psci_afflvl_suspend.c 17.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
34
#include <debug.h>
35
36
37
38
39
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>
40
#include <context_mgmt.h>
41
42
43
44
45
46
47

typedef int (*afflvl_suspend_handler)(unsigned long,
				      aff_map_node *,
				      unsigned long,
				      unsigned long,
				      unsigned int);

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*******************************************************************************
 * This function sets the affinity level till which the current cpu is being
 * powered down to during a cpu_suspend call
 ******************************************************************************/
void psci_set_suspend_afflvl(aff_map_node *node, int afflvl)
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

	/*
	 * Store the affinity level we are powering down to in our context.
	 * The cache flush in the suspend code will ensure that this info
	 * is available immediately upon resuming.
	 */
	psci_suspend_context[node->data].suspend_level = afflvl;
}

/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
 * down during a cpu_suspend call.
 ******************************************************************************/
int psci_get_suspend_afflvl(aff_map_node *node)
{
	/* Return the target affinity level */
	return psci_suspend_context[node->data].suspend_level;
}

79
80
81
82
83
84
85
86
87
88
89
90
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
static int psci_afflvl0_suspend(unsigned long mpidr,
				aff_map_node *cpu_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	unsigned int index, plat_state;
	unsigned long psci_entrypoint, sctlr = read_sctlr();
91
	el3_state *saved_el3_state;
92
93
94
95
96
	int rc = PSCI_E_SUCCESS;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

97
98
99
100
101
102
103
104
105
106
	/*
	 * Generic management: Store the re-entry information for the non-secure
	 * world and allow the secure world to suspend itself
	 */

	/*
	 * Call the cpu suspend handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
107
108
	if (psci_spd_pm && psci_spd_pm->svc_suspend)
		psci_spd_pm->svc_suspend(power_state);
109

110
111
112
	/* State management: mark this cpu as suspended */
	psci_set_state(cpu_node, PSCI_STATE_SUSPEND);

113
114
115
116
117
118
119
120
121
122
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
123
124
	 * Arch. management: Save the EL3 state in the 'cpu_context'
	 * structure that has been allocated for this cpu, flush the
125
126
	 * L1 caches and exit intra-cluster coherency et al
	 */
127
128
	cm_el3_sysregs_context_save(NON_SECURE);
	rc = PSCI_E_SUCCESS;
129

130
131
132
133
134
135
136
	/*
	 * The EL3 state to PoC since it will be accessed after a
	 * reset with the caches turned off
	 */
	saved_el3_state = get_el3state_ctx(cm_get_context(mpidr, NON_SECURE));
	flush_dcache_range((uint64_t) saved_el3_state, sizeof(*saved_el3_state));

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
	sctlr &= ~SCTLR_C_BIT;
	write_sctlr(sctlr);

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {
167
		plat_state = psci_get_phys_state(cpu_node);
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

static int psci_afflvl1_suspend(unsigned long mpidr,
				aff_map_node *cluster_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

191
192
193
	/* State management: Decrement the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_SUSPEND);

194
195
196
197
	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
198
	plat_state = psci_get_phys_state(cluster_node);
199
200
201
202
203
204
205
206
207

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
208
	 * Plat. Management. Allow the platform to do its cluster
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


static int psci_afflvl2_suspend(unsigned long mpidr,
				aff_map_node *system_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

245
246
247
	/* State management: Decrement the system reference count */
	psci_set_state(system_node, PSCI_STATE_SUSPEND);

248
249
250
251
	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
252
	plat_state = psci_get_phys_state(system_node);
253
254

	/*
255
	 * Plat. Management : Allow the platform to do its bookeeping
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

static const afflvl_suspend_handler psci_afflvl_suspend_handlers[] = {
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
static int psci_call_suspend_handlers(mpidr_aff_map_nodes mpidr_nodes,
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long mpidr,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
	aff_map_node *node;

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
		rc = psci_afflvl_suspend_handlers[level](mpidr,
							 node,
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency can
 * be turned off and caches can be flushed safely.
342
343
344
345
346
 ******************************************************************************/
int psci_afflvl_suspend(unsigned long mpidr,
			unsigned long entrypoint,
			unsigned long context_id,
			unsigned int power_state,
347
348
			int start_afflvl,
			int end_afflvl)
349
{
350
351
	int rc = PSCI_E_SUCCESS;
	mpidr_aff_map_nodes mpidr_nodes;
352
353
354
355

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
356
357
358
359
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
360
	 */
361
362
363
364
365
366
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
367
368

	/*
369
370
371
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
372
	 */
373
374
375
376
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
377

378

379
380
381
	/* Save the affinity level till which this cpu can be powered down */
	psci_set_suspend_afflvl(mpidr_nodes[MPIDR_AFFLVL0], end_afflvl);

382
383
384
385
386
387
388
389
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					mpidr,
					entrypoint,
					context_id,
					power_state);
390
391

	/*
392
393
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
394
	 */
395
396
397
398
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
399
400
401
402
403
404
405
406
407

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
408
						aff_map_node *cpu_node)
409
{
410
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
411
	int32_t suspend_level;
412
413
414

	assert(cpu_node->level == MPIDR_AFFLVL0);

415
	/* Ensure we have been woken up from a suspended state */
416
	state = psci_get_state(cpu_node);
417
418
	assert(state == PSCI_STATE_SUSPEND);

419
420
421
422
423
424
425
426
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
427
428

		/* Get the physical state of this cpu */
429
		plat_state = get_phys_state(state);
430
431
432
433
434
435
436
437
438
439
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	index = cpu_node->data;

	/*
440
441
	 * Arch. management: Restore the stashed EL3 architectural
	 * context from the 'cpu_context' structure for this cpu.
442
	 */
443
444
	cm_el3_sysregs_context_restore(NON_SECURE);
	rc = PSCI_E_SUCCESS;
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
	/*
	 * Use the more complex exception vectors to enable SPD
	 * initialisation. SP_EL3 should point to a 'cpu_context'
	 * structure which has an exception stack allocated. The
	 * non-secure context should have been set on this cpu
	 * prior to suspension.
	 */
	assert(cm_get_context(mpidr, NON_SECURE));
	cm_set_next_eret_context(NON_SECURE);
	write_vbar_el3((uint64_t) runtime_exceptions);

	/*
	 * Call the cpu suspend finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
462
	if (psci_spd_pm && psci_spd_pm->svc_suspend) {
463
		suspend_level = psci_get_suspend_afflvl(cpu_node);
464
		psci_spd_pm->svc_suspend_finish(suspend_level);
465
466
	}

467
468
469
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
470
	 * call to set this cpu on its way.
471
	 */
472
	psci_get_ns_entry_info(index);
473

474
475
476
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

477
478
479
480
481
482
483
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_suspend_finish(unsigned long mpidr,
484
						aff_map_node *cluster_node)
485
{
486
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
487
488
489
490
491
492
493
494
495
496
497
498

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
499
500

		/* Get the physical state of this cpu */
501
		plat_state = psci_get_phys_state(cluster_node);
502
503
504
505
506
507
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

508
509
510
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

511
512
513
514
515
	return rc;
}


static unsigned int psci_afflvl2_suspend_finish(unsigned long mpidr,
516
						aff_map_node *system_node)
517
{
518
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
537
538

		/* Get the physical state of the system */
539
		plat_state = psci_get_phys_state(system_node);
540
541
542
543
544
545
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

546
547
548
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

549
550
551
552
553
554
555
556
557
	return rc;
}

const afflvl_power_on_finisher psci_afflvl_suspend_finishers[] = {
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};