stm32_qspi.c 11.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2019-2020, STMicroelectronics - All Rights Reserved
3
4
5
6
7
8
9
10
11
 *
 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
 */

#include <libfdt.h>

#include <platform_def.h>

#include <common/debug.h>
12
#include <common/fdt_wrappers.h>
13
14
15
#include <drivers/delay_timer.h>
#include <drivers/spi_mem.h>
#include <drivers/st/stm32_gpio.h>
16
#include <drivers/st/stm32_qspi.h>
17
18
19
20
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>

21
22
23
/* Timeout for device interface reset */
#define TIMEOUT_US_1_MS			1000U

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* QUADSPI registers */
#define QSPI_CR			0x00U
#define QSPI_DCR		0x04U
#define QSPI_SR			0x08U
#define QSPI_FCR		0x0CU
#define QSPI_DLR		0x10U
#define QSPI_CCR		0x14U
#define QSPI_AR			0x18U
#define QSPI_ABR		0x1CU
#define QSPI_DR			0x20U
#define QSPI_PSMKR		0x24U
#define QSPI_PSMAR		0x28U
#define QSPI_PIR		0x2CU
#define QSPI_LPTR		0x30U

/* QUADSPI control register */
#define QSPI_CR_EN		BIT(0)
#define QSPI_CR_ABORT		BIT(1)
#define QSPI_CR_DMAEN		BIT(2)
#define QSPI_CR_TCEN		BIT(3)
#define QSPI_CR_SSHIFT		BIT(4)
#define QSPI_CR_DFM		BIT(6)
#define QSPI_CR_FSEL		BIT(7)
#define QSPI_CR_FTHRES_SHIFT	8U
#define QSPI_CR_TEIE		BIT(16)
#define QSPI_CR_TCIE		BIT(17)
#define QSPI_CR_FTIE		BIT(18)
#define QSPI_CR_SMIE		BIT(19)
#define QSPI_CR_TOIE		BIT(20)
#define QSPI_CR_APMS		BIT(22)
#define QSPI_CR_PMM		BIT(23)
#define QSPI_CR_PRESCALER_MASK	GENMASK_32(31, 24)
#define QSPI_CR_PRESCALER_SHIFT	24U

/* QUADSPI device configuration register */
#define QSPI_DCR_CKMODE		BIT(0)
#define QSPI_DCR_CSHT_MASK	GENMASK_32(10, 8)
#define QSPI_DCR_CSHT_SHIFT	8U
#define QSPI_DCR_FSIZE_MASK	GENMASK_32(20, 16)
#define QSPI_DCR_FSIZE_SHIFT	16U

/* QUADSPI status register */
#define QSPI_SR_TEF		BIT(0)
#define QSPI_SR_TCF		BIT(1)
#define QSPI_SR_FTF		BIT(2)
#define QSPI_SR_SMF		BIT(3)
#define QSPI_SR_TOF		BIT(4)
#define QSPI_SR_BUSY		BIT(5)

/* QUADSPI flag clear register */
#define QSPI_FCR_CTEF		BIT(0)
#define QSPI_FCR_CTCF		BIT(1)
#define QSPI_FCR_CSMF		BIT(3)
#define QSPI_FCR_CTOF		BIT(4)

/* QUADSPI communication configuration register */
#define QSPI_CCR_DDRM		BIT(31)
#define QSPI_CCR_DHHC		BIT(30)
#define QSPI_CCR_SIOO		BIT(28)
#define QSPI_CCR_FMODE_SHIFT	26U
#define QSPI_CCR_DMODE_SHIFT	24U
#define QSPI_CCR_DCYC_SHIFT	18U
#define QSPI_CCR_ABSIZE_SHIFT	16U
#define QSPI_CCR_ABMODE_SHIFT	14U
#define QSPI_CCR_ADSIZE_SHIFT	12U
#define QSPI_CCR_ADMODE_SHIFT	10U
#define QSPI_CCR_IMODE_SHIFT	8U
#define QSPI_CCR_IND_WRITE	0U
#define QSPI_CCR_IND_READ	1U
#define QSPI_CCR_MEM_MAP	3U

#define QSPI_MAX_CHIP		2U

#define QSPI_FIFO_TIMEOUT_US	30U
#define QSPI_CMD_TIMEOUT_US	1000U
#define QSPI_BUSY_TIMEOUT_US	100U
#define QSPI_ABT_TIMEOUT_US	100U

#define DT_QSPI_COMPAT		"st,stm32f469-qspi"

#define FREQ_100MHZ		100000000U

struct stm32_qspi_ctrl {
	uintptr_t reg_base;
	uintptr_t mm_base;
	size_t mm_size;
	unsigned long clock_id;
	unsigned int reset_id;
};

static struct stm32_qspi_ctrl stm32_qspi;

static uintptr_t qspi_base(void)
{
	return stm32_qspi.reg_base;
}

static int stm32_qspi_wait_for_not_busy(void)
{
	uint64_t timeout = timeout_init_us(QSPI_BUSY_TIMEOUT_US);

	while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_BUSY) != 0U) {
		if (timeout_elapsed(timeout)) {
			ERROR("%s: busy timeout\n", __func__);
			return -ETIMEDOUT;
		}
	}

	return 0;
}

static int stm32_qspi_wait_cmd(const struct spi_mem_op *op)
{
	int ret = 0;
	uint64_t timeout;

	if (op->data.nbytes == 0U) {
		return stm32_qspi_wait_for_not_busy();
	}

	timeout = timeout_init_us(QSPI_CMD_TIMEOUT_US);
	while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TCF) == 0U) {
		if (timeout_elapsed(timeout)) {
			ret = -ETIMEDOUT;
			break;
		}
	}

	if (ret == 0) {
		if ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TEF) != 0U) {
			ERROR("%s: transfer error\n", __func__);
			ret = -EIO;
		}
	} else {
		ERROR("%s: cmd timeout\n", __func__);
	}

	/* Clear flags */
	mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF | QSPI_FCR_CTEF);

	return ret;
}

static void stm32_qspi_read_fifo(uint8_t *val, uintptr_t addr)
{
	*val = mmio_read_8(addr);
}

static void stm32_qspi_write_fifo(uint8_t *val, uintptr_t addr)
{
	mmio_write_8(addr, *val);
}

static int stm32_qspi_poll(const struct spi_mem_op *op)
{
	void (*fifo)(uint8_t *val, uintptr_t addr);
180
	uint32_t len;
181
182
183
184
185
186
187
188
189
190
191
	uint8_t *buf;

	if (op->data.dir == SPI_MEM_DATA_IN) {
		fifo = stm32_qspi_read_fifo;
	} else {
		fifo = stm32_qspi_write_fifo;
	}

	buf = (uint8_t *)op->data.buf;

	for (len = op->data.nbytes; len != 0U; len--) {
192
193
		uint64_t timeout = timeout_init_us(QSPI_FIFO_TIMEOUT_US);

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
		while ((mmio_read_32(qspi_base() + QSPI_SR) &
			QSPI_SR_FTF) == 0U) {
			if (timeout_elapsed(timeout)) {
				ERROR("%s: fifo timeout\n", __func__);
				return -ETIMEDOUT;
			}
		}

		fifo(buf++, qspi_base() + QSPI_DR);
	}

	return 0;
}

static int stm32_qspi_mm(const struct spi_mem_op *op)
{
	memcpy(op->data.buf,
	       (void *)(stm32_qspi.mm_base + (size_t)op->addr.val),
	       op->data.nbytes);

	return 0;
}

static int stm32_qspi_tx(const struct spi_mem_op *op, uint8_t mode)
{
	if (op->data.nbytes == 0U) {
		return 0;
	}

	if (mode == QSPI_CCR_MEM_MAP) {
		return stm32_qspi_mm(op);
	}

	return stm32_qspi_poll(op);
}

static unsigned int stm32_qspi_get_mode(uint8_t buswidth)
{
	if (buswidth == 4U) {
		return 3U;
	}

	return buswidth;
}

static int stm32_qspi_exec_op(const struct spi_mem_op *op)
{
	uint64_t timeout;
	uint32_t ccr;
	size_t addr_max;
	uint8_t mode = QSPI_CCR_IND_WRITE;
	int ret;

	VERBOSE("%s: cmd:%x mode:%d.%d.%d.%d addr:%llx len:%x\n",
		__func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
		op->dummy.buswidth, op->data.buswidth,
		op->addr.val, op->data.nbytes);

	ret = stm32_qspi_wait_for_not_busy();
	if (ret != 0) {
		return ret;
	}

	addr_max = op->addr.val + op->data.nbytes + 1U;

	if ((op->data.dir == SPI_MEM_DATA_IN) && (op->data.nbytes != 0U)) {
		if ((addr_max < stm32_qspi.mm_size) &&
		    (op->addr.buswidth != 0U)) {
			mode = QSPI_CCR_MEM_MAP;
		} else {
			mode = QSPI_CCR_IND_READ;
		}
	}

	if (op->data.nbytes != 0U) {
		mmio_write_32(qspi_base() + QSPI_DLR, op->data.nbytes - 1U);
	}

	ccr = mode << QSPI_CCR_FMODE_SHIFT;
	ccr |= op->cmd.opcode;
	ccr |= stm32_qspi_get_mode(op->cmd.buswidth) << QSPI_CCR_IMODE_SHIFT;

	if (op->addr.nbytes != 0U) {
		ccr |= (op->addr.nbytes - 1U) << QSPI_CCR_ADSIZE_SHIFT;
		ccr |= stm32_qspi_get_mode(op->addr.buswidth) <<
			QSPI_CCR_ADMODE_SHIFT;
	}

	if ((op->dummy.buswidth != 0U) && (op->dummy.nbytes != 0U)) {
		ccr |= (op->dummy.nbytes * 8U / op->dummy.buswidth) <<
			QSPI_CCR_DCYC_SHIFT;
	}

	if (op->data.nbytes != 0U) {
		ccr |= stm32_qspi_get_mode(op->data.buswidth) <<
			QSPI_CCR_DMODE_SHIFT;
	}

	mmio_write_32(qspi_base() + QSPI_CCR, ccr);

	if ((op->addr.nbytes != 0U) && (mode != QSPI_CCR_MEM_MAP)) {
		mmio_write_32(qspi_base() + QSPI_AR, op->addr.val);
	}

	ret = stm32_qspi_tx(op, mode);

	/*
	 * Abort in:
	 * - Error case.
	 * - Memory mapped read: prefetching must be stopped if we read the last
	 *   byte of device (device size - fifo size). If device size is not
	 *   known then prefetching is always stopped.
	 */
	if ((ret != 0) || (mode == QSPI_CCR_MEM_MAP)) {
		goto abort;
	}

	/* Wait end of TX in indirect mode */
	ret = stm32_qspi_wait_cmd(op);
	if (ret != 0) {
		goto abort;
	}

	return 0;

abort:
	mmio_setbits_32(qspi_base() + QSPI_CR, QSPI_CR_ABORT);

	/* Wait clear of abort bit by hardware */
	timeout = timeout_init_us(QSPI_ABT_TIMEOUT_US);
	while ((mmio_read_32(qspi_base() + QSPI_CR) & QSPI_CR_ABORT) != 0U) {
		if (timeout_elapsed(timeout)) {
			ret = -ETIMEDOUT;
			break;
		}
	}

	mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF);

	if (ret != 0) {
		ERROR("%s: exec op error\n", __func__);
	}

	return ret;
}

static int stm32_qspi_claim_bus(unsigned int cs)
{
	uint32_t cr;

	if (cs >= QSPI_MAX_CHIP) {
		return -ENODEV;
	}

	/* Set chip select and enable the controller */
	cr = QSPI_CR_EN;
	if (cs == 1U) {
		cr |= QSPI_CR_FSEL;
	}

	mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_FSEL, cr);

	return 0;
}

static void stm32_qspi_release_bus(void)
{
	mmio_clrbits_32(qspi_base() + QSPI_CR, QSPI_CR_EN);
}

static int stm32_qspi_set_speed(unsigned int hz)
{
	unsigned long qspi_clk = stm32mp_clk_get_rate(stm32_qspi.clock_id);
	uint32_t prescaler = UINT8_MAX;
	uint32_t csht;
	int ret;

	if (qspi_clk == 0U) {
		return -EINVAL;
	}

	if (hz > 0U) {
		prescaler = div_round_up(qspi_clk, hz) - 1U;
		if (prescaler > UINT8_MAX) {
			prescaler = UINT8_MAX;
		}
	}

	csht = div_round_up((5U * qspi_clk) / (prescaler + 1U), FREQ_100MHZ);
	csht = ((csht - 1U) << QSPI_DCR_CSHT_SHIFT) & QSPI_DCR_CSHT_MASK;

	ret = stm32_qspi_wait_for_not_busy();
	if (ret != 0) {
		return ret;
	}

	mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_PRESCALER_MASK,
			   prescaler << QSPI_CR_PRESCALER_SHIFT);

	mmio_clrsetbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CSHT_MASK, csht);

	VERBOSE("%s: speed=%lu\n", __func__, qspi_clk / (prescaler + 1U));

	return 0;
}

static int stm32_qspi_set_mode(unsigned int mode)
{
	int ret;

	ret = stm32_qspi_wait_for_not_busy();
	if (ret != 0) {
		return ret;
	}

	if ((mode & SPI_CS_HIGH) != 0U) {
		return -ENODEV;
	}

	if (((mode & SPI_CPHA) != 0U) && ((mode & SPI_CPOL) != 0U)) {
		mmio_setbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
	} else if (((mode & SPI_CPHA) == 0U) && ((mode & SPI_CPOL) == 0U)) {
		mmio_clrbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
	} else {
		return -ENODEV;
	}

	VERBOSE("%s: mode=0x%x\n", __func__, mode);

	if ((mode & SPI_RX_QUAD) != 0U) {
		VERBOSE("rx: quad\n");
	} else if ((mode & SPI_RX_DUAL) != 0U) {
		VERBOSE("rx: dual\n");
	} else {
		VERBOSE("rx: single\n");
	}

	if ((mode & SPI_TX_QUAD) != 0U) {
		VERBOSE("tx: quad\n");
	} else if ((mode & SPI_TX_DUAL) != 0U) {
		VERBOSE("tx: dual\n");
	} else {
		VERBOSE("tx: single\n");
	}

	return 0;
}

static const struct spi_bus_ops stm32_qspi_bus_ops = {
	.claim_bus = stm32_qspi_claim_bus,
	.release_bus = stm32_qspi_release_bus,
	.set_speed = stm32_qspi_set_speed,
	.set_mode = stm32_qspi_set_mode,
	.exec_op = stm32_qspi_exec_op,
};

int stm32_qspi_init(void)
{
	size_t size;
	int qspi_node;
	struct dt_node_info info;
	void *fdt = NULL;
	int ret;

	if (fdt_get_address(&fdt) == 0) {
		return -FDT_ERR_NOTFOUND;
	}

	qspi_node = dt_get_node(&info, -1, DT_QSPI_COMPAT);
	if (qspi_node < 0) {
		ERROR("No QSPI ctrl found\n");
		return -FDT_ERR_NOTFOUND;
	}

	if (info.status == DT_DISABLED) {
		return -FDT_ERR_NOTFOUND;
	}

472
	ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi",
473
474
475
476
477
					&stm32_qspi.reg_base, &size);
	if (ret != 0) {
		return ret;
	}

478
	ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi_mm",
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
					&stm32_qspi.mm_base,
					&stm32_qspi.mm_size);
	if (ret != 0) {
		return ret;
	}

	if (dt_set_pinctrl_config(qspi_node) != 0) {
		return -FDT_ERR_BADVALUE;
	}

	if ((info.clock < 0) || (info.reset < 0)) {
		return -FDT_ERR_BADVALUE;
	}

	stm32_qspi.clock_id = (unsigned long)info.clock;
	stm32_qspi.reset_id = (unsigned int)info.reset;

	stm32mp_clk_enable(stm32_qspi.clock_id);

498
499
500
501
502
503
504
505
	ret = stm32mp_reset_assert(stm32_qspi.reset_id, TIMEOUT_US_1_MS);
	if (ret != 0) {
		panic();
	}
	ret = stm32mp_reset_deassert(stm32_qspi.reset_id, TIMEOUT_US_1_MS);
	if (ret != 0) {
		panic();
	}
506
507
508
509
510
511

	mmio_write_32(qspi_base() + QSPI_CR, QSPI_CR_SSHIFT);
	mmio_write_32(qspi_base() + QSPI_DCR, QSPI_DCR_FSIZE_MASK);

	return spi_mem_init_slave(fdt, qspi_node, &stm32_qspi_bus_ops);
};