_pponr(mpidr);
	return rc;
}

/*******************************************************************************
172
173
 * FVP handler called when a power domain is about to be turned off. The
 * target_state encodes the power state that each level should transition to.
174
 ******************************************************************************/
175
void fvp_pwr_domain_off(const psci_power_state_t *target_state)
176
{
177
178
	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_OFF);
179

180
	/*
181
182
183
	 * If execution reaches this stage then this power domain will be
	 * suspended. Perform at least the cpu specific actions followed
	 * by the cluster specific operations if applicable.
184
185
	 */
	fvp_cpu_pwrdwn_common();
186

187
188
	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
					ARM_LOCAL_STATE_OFF)
189
190
		fvp_cluster_pwrdwn_common();

191
192
193
}

/*******************************************************************************
194
195
 * FVP handler called when a power domain is about to be suspended. The
 * target_state encodes the power state that each level should transition to.
196
 ******************************************************************************/
197
void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
198
{
199
200
	unsigned long mpidr;

201
202
203
204
205
206
	/*
	 * FVP has retention only at cpu level. Just return
	 * as nothing is to be done for retention.
	 */
	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_RET)
207
		return;
208

209
210
211
	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_OFF);

212
213
214
	/* Get the mpidr for this cpu */
	mpidr = read_mpidr_el1();

215
216
217
218
219
220
221
	/* Program the power controller to enable wakeup interrupts. */
	fvp_pwrc_set_wen(mpidr);

	/* Perform the common cpu specific operations */
	fvp_cpu_pwrdwn_common();

	/* Perform the common cluster specific operations */
222
223
	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
					ARM_LOCAL_STATE_OFF)
224
		fvp_cluster_pwrdwn_common();
225
226
227
}

/*******************************************************************************
228
229
230
 * FVP handler called when a power domain has just been powered on after
 * being turned off earlier. The target_state encodes the low power state that
 * each level has woken up from.
231
 ******************************************************************************/
232
void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
233
{
234
	fvp_power_domain_on_finish_common(target_state);
235

236
	/* Enable the gic cpu interface */
237
238
239
240
	plat_arm_gic_pcpu_init();

	/* Program the gic per-cpu distributor or re-distributor interface */
	plat_arm_gic_cpuif_enable();
241
242
243
}

/*******************************************************************************
244
245
246
 * FVP handler called when a power domain has just been powered on after
 * having been suspended earlier. The target_state encodes the low power state
 * that each level has woken up from.
247
248
249
 * TODO: At the moment we reuse the on finisher and reinitialize the secure
 * context. Need to implement a separate suspend finisher.
 ******************************************************************************/
250
void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
251
{
252
253
254
255
256
257
258
	/*
	 * Nothing to be done on waking up from retention from CPU level.
	 */
	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_RET)
		return;

259
260
261
	fvp_power_domain_on_finish_common(target_state);

	/* Enable the gic cpu interface */
262
	plat_arm_gic_cpuif_enable();
263
264
}

265
266
267
268
269
270
/*******************************************************************************
 * FVP handlers to shutdown/reboot the system
 ******************************************************************************/
static void __dead2 fvp_system_off(void)
{
	/* Write the System Configuration Control Register */
271
272
273
274
	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
		V2M_CFGCTRL_START |
		V2M_CFGCTRL_RW |
		V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
275
276
277
278
279
280
281
282
	wfi();
	ERROR("FVP System Off: operation not handled.\n");
	panic();
}

static void __dead2 fvp_system_reset(void)
{
	/* Write the System Configuration Control Register */
283
284
285
286
	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
		V2M_CFGCTRL_START |
		V2M_CFGCTRL_RW |
		V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
287
288
289
290
	wfi();
	ERROR("FVP System Reset: operation not handled.\n");
	panic();
}
291
292

/*******************************************************************************
293
294
 * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
 * platform layer will take care of registering the handlers with PSCI.
295
 ******************************************************************************/
296
const plat_psci_ops_t plat_arm_psci_pm_ops = {
297
298
299
300
301
302
	.cpu_standby = fvp_cpu_standby,
	.pwr_domain_on = fvp_pwr_domain_on,
	.pwr_domain_off = fvp_pwr_domain_off,
	.pwr_domain_suspend = fvp_pwr_domain_suspend,
	.pwr_domain_on_finish = fvp_pwr_domain_on_finish,
	.pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
303
	.system_off = fvp_system_off,
304
	.system_reset = fvp_system_reset,
305
306
	.validate_power_state = arm_validate_power_state,
	.validate_ns_entrypoint = arm_validate_ns_entrypoint
307
};