bl2_plat_setup.c 22.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2020-2021, Renesas Electronics Corporation. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <string.h>

#include <arch_helpers.h>
#include <bl1/bl1.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <common/desc_image_load.h>
#include <drivers/console.h>
#include <drivers/io/io_driver.h>
#include <drivers/io/io_storage.h>
#include <libfdt.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <platform_def.h>
#include <plat/common/platform.h>

#include "avs_driver.h"
#include "board.h"
#include "boot_init_dram.h"
#include "cpg_registers.h"
#include "emmc_def.h"
#include "emmc_hal.h"
#include "emmc_std.h"
#include "io_common.h"
#include "io_rcar.h"
#include "qos_init.h"
#include "rcar_def.h"
#include "rcar_private.h"
#include "rcar_version.h"
#include "rom_api.h"

#define MAX_DRAM_CHANNELS 4
39
40
41
42
43
44
/*
 * DDR ch0 has a shadow area mapped in 32bit address space.
 * Physical address 0x4_0000_0000 - 0x4_7fff_ffff in 64bit space
 * is mapped to 0x4000_0000 - 0xbfff_ffff in 32bit space.
 */
#define MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE 0x80000000ULL
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

#if RCAR_BL2_DCACHE == 1
/*
 * Following symbols are only used during plat_arch_setup() only
 * when RCAR_BL2_DCACHE is enabled.
 */
static const uint64_t BL2_RO_BASE		= BL_CODE_BASE;
static const uint64_t BL2_RO_LIMIT		= BL_CODE_END;

#if USE_COHERENT_MEM
static const uint64_t BL2_COHERENT_RAM_BASE	= BL_COHERENT_RAM_BASE;
static const uint64_t BL2_COHERENT_RAM_LIMIT	= BL_COHERENT_RAM_END;
#endif /* USE_COHERENT_MEM */

#endif /* RCAR_BL2_DCACHE */

extern void plat_rcar_gic_driver_init(void);
extern void plat_rcar_gic_init(void);
extern void bl2_enter_bl31(const struct entry_point_info *bl_ep_info);
extern void bl2_system_cpg_init(void);
extern void bl2_secure_setting(void);
extern void bl2_cpg_init(void);
extern void rcar_io_emmc_setup(void);
extern void rcar_io_setup(void);
extern void rcar_swdt_release(void);
extern void rcar_swdt_init(void);
extern void rcar_rpc_init(void);
extern void rcar_dma_init(void);
extern void rzg_pfc_init(void);

static void bl2_init_generic_timer(void);

/* RZ/G2 product check */
#if RCAR_LSI == RZ_G2M
#define TARGET_PRODUCT			PRR_PRODUCT_M3
#define TARGET_NAME			"RZ/G2M"
#elif RCAR_LSI == RCAR_AUTO
#define TARGET_NAME			"RZ/G2M"
#endif /* RCAR_LSI == RZ_G2M */

#define GPIO_INDT			(GPIO_INDT1)
#define GPIO_BKUP_TRG_SHIFT		(1U << 8U)

CASSERT((PARAMS_BASE + sizeof(bl2_to_bl31_params_mem_t) + 0x100)
	 < (RCAR_SHARED_MEM_BASE + RCAR_SHARED_MEM_SIZE),
	assert_bl31_params_do_not_fit_in_shared_memory);

static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE);

/* FDT with DRAM configuration */
uint64_t fdt_blob[PAGE_SIZE_4KB / sizeof(uint64_t)];
static void *fdt = (void *)fdt_blob;

static void unsigned_num_print(uint64_t unum, unsigned int radix, char *string)
{
	/* Just need enough space to store 64 bit decimal integer */
	char num_buf[20];
	int i = 0;
	unsigned int rem;

	do {
		rem = unum % radix;
		if (rem < 0xaU) {
			num_buf[i] = '0' + rem;
		} else {
			num_buf[i] = 'a' + (rem - 0xaU);
		}
		i++;
		unum /= radix;
	} while (unum > 0U);

	while (--i >= 0) {
		*string++ = num_buf[i];
	}
	*string = 0;
}

#if RCAR_LOSSY_ENABLE == 1
typedef struct bl2_lossy_info {
	uint32_t magic;
	uint32_t a0;
	uint32_t b0;
} bl2_lossy_info_t;

static void bl2_lossy_gen_fdt(uint32_t no, uint64_t start_addr,
			      uint64_t end_addr, uint32_t format,
			      uint32_t enable, int fcnlnode)
{
	const uint64_t fcnlsize = cpu_to_fdt64(end_addr - start_addr);
	char nodename[40] = { 0 };
	int ret, node;

	/* Ignore undefined addresses */
	if (start_addr == 0UL && end_addr == 0UL) {
		return;
	}

	snprintf(nodename, sizeof(nodename), "lossy-decompression@");
	unsigned_num_print(start_addr, 16, nodename + strlen(nodename));

	node = ret = fdt_add_subnode(fdt, fcnlnode, nodename);
	if (ret < 0) {
		NOTICE("BL2: Cannot create FCNL node (ret=%i)\n", ret);
		panic();
	}

	ret = fdt_setprop_string(fdt, node, "compatible",
				 "renesas,lossy-decompression");
	if (ret < 0) {
		NOTICE("BL2: Cannot add FCNL compat string %s (ret=%i)\n",
		       "renesas,lossy-decompression", ret);
		panic();
	}

	ret = fdt_appendprop_string(fdt, node, "compatible",
				    "shared-dma-pool");
	if (ret < 0) {
		NOTICE("BL2: Cannot append FCNL compat string %s (ret=%i)\n",
		       "shared-dma-pool", ret);
		panic();
	}

	ret = fdt_setprop_u64(fdt, node, "reg", start_addr);
	if (ret < 0) {
		NOTICE("BL2: Cannot add FCNL reg prop (ret=%i)\n", ret);
		panic();
	}

	ret = fdt_appendprop(fdt, node, "reg", &fcnlsize, sizeof(fcnlsize));
	if (ret < 0) {
		NOTICE("BL2: Cannot append FCNL reg size prop (ret=%i)\n", ret);
		panic();
	}

	ret = fdt_setprop(fdt, node, "no-map", NULL, 0);
	if (ret < 0) {
		NOTICE("BL2: Cannot add FCNL no-map prop (ret=%i)\n", ret);
		panic();
	}

	ret = fdt_setprop_u32(fdt, node, "renesas,formats", format);
	if (ret < 0) {
		NOTICE("BL2: Cannot add FCNL formats prop (ret=%i)\n", ret);
		panic();
	}
}

static void bl2_lossy_setting(uint32_t no, uint64_t start_addr,
			      uint64_t end_addr, uint32_t format,
			      uint32_t enable, int fcnlnode)
{
	bl2_lossy_info_t info;
	uint32_t reg;

	bl2_lossy_gen_fdt(no, start_addr, end_addr, format, enable, fcnlnode);

	reg = format | (start_addr >> 20);
	mmio_write_32(AXI_DCMPAREACRA0 + 0x8U * no, reg);
	mmio_write_32(AXI_DCMPAREACRB0 + 0x8U * no, end_addr >> 20);
	mmio_write_32(AXI_DCMPAREACRA0 + 0x8U * no, reg | enable);

	info.magic = 0x12345678U;
	info.a0 = mmio_read_32(AXI_DCMPAREACRA0 + 0x8U * no);
	info.b0 = mmio_read_32(AXI_DCMPAREACRB0 + 0x8U * no);

	mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no, info.magic);
	mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x4U, info.a0);
	mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x8U, info.b0);

	NOTICE("     Entry %d: DCMPAREACRAx:0x%x DCMPAREACRBx:0x%x\n", no,
	       mmio_read_32(AXI_DCMPAREACRA0 + 0x8U * no),
	       mmio_read_32(AXI_DCMPAREACRB0 + 0x8U * no));
}
#endif /* RCAR_LOSSY_ENABLE == 1 */

void bl2_plat_flush_bl31_params(void)
{
	uint32_t product_cut, product, cut;
	uint32_t boot_dev, boot_cpu;
	uint32_t reg;

	reg = mmio_read_32(RCAR_MODEMR);
	boot_dev = reg & MODEMR_BOOT_DEV_MASK;

	if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
	    boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) {
		emmc_terminate();
	}

	if ((reg & MODEMR_BOOT_CPU_MASK) != MODEMR_BOOT_CPU_CR7) {
		bl2_secure_setting();
	}

	reg = mmio_read_32(RCAR_PRR);
	product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK);
	product = reg & PRR_PRODUCT_MASK;
	cut = reg & PRR_CUT_MASK;

	if (!((product == PRR_PRODUCT_M3 && cut < PRR_PRODUCT_30) ||
	      (product == PRR_PRODUCT_H3 && cut < PRR_PRODUCT_20))) {
		/* Disable MFIS write protection */
		mmio_write_32(MFISWPCNTR, MFISWPCNTR_PASSWORD | 1U);
	}

	reg = mmio_read_32(RCAR_MODEMR);
	boot_cpu = reg & MODEMR_BOOT_CPU_MASK;
	if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
	    boot_cpu == MODEMR_BOOT_CPU_CA53) {
		if (product_cut == PRR_PRODUCT_H3_CUT20) {
			mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUVI1_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUPV1_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUPV2_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUPV3_IMSCTLR, IMSCTLR_DISCACHE);
		} else if (product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) ||
			   product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11)) {
			mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
		} else if ((product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) ||
			   (product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_11))) {
			mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUVP0_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
		}

		if (product_cut == (PRR_PRODUCT_H3_CUT20) ||
		    product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) ||
		    product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11) ||
		    product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) {
			mmio_write_32(IPMMUHC_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMURT_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUMP_IMSCTLR, IMSCTLR_DISCACHE);

			mmio_write_32(IPMMUDS0_IMSCTLR, IMSCTLR_DISCACHE);
			mmio_write_32(IPMMUDS1_IMSCTLR, IMSCTLR_DISCACHE);
		}
	}

	mmio_write_32(IPMMUMM_IMSCTLR, IPMMUMM_IMSCTLR_ENABLE);
	mmio_write_32(IPMMUMM_IMAUXCTLR, IPMMUMM_IMAUXCTLR_NMERGE40_BIT);

	rcar_swdt_release();
	bl2_system_cpg_init();

#if RCAR_BL2_DCACHE == 1
	/* Disable data cache (clean and invalidate) */
	disable_mmu_el3();
#endif /* RCAR_BL2_DCACHE == 1 */
}

static uint32_t is_ddr_backup_mode(void)
{
#if RCAR_SYSTEM_SUSPEND
	static uint32_t reason = RCAR_COLD_BOOT;
	static uint32_t once;

	if (once != 0U) {
		return reason;
	}

	once = 1;
	if ((mmio_read_32(GPIO_INDT) & GPIO_BKUP_TRG_SHIFT) == 0U) {
		return reason;
	}

	reason = RCAR_WARM_BOOT;
	return reason;
#else /* RCAR_SYSTEM_SUSPEND */
	return RCAR_COLD_BOOT;
#endif /* RCAR_SYSTEM_SUSPEND */
}

int bl2_plat_handle_pre_image_load(unsigned int image_id)
{
	u_register_t *boot_kind = (void *)BOOT_KIND_BASE;
	bl_mem_params_node_t *bl_mem_params;

	if (image_id != BL31_IMAGE_ID) {
		return 0;
	}

	bl_mem_params = get_bl_mem_params_node(image_id);

	if (is_ddr_backup_mode() != RCAR_COLD_BOOT) {
		*boot_kind  = RCAR_WARM_BOOT;
		flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind));

		console_flush();
		bl2_plat_flush_bl31_params();

		/* will not return */
		bl2_enter_bl31(&bl_mem_params->ep_info);
	}

	*boot_kind  = RCAR_COLD_BOOT;
	flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind));

	return 0;
}

static uint64_t rzg_get_dest_addr_from_cert(uint32_t certid, uintptr_t *dest)
{
	uint32_t cert, len;
	int err;

	err = rcar_get_certificate(certid, &cert);
	if (err != 0) {
		ERROR("%s : cert file load error", __func__);
		return 1U;
	}

	rcar_read_certificate((uint64_t)cert, &len, dest);

	return 0U;
}

int bl2_plat_handle_post_image_load(unsigned int image_id)
{
	static bl2_to_bl31_params_mem_t *params;
	bl_mem_params_node_t *bl_mem_params;
	uintptr_t dest;
	uint64_t ret;

	if (params == NULL) {
		params = (bl2_to_bl31_params_mem_t *)PARAMS_BASE;
		memset((void *)PARAMS_BASE, 0, sizeof(*params));
	}

	bl_mem_params = get_bl_mem_params_node(image_id);

	switch (image_id) {
	case BL31_IMAGE_ID:
		ret = rzg_get_dest_addr_from_cert(SOC_FW_CONTENT_CERT_ID,
						  &dest);
		if (ret == 0U) {
			bl_mem_params->image_info.image_base = dest;
		}
		break;
	case BL32_IMAGE_ID:
		ret = rzg_get_dest_addr_from_cert(TRUSTED_OS_FW_CONTENT_CERT_ID,
						  &dest);
		if (ret == 0U) {
			bl_mem_params->image_info.image_base = dest;
		}

		memcpy(&params->bl32_ep_info, &bl_mem_params->ep_info,
		       sizeof(entry_point_info_t));
		break;
	case BL33_IMAGE_ID:
		memcpy(&params->bl33_ep_info, &bl_mem_params->ep_info,
		       sizeof(entry_point_info_t));
		break;
	default:
		break;
	}

	return 0;
}

struct meminfo *bl2_plat_sec_mem_layout(void)
{
	return &bl2_tzram_layout;
}

static void bl2_populate_compatible_string(void *dt)
{
	uint32_t board_type;
	uint32_t board_rev;
	uint32_t reg;
	int ret;

	fdt_setprop_u32(dt, 0, "#address-cells", 2);
	fdt_setprop_u32(dt, 0, "#size-cells", 2);

	/* Populate compatible string */
	rzg_get_board_type(&board_type, &board_rev);
	switch (board_type) {
	case BOARD_HIHOPE_RZ_G2M:
		ret = fdt_setprop_string(dt, 0, "compatible",
					 "hoperun,hihope-rzg2m");
		break;
	default:
		NOTICE("BL2: Cannot set compatible string, board unsupported\n");
		panic();
		break;
	}

	if (ret < 0) {
		NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret);
		panic();
	}

	reg = mmio_read_32(RCAR_PRR);
	switch (reg & PRR_PRODUCT_MASK) {
	case PRR_PRODUCT_M3:
		ret = fdt_appendprop_string(dt, 0, "compatible",
					    "renesas,r8a774a1");
		break;
	default:
		NOTICE("BL2: Cannot set compatible string, SoC unsupported\n");
		panic();
		break;
	}

	if (ret < 0) {
		NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret);
		panic();
	}
}

456
static int bl2_add_memory_node(uint64_t start, uint64_t size)
457
458
459
{
	char nodename[32] = { 0 };
	uint64_t fdtsize;
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
	int ret, node;

	fdtsize = cpu_to_fdt64(size);

	snprintf(nodename, sizeof(nodename), "memory@");
	unsigned_num_print(start, 16, nodename + strlen(nodename));
	node = ret = fdt_add_subnode(fdt, 0, nodename);
	if (ret < 0) {
		return ret;
	}

	ret = fdt_setprop_string(fdt, node, "device_type", "memory");
	if (ret < 0) {
		return ret;
	}

	ret = fdt_setprop_u64(fdt, node, "reg", start);
	if (ret < 0) {
		return ret;
	}

	return fdt_appendprop(fdt, node, "reg", &fdtsize, sizeof(fdtsize));
}

static void bl2_advertise_dram_entries(uint64_t dram_config[8])
{
	uint64_t start, size;
	int ret, chan;
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

	for (chan = 0; chan < MAX_DRAM_CHANNELS; chan++) {
		start = dram_config[2 * chan];
		size = dram_config[2 * chan + 1];
		if (size == 0U) {
			continue;
		}

		NOTICE("BL2: CH%d: %llx - %llx, %lld %siB\n",
		       chan, start, start + size - 1U,
		       (size >> 30) ? : size >> 20,
		       (size >> 30) ? "G" : "M");
	}

	/*
	 * We add the DT nodes in reverse order here. The fdt_add_subnode()
	 * adds the DT node before the first existing DT node, so we have
	 * to add them in reverse order to get nodes sorted by address in
	 * the resulting DT.
	 */
	for (chan = MAX_DRAM_CHANNELS - 1; chan >= 0; chan--) {
		start = dram_config[2 * chan];
		size = dram_config[2 * chan + 1];
		if (size == 0U) {
			continue;
		}

		/*
		 * Channel 0 is mapped in 32bit space and the first
		 * 128 MiB are reserved
		 */
		if (chan == 0) {
520
521
522
523
524
525
526
527
528
529
530
531
			/*
			 * Maximum DDR size in Channel 0 for 32 bit space is 2GB, Add DT node
			 * for remaining region in 64 bit address space
			 */
			if (size > MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE) {
				start = dram_config[chan] + MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE;
				size -= MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE;
				ret = bl2_add_memory_node(start, size);
				if (ret < 0) {
					goto err;
				}
			}
532
533
534
535
			start = 0x48000000U;
			size -= 0x8000000U;
		}

536
		ret = bl2_add_memory_node(start, size);
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
		if (ret < 0) {
			goto err;
		}
	}

	return;
err:
	NOTICE("BL2: Cannot add memory node to FDT (ret=%i)\n", ret);
	panic();
}

static void bl2_advertise_dram_size(uint32_t product)
{
	uint64_t dram_config[8] = {
		[0] = 0x400000000ULL,
		[2] = 0x500000000ULL,
		[4] = 0x600000000ULL,
		[6] = 0x700000000ULL,
	};

	switch (product) {
	case PRR_PRODUCT_M3:
		/* 4GB(2GBx2 2ch split) */
		dram_config[1] = 0x80000000ULL;
		dram_config[5] = 0x80000000ULL;
		break;
	default:
		NOTICE("BL2: Detected invalid DRAM entries\n");
		break;
	}

	bl2_advertise_dram_entries(dram_config);
}

void bl2_el3_early_platform_setup(u_register_t arg1, u_register_t arg2,
				  u_register_t arg3, u_register_t arg4)
{
	uint32_t reg, midr, boot_dev, boot_cpu, type, rev;
	uint32_t product, product_cut, major, minor;
	int32_t ret;
	const char *str;
	const char *unknown = "unknown";
	const char *cpu_ca57 = "CA57";
	const char *cpu_ca53 = "CA53";
	const char *product_g2m = "G2M";
	const char *boot_hyper80 = "HyperFlash(80MHz)";
	const char *boot_qspi40 = "QSPI Flash(40MHz)";
	const char *boot_qspi80 = "QSPI Flash(80MHz)";
	const char *boot_emmc25x1 = "eMMC(25MHz x1)";
	const char *boot_emmc50x8 = "eMMC(50MHz x8)";
	const char *boot_hyper160 = "HyperFlash(160MHz)";
#if RZG_LCS_STATE_DETECTION_ENABLE
	uint32_t lcs;
	const char *lcs_secure = "SE";
	const char *lcs_cm = "CM";
	const char *lcs_dm = "DM";
	const char *lcs_sd = "SD";
	const char *lcs_fa = "FA";
#endif /* RZG_LCS_STATE_DETECTION_ENABLE */

#if (RCAR_LOSSY_ENABLE == 1)
	int fcnlnode;
#endif /* (RCAR_LOSSY_ENABLE == 1) */

	bl2_init_generic_timer();

	reg = mmio_read_32(RCAR_MODEMR);
	boot_dev = reg & MODEMR_BOOT_DEV_MASK;
	boot_cpu = reg & MODEMR_BOOT_CPU_MASK;

	bl2_cpg_init();

	if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
	    boot_cpu == MODEMR_BOOT_CPU_CA53) {
		rzg_pfc_init();
		rcar_console_boot_init();
	}

	plat_rcar_gic_driver_init();
	plat_rcar_gic_init();
	rcar_swdt_init();

	/* FIQ interrupts are taken to EL3 */
	write_scr_el3(read_scr_el3() | SCR_FIQ_BIT);

	write_daifclr(DAIF_FIQ_BIT);

	reg = read_midr();
	midr = reg & (MIDR_PN_MASK << MIDR_PN_SHIFT);
	switch (midr) {
	case MIDR_CA57:
		str = cpu_ca57;
		break;
	case MIDR_CA53:
		str = cpu_ca53;
		break;
	default:
		str = unknown;
		break;
	}

	NOTICE("BL2: RZ/G2 Initial Program Loader(%s) Rev.%s\n", str,
	       version_of_renesas);

	reg = mmio_read_32(RCAR_PRR);
	product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK);
	product = reg & PRR_PRODUCT_MASK;

	switch (product) {
	case PRR_PRODUCT_M3:
		str = product_g2m;
		break;
	default:
		str = unknown;
		break;
	}

	if ((product == PRR_PRODUCT_M3) &&
	    ((reg & RCAR_MAJOR_MASK) == PRR_PRODUCT_20)) {
		if ((reg & PRR_CUT_MASK) == RCAR_M3_CUT_VER11) {
			/* M3 Ver.1.1 or Ver.1.2 */
			NOTICE("BL2: PRR is RZ/%s Ver.1.1 / Ver.1.2\n", str);
		} else {
			NOTICE("BL2: PRR is RZ/%s Ver.1.%d\n", str,
				(reg & RCAR_MINOR_MASK) + RCAR_M3_MINOR_OFFSET);
		}
	} else {
		major = (reg & RCAR_MAJOR_MASK) >> RCAR_MAJOR_SHIFT;
		major = major + RCAR_MAJOR_OFFSET;
		minor = reg & RCAR_MINOR_MASK;
		NOTICE("BL2: PRR is RZ/%s Ver.%d.%d\n", str, major, minor);
	}

	rzg_get_board_type(&type, &rev);

	switch (type) {
	case BOARD_HIHOPE_RZ_G2M:
		break;
	default:
		type = BOARD_UNKNOWN;
		break;
	}

	if (type == BOARD_UNKNOWN || rev == BOARD_REV_UNKNOWN) {
		NOTICE("BL2: Board is %s Rev.---\n", GET_BOARD_NAME(type));
	} else {
		NOTICE("BL2: Board is %s Rev.%d.%d\n",
		       GET_BOARD_NAME(type),
		       GET_BOARD_MAJOR(rev), GET_BOARD_MINOR(rev));
	}

#if RCAR_LSI != RCAR_AUTO
	if (product != TARGET_PRODUCT) {
		ERROR("BL2: IPL was been built for the %s.\n", TARGET_NAME);
		ERROR("BL2: Please write the correct IPL to flash memory.\n");
		panic();
	}
#endif /* RCAR_LSI != RCAR_AUTO */
	rcar_avs_init();
	rcar_avs_setting();

	switch (boot_dev) {
	case MODEMR_BOOT_DEV_HYPERFLASH160:
		str = boot_hyper160;
		break;
	case MODEMR_BOOT_DEV_HYPERFLASH80:
		str = boot_hyper80;
		break;
	case MODEMR_BOOT_DEV_QSPI_FLASH40:
		str = boot_qspi40;
		break;
	case MODEMR_BOOT_DEV_QSPI_FLASH80:
		str = boot_qspi80;
		break;
	case MODEMR_BOOT_DEV_EMMC_25X1:
		str = boot_emmc25x1;
		break;
	case MODEMR_BOOT_DEV_EMMC_50X8:
		str = boot_emmc50x8;
		break;
	default:
		str = unknown;
		break;
	}
	NOTICE("BL2: Boot device is %s\n", str);

	rcar_avs_setting();

#if RZG_LCS_STATE_DETECTION_ENABLE
	reg = rcar_rom_get_lcs(&lcs);
	if (reg != 0U) {
		str = unknown;
		goto lcm_state;
	}

	switch (lcs) {
	case LCS_CM:
		str = lcs_cm;
		break;
	case LCS_DM:
		str = lcs_dm;
		break;
	case LCS_SD:
		str = lcs_sd;
		break;
	case LCS_SE:
		str = lcs_secure;
		break;
	case LCS_FA:
		str = lcs_fa;
		break;
	default:
		str = unknown;
		break;
	}

lcm_state:
	NOTICE("BL2: LCM state is %s\n", str);
#endif /* RZG_LCS_STATE_DETECTION_ENABLE */

	rcar_avs_end();
	is_ddr_backup_mode();

	bl2_tzram_layout.total_base = BL31_BASE;
	bl2_tzram_layout.total_size = BL31_LIMIT - BL31_BASE;

	if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
	    boot_cpu == MODEMR_BOOT_CPU_CA53) {
765
		ret = rcar_dram_init();
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
		if (ret != 0) {
			NOTICE("BL2: Failed to DRAM initialize (%d).\n", ret);
			panic();
		}
		rzg_qos_init();
	}

	/* Set up FDT */
	ret = fdt_create_empty_tree(fdt, sizeof(fdt_blob));
	if (ret != 0) {
		NOTICE("BL2: Cannot allocate FDT for U-Boot (ret=%i)\n", ret);
		panic();
	}

	/* Add platform compatible string */
	bl2_populate_compatible_string(fdt);

	/* Print DRAM layout */
	bl2_advertise_dram_size(product);

	if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
	    boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) {
		if (rcar_emmc_init() != EMMC_SUCCESS) {
			NOTICE("BL2: Failed to eMMC driver initialize.\n");
			panic();
		}
		rcar_emmc_memcard_power(EMMC_POWER_ON);
		if (rcar_emmc_mount() != EMMC_SUCCESS) {
			NOTICE("BL2: Failed to eMMC mount operation.\n");
			panic();
		}
	} else {
		rcar_rpc_init();
		rcar_dma_init();
	}

	reg = mmio_read_32(RST_WDTRSTCR);
	reg &= ~WDTRSTCR_RWDT_RSTMSK;
	reg |= WDTRSTCR_PASSWORD;
	mmio_write_32(RST_WDTRSTCR, reg);

	mmio_write_32(CPG_CPGWPR, CPGWPR_PASSWORD);
	mmio_write_32(CPG_CPGWPCR, CPGWPCR_PASSWORD);

	reg = mmio_read_32(RCAR_PRR);
	if ((reg & RCAR_CPU_MASK_CA57) == RCAR_CPU_HAVE_CA57) {
		mmio_write_32(CPG_CA57DBGRCR,
			      DBGCPUPREN | mmio_read_32(CPG_CA57DBGRCR));
	}

	if ((reg & RCAR_CPU_MASK_CA53) == RCAR_CPU_HAVE_CA53) {
		mmio_write_32(CPG_CA53DBGRCR,
			      DBGCPUPREN | mmio_read_32(CPG_CA53DBGRCR));
	}

	if (product_cut == PRR_PRODUCT_H3_CUT10) {
		reg = mmio_read_32(CPG_PLL2CR);
		reg &= ~((uint32_t)1 << 5);
		mmio_write_32(CPG_PLL2CR, reg);

		reg = mmio_read_32(CPG_PLL4CR);
		reg &= ~((uint32_t)1 << 5);
		mmio_write_32(CPG_PLL4CR, reg);

		reg = mmio_read_32(CPG_PLL0CR);
		reg &= ~((uint32_t)1 << 12);
		mmio_write_32(CPG_PLL0CR, reg);
	}
#if (RCAR_LOSSY_ENABLE == 1)
	NOTICE("BL2: Lossy Decomp areas\n");

	fcnlnode = fdt_add_subnode(fdt, 0, "reserved-memory");
	if (fcnlnode < 0) {
		NOTICE("BL2: Cannot create reserved mem node (ret=%i)\n",
		       fcnlnode);
		panic();
	}

	bl2_lossy_setting(0, LOSSY_ST_ADDR0, LOSSY_END_ADDR0,
			  LOSSY_FMT0, LOSSY_ENA_DIS0, fcnlnode);
	bl2_lossy_setting(1, LOSSY_ST_ADDR1, LOSSY_END_ADDR1,
			  LOSSY_FMT1, LOSSY_ENA_DIS1, fcnlnode);
	bl2_lossy_setting(2, LOSSY_ST_ADDR2, LOSSY_END_ADDR2,
			  LOSSY_FMT2, LOSSY_ENA_DIS2, fcnlnode);
#endif /* RCAR_LOSSY_ENABLE */

	fdt_pack(fdt);
	NOTICE("BL2: FDT at %p\n", fdt);

	if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
	    boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) {
		rcar_io_emmc_setup();
	} else {
		rcar_io_setup();
	}
}

void bl2_el3_plat_arch_setup(void)
{
#if RCAR_BL2_DCACHE == 1
	NOTICE("BL2: D-Cache enable\n");
	rcar_configure_mmu_el3(BL2_BASE,
			       BL2_END - BL2_BASE,
			       BL2_RO_BASE, BL2_RO_LIMIT
#if USE_COHERENT_MEM
			       , BL2_COHERENT_RAM_BASE, BL2_COHERENT_RAM_LIMIT
#endif /* USE_COHERENT_MEM */
	    );
#endif /* RCAR_BL2_DCACHE == 1 */
}

void bl2_platform_setup(void)
{
	/*
	 * Place holder for performing any platform initialization specific
	 * to BL2.
	 */
}

static void bl2_init_generic_timer(void)
{
	uint32_t reg_cntfid;
	uint32_t modemr;
	uint32_t modemr_pll;
	uint32_t pll_table[] = {
		EXTAL_MD14_MD13_TYPE_0,	/* MD14/MD13 : 0b00 */
		EXTAL_MD14_MD13_TYPE_1,	/* MD14/MD13 : 0b01 */
		EXTAL_MD14_MD13_TYPE_2,	/* MD14/MD13 : 0b10 */
		EXTAL_MD14_MD13_TYPE_3	/* MD14/MD13 : 0b11 */
	};

	modemr = mmio_read_32(RCAR_MODEMR);
	modemr_pll = (modemr & MODEMR_BOOT_PLL_MASK);

	/* Set frequency data in CNTFID0 */
	reg_cntfid = pll_table[modemr_pll >> MODEMR_BOOT_PLL_SHIFT];

	/* Update memory mapped and register based frequency */
	write_cntfrq_el0((u_register_t)reg_cntfid);
	mmio_write_32(ARM_SYS_CNTCTL_BASE + (uintptr_t)CNTFID_OFF, reg_cntfid);
	/* Enable counter */
	mmio_setbits_32(RCAR_CNTC_BASE + (uintptr_t)CNTCR_OFF,
			(uint32_t)CNTCR_EN);
}