context_mgmt.c 16.6 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
2
 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
32
#include <arch_helpers.h>
33
#include <assert.h>
Achin Gupta's avatar
Achin Gupta committed
34
#include <bl_common.h>
35
#include <bl31.h>
36
#include <context.h>
Achin Gupta's avatar
Achin Gupta committed
37
#include <context_mgmt.h>
38
#include <cpu_data.h>
39
#include <interrupt_mgmt.h>
40
#include <platform.h>
41
#include <platform_def.h>
42
#include <runtime_svc.h>
43
#include <string.h>
Achin Gupta's avatar
Achin Gupta committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
59
void cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
60
61
62
63
64
65
66
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*******************************************************************************
 * This function returns a pointer to the most recent 'cpu_context' structure
 * for the CPU identified by `cpu_idx` that was set as the context for the
 * specified security state. NULL is returned if no such structure has been
 * specified.
 ******************************************************************************/
void *cm_get_context_by_index(unsigned int cpu_idx,
				unsigned int security_state)
{
	assert(sec_state_is_valid(security_state));

	return get_cpu_data_by_index(cpu_idx, cpu_context[security_state]);
}

/*******************************************************************************
 * This function sets the pointer to the current 'cpu_context' structure for the
 * specified security state for the CPU identified by CPU index.
 ******************************************************************************/
void cm_set_context_by_index(unsigned int cpu_idx, void *context,
				unsigned int security_state)
{
	assert(sec_state_is_valid(security_state));

	set_cpu_data_by_index(cpu_idx, cpu_context[security_state], context);
}

Achin Gupta's avatar
Achin Gupta committed
93
94
/*******************************************************************************
 * This function returns a pointer to the most recent 'cpu_context' structure
95
96
 * for the CPU identified by MPIDR that was set as the context for the specified
 * security state. NULL is returned if no such structure has been specified.
Achin Gupta's avatar
Achin Gupta committed
97
 ******************************************************************************/
98
void *cm_get_context_by_mpidr(uint64_t mpidr, uint32_t security_state)
Achin Gupta's avatar
Achin Gupta committed
99
{
100
	assert(sec_state_is_valid(security_state));
101

102
	return cm_get_context_by_index(platform_get_core_pos(mpidr), security_state);
103
104
}

Achin Gupta's avatar
Achin Gupta committed
105
106
/*******************************************************************************
 * This function sets the pointer to the current 'cpu_context' structure for the
107
 * specified security state for the CPU identified by MPIDR
Achin Gupta's avatar
Achin Gupta committed
108
 ******************************************************************************/
109
void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_state)
Achin Gupta's avatar
Achin Gupta committed
110
{
111
	assert(sec_state_is_valid(security_state));
Achin Gupta's avatar
Achin Gupta committed
112

113
114
	cm_set_context_by_index(platform_get_core_pos(mpidr),
						 context, security_state);
115
116
}

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
 ******************************************************************************/
static inline void cm_set_next_context(void *context)
{
#if DEBUG
	uint64_t sp_mode;

	/*
	 * Check that this function is called with SP_EL0 as the stack
	 * pointer
	 */
	__asm__ volatile("mrs	%0, SPSel\n"
			 : "=r" (sp_mode));

	assert(sp_mode == MODE_SP_EL0);
#endif

	__asm__ volatile("msr	spsel, #1\n"
			 "mov	sp, %0\n"
			 "msr	spsel, #0\n"
			 : : "r" (context));
}

/*******************************************************************************
144
 * The following function initializes the cpu_context 'ctx' for
145
146
147
148
149
150
151
152
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianess and secure
153
 * timer availability for the new execution context.
154
155
156
157
158
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
159
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
160
{
161
	unsigned int security_state;
162
163
164
165
166
167
168
	uint32_t scr_el3;
	el3_state_t *state;
	gp_regs_t *gp_regs;
	unsigned long sctlr_elx;

	assert(ctx);

169
170
	security_state = GET_SECURITY_STATE(ep->h.attr);

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
	/* Clear any residual register values from the context */
	memset(ctx, 0, sizeof(*ctx));

	/*
	 * Base the context SCR on the current value, adjust for entry point
	 * specific requirements and set trap bits from the IMF
	 * TODO: provide the base/global SCR bits using another mechanism?
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);

	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;

	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;

	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

	scr_el3 |= get_scr_el3_from_routing_model(security_state);

	/*
	 * Set up SCTLR_ELx for the target exception level:
	 * EE bit is taken from the entrpoint attributes
	 * M, C and I bits must be zero (as required by PSCI specification)
	 *
	 * The target exception level is based on the spsr mode requested.
	 * If execution is requested to EL2 or hyp mode, HVC is enabled
	 * via SCR_EL3.HCE.
	 *
	 * Always compute the SCTLR_EL1 value and save in the cpu_context
	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
	 * are not part of the stored cpu_context
	 *
	 * TODO: In debug builds the spsr should be validated and checked
	 * against the CPU support, security state, endianess and pc
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
211
212
213
214
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
	else
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function provides a compatibility function for SPDs using the
 * existing cm library routines. This function is expected to be invoked for
 * initializing the cpu_context for the CPU specified by MPIDR for first use.
 ******************************************************************************/
void cm_init_context(unsigned long mpidr, const entry_point_info_t *ep)
{
	if ((mpidr & MPIDR_AFFINITY_MASK) ==
			(read_mpidr_el1() & MPIDR_AFFINITY_MASK))
		cm_init_my_context(ep);
	else
		cm_init_context_by_index(platform_get_core_pos(mpidr), ep);
}

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
	uint32_t sctlr_elx, scr_el3, cptr_el2;
	cpu_context_t *ctx = cm_get_context(security_state);

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
			sctlr_elx &= ~SCTLR_EE_BIT;
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
		} else if (read_id_aa64pfr0_el1() &
			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
			/* EL2 present but unused, need to disable safely */

			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

			/* SCTLR_EL2 : can be ignored when bypassing */

			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
			cptr_el2 = read_cptr_el2();
			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
			write_cptr_el2(cptr_el2);

			/* Enable EL1 access to timer */
			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);

318
319
320
			/* Reset CNTVOFF_EL2 */
			write_cntvoff_el2(0);

321
322
323
324
325
326
327
328
329
330
331
			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
		}
	}

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));

	cm_set_next_context(ctx);
}

Achin Gupta's avatar
Achin Gupta committed
332
/*******************************************************************************
333
334
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
335
336
337
338
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
339
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
340

341
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
342
343
344
345
346
347
348
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
349
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
350

351
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
352
353
354
355
356
357
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
}

/*******************************************************************************
358
359
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
360
 ******************************************************************************/
361
void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
362
{
363
364
	cpu_context_t *ctx;
	el3_state_t *state;
365

366
	ctx = cm_get_context(security_state);
367
368
	assert(ctx);

369
	/* Populate EL3 state so that ERET jumps to the correct entry */
370
371
372
373
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

374
/*******************************************************************************
375
376
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
377
 ******************************************************************************/
378
379
void cm_set_elr_spsr_el3(uint32_t security_state,
			 uint64_t entrypoint, uint32_t spsr)
380
{
381
382
	cpu_context_t *ctx;
	el3_state_t *state;
383

384
	ctx = cm_get_context(security_state);
385
386
387
388
389
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
390
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
391
392
}

393
394
395
396
397
398
399
400
401
402
403
404
405
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

406
	ctx = cm_get_context(security_state);
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

435
	ctx = cm_get_context(security_state);
436
437
438
439
440
441
442
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

443
444
445
446
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
447
448
449
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
450
	cpu_context_t *ctx;
451

452
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
453
454
	assert(ctx);

455
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
456
}