runtime_exceptions.S 11.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
8
#include <platform_def.h>

9
#include <arch.h>
10
#include <asm_macros.S>
11
12
13
#include <bl31/ea_handle.h>
#include <bl31/interrupt_mgmt.h>
#include <common/runtime_svc.h>
14
#include <context.h>
15
16
#include <lib/el3_runtime/cpu_data.h>
#include <lib/smccc.h>
17
18
19

	.globl	runtime_exceptions

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
	.globl	sync_exception_sp_el0
	.globl	irq_sp_el0
	.globl	fiq_sp_el0
	.globl	serror_sp_el0

	.globl	sync_exception_sp_elx
	.globl	irq_sp_elx
	.globl	fiq_sp_elx
	.globl	serror_sp_elx

	.globl	sync_exception_aarch64
	.globl	irq_aarch64
	.globl	fiq_aarch64
	.globl	serror_aarch64

	.globl	sync_exception_aarch32
	.globl	irq_aarch32
	.globl	fiq_aarch32
	.globl	serror_aarch32

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
	/*
	 * Macro that prepares entry to EL3 upon taking an exception.
	 *
	 * With RAS_EXTENSION, this macro synchronizes pending errors with an ESB
	 * instruction. When an error is thus synchronized, the handling is
	 * delegated to platform EA handler.
	 *
	 * Without RAS_EXTENSION, this macro just saves x30, and unmasks
	 * Asynchronous External Aborts.
	 */
	.macro check_and_unmask_ea
#if RAS_EXTENSION
	/* Synchronize pending External Aborts */
	esb

	/* Unmask the SError interrupt */
	msr	daifclr, #DAIF_ABT_BIT

	/*
	 * Explicitly save x30 so as to free up a register and to enable
	 * branching
	 */
	str	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]

	/* Check for SErrors synchronized by the ESB instruction */
	mrs	x30, DISR_EL1
	tbz	x30, #DISR_A_BIT, 1f

	/* Save GP registers and restore them afterwards */
	bl	save_gp_registers
70
	bl	handle_lower_el_ea_esb
71
72
73
74
75
76
77
78
79
80
81
	bl	restore_gp_registers

1:
#else
	/* Unmask the SError interrupt */
	msr	daifclr, #DAIF_ABT_BIT

	str	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
#endif
	.endm

82
83
84
85
	/* ---------------------------------------------------------------------
	 * This macro handles Synchronous exceptions.
	 * Only SMC exceptions are supported.
	 * ---------------------------------------------------------------------
86
87
	 */
	.macro	handle_sync_exception
dp-arm's avatar
dp-arm committed
88
89
#if ENABLE_RUNTIME_INSTRUMENTATION
	/*
90
91
92
	 * Read the timestamp value and store it in per-cpu data. The value
	 * will be extracted from per-cpu data by the C level SMC handler and
	 * saved to the PMF timestamp region.
dp-arm's avatar
dp-arm committed
93
94
95
96
97
98
99
100
	 */
	mrs	x30, cntpct_el0
	str	x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
	mrs	x29, tpidr_el3
	str	x30, [x29, #CPU_DATA_PMF_TS0_OFFSET]
	ldr	x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
#endif

101
102
103
	mrs	x30, esr_el3
	ubfx	x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH

104
	/* Handle SMC exceptions separately from other synchronous exceptions */
105
106
107
108
109
110
	cmp	x30, #EC_AARCH32_SMC
	b.eq	smc_handler32

	cmp	x30, #EC_AARCH64_SMC
	b.eq	smc_handler64

111
	/* Synchronous exceptions other than the above are assumed to be EA */
112
	ldr	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
113
	b	enter_lower_el_sync_ea
114
115
116
	.endm


117
118
119
120
	/* ---------------------------------------------------------------------
	 * This macro handles FIQ or IRQ interrupts i.e. EL3, S-EL1 and NS
	 * interrupts.
	 * ---------------------------------------------------------------------
121
122
	 */
	.macro	handle_interrupt_exception label
123

124
	bl	save_gp_registers
125
126
127
128
129

#if CTX_INCLUDE_PAUTH_REGS
	bl	pauth_context_save
#endif

130
	/* Save the EL3 system registers needed to return from this exception */
131
132
133
134
	mrs	x0, spsr_el3
	mrs	x1, elr_el3
	stp	x0, x1, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]

135
136
137
138
139
140
141
	/* Switch to the runtime stack i.e. SP_EL0 */
	ldr	x2, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]
	mov	x20, sp
	msr	spsel, #0
	mov	sp, x2

	/*
142
143
144
	 * Find out whether this is a valid interrupt type.
	 * If the interrupt controller reports a spurious interrupt then return
	 * to where we came from.
145
	 */
146
	bl	plat_ic_get_pending_interrupt_type
147
148
149
150
	cmp	x0, #INTR_TYPE_INVAL
	b.eq	interrupt_exit_\label

	/*
151
152
	 * Get the registered handler for this interrupt type.
	 * A NULL return value could be 'cause of the following conditions:
153
	 *
154
155
	 * a. An interrupt of a type was routed correctly but a handler for its
	 *    type was not registered.
156
	 *
157
158
	 * b. An interrupt of a type was not routed correctly so a handler for
	 *    its type was not registered.
159
	 *
160
161
162
163
164
	 * c. An interrupt of a type was routed correctly to EL3, but was
	 *    deasserted before its pending state could be read. Another
	 *    interrupt of a different type pended at the same time and its
	 *    type was reported as pending instead. However, a handler for this
	 *    type was not registered.
165
	 *
166
167
168
169
	 * a. and b. can only happen due to a programming error. The
	 * occurrence of c. could be beyond the control of Trusted Firmware.
	 * It makes sense to return from this exception instead of reporting an
	 * error.
170
171
	 */
	bl	get_interrupt_type_handler
172
	cbz	x0, interrupt_exit_\label
173
174
175
176
177
178
179
180
181
182
183
	mov	x21, x0

	mov	x0, #INTR_ID_UNAVAILABLE

	/* Set the current security state in the 'flags' parameter */
	mrs	x2, scr_el3
	ubfx	x1, x2, #0, #1

	/* Restore the reference to the 'handle' i.e. SP_EL3 */
	mov	x2, x20

184
	/* x3 will point to a cookie (not used now) */
185
186
	mov	x3, xzr

187
188
189
190
191
192
193
194
195
196
	/* Call the interrupt type handler */
	blr	x21

interrupt_exit_\label:
	/* Return from exception, possibly in a different security state */
	b	el3_exit

	.endm


197
198
vector_base runtime_exceptions

199
200
201
	/* ---------------------------------------------------------------------
	 * Current EL with SP_EL0 : 0x0 - 0x200
	 * ---------------------------------------------------------------------
202
	 */
203
vector_entry sync_exception_sp_el0
204
	/* We don't expect any synchronous exceptions from EL3 */
205
	b	report_unhandled_exception
206
end_vector_entry sync_exception_sp_el0
207

208
vector_entry irq_sp_el0
209
210
211
212
	/*
	 * EL3 code is non-reentrant. Any asynchronous exception is a serious
	 * error. Loop infinitely.
	 */
213
	b	report_unhandled_interrupt
214
end_vector_entry irq_sp_el0
215

216
217

vector_entry fiq_sp_el0
218
	b	report_unhandled_interrupt
219
end_vector_entry fiq_sp_el0
220

221
222

vector_entry serror_sp_el0
223
	no_ret	plat_handle_el3_ea
224
end_vector_entry serror_sp_el0
225

226
227
228
	/* ---------------------------------------------------------------------
	 * Current EL with SP_ELx: 0x200 - 0x400
	 * ---------------------------------------------------------------------
229
	 */
230
vector_entry sync_exception_sp_elx
231
232
233
234
235
	/*
	 * This exception will trigger if anything went wrong during a previous
	 * exception entry or exit or while handling an earlier unexpected
	 * synchronous exception. There is a high probability that SP_EL3 is
	 * corrupted.
236
	 */
237
	b	report_unhandled_exception
238
end_vector_entry sync_exception_sp_elx
239

240
vector_entry irq_sp_elx
241
	b	report_unhandled_interrupt
242
end_vector_entry irq_sp_elx
243

244
vector_entry fiq_sp_elx
245
	b	report_unhandled_interrupt
246
end_vector_entry fiq_sp_elx
247

248
vector_entry serror_sp_elx
249
	no_ret	plat_handle_el3_ea
250
end_vector_entry serror_sp_elx
251

252
	/* ---------------------------------------------------------------------
253
	 * Lower EL using AArch64 : 0x400 - 0x600
254
	 * ---------------------------------------------------------------------
255
	 */
256
vector_entry sync_exception_aarch64
257
258
259
260
261
	/*
	 * This exception vector will be the entry point for SMCs and traps
	 * that are unhandled at lower ELs most commonly. SP_EL3 should point
	 * to a valid cpu context where the general purpose and system register
	 * state can be saved.
262
	 */
263
	check_and_unmask_ea
264
	handle_sync_exception
265
end_vector_entry sync_exception_aarch64
266

267
vector_entry irq_aarch64
268
	check_and_unmask_ea
269
	handle_interrupt_exception irq_aarch64
270
end_vector_entry irq_aarch64
271

272
vector_entry fiq_aarch64
273
	check_and_unmask_ea
274
	handle_interrupt_exception fiq_aarch64
275
end_vector_entry fiq_aarch64
276

277
vector_entry serror_aarch64
278
	msr	daifclr, #DAIF_ABT_BIT
279
	b	enter_lower_el_async_ea
280
end_vector_entry serror_aarch64
281

282
	/* ---------------------------------------------------------------------
283
	 * Lower EL using AArch32 : 0x600 - 0x800
284
	 * ---------------------------------------------------------------------
285
	 */
286
vector_entry sync_exception_aarch32
287
288
289
290
291
	/*
	 * This exception vector will be the entry point for SMCs and traps
	 * that are unhandled at lower ELs most commonly. SP_EL3 should point
	 * to a valid cpu context where the general purpose and system register
	 * state can be saved.
292
	 */
293
	check_and_unmask_ea
294
	handle_sync_exception
295
end_vector_entry sync_exception_aarch32
296

297
vector_entry irq_aarch32
298
	check_and_unmask_ea
299
	handle_interrupt_exception irq_aarch32
300
end_vector_entry irq_aarch32
301

302
vector_entry fiq_aarch32
303
	check_and_unmask_ea
304
	handle_interrupt_exception fiq_aarch32
305
end_vector_entry fiq_aarch32
306

307
vector_entry serror_aarch32
308
	msr	daifclr, #DAIF_ABT_BIT
309
	b	enter_lower_el_async_ea
310
end_vector_entry serror_aarch32
311

312
	/* ---------------------------------------------------------------------
313
	 * The following code handles secure monitor calls.
314
315
316
317
318
	 * Depending upon the execution state from where the SMC has been
	 * invoked, it frees some general purpose registers to perform the
	 * remaining tasks. They involve finding the runtime service handler
	 * that is the target of the SMC & switching to runtime stacks (SP_EL0)
	 * before calling the handler.
319
	 *
320
321
	 * Note that x30 has been explicitly saved and can be used here
	 * ---------------------------------------------------------------------
322
	 */
323
func smc_handler
324
325
326
327
328
smc_handler32:
	/* Check whether aarch32 issued an SMC64 */
	tbnz	x0, #FUNCID_CC_SHIFT, smc_prohibited

smc_handler64:
329
330
331
332
333
334
335
336
337
	/* NOTE: The code below must preserve x0-x4 */

	/* Save general purpose registers */
	bl	save_gp_registers

#if CTX_INCLUDE_PAUTH_REGS
	bl	pauth_context_save
#endif

338
339
340
341
	/*
	 * Populate the parameters for the SMC handler.
	 * We already have x0-x4 in place. x5 will point to a cookie (not used
	 * now). x6 will point to the context structure (SP_EL3) and x7 will
342
	 * contain flags we need to pass to the handler.
343
344
345
346
347
348
349
350
351
	 */
	mov	x5, xzr
	mov	x6, sp

	/* Get the unique owning entity number */
	ubfx	x16, x0, #FUNCID_OEN_SHIFT, #FUNCID_OEN_WIDTH
	ubfx	x15, x0, #FUNCID_TYPE_SHIFT, #FUNCID_TYPE_WIDTH
	orr	x16, x16, x15, lsl #FUNCID_OEN_WIDTH

352
353
354
	/* Load descriptor index from array of indices */
	adr	x14, rt_svc_descs_indices
	ldrb	w15, [x14, x16]
355

356
357
	/* Any index greater than 127 is invalid. Check bit 7. */
	tbnz	w15, 7, smc_unknown
358
359

	/*
360
361
	 * Get the descriptor using the index
	 * x11 = (base + off), w15 = index
362
	 *
363
	 * handler = (base + off) + (index << log2(size))
364
	 */
365
366
367
	adr	x11, (__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE)
	lsl	w10, w15, #RT_SVC_SIZE_LOG2
	ldr	x15, [x11, w10, uxtw]
368

369
	/*
370
371
372
	 * Restore the saved C runtime stack value which will become the new
	 * SP_EL0 i.e. EL3 runtime stack. It was saved in the 'cpu_context'
	 * structure prior to the last ERET from EL3.
373
	 */
374
375
376
377
	ldr	x12, [x6, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]

	/* Switch to SP_EL0 */
	msr	spsel, #0
378

379
380
381
382
	/*
	 * Save the SPSR_EL3, ELR_EL3, & SCR_EL3 in case there is a world
	 * switch during SMC handling.
	 * TODO: Revisit if all system registers can be saved later.
383
384
385
386
387
	 */
	mrs	x16, spsr_el3
	mrs	x17, elr_el3
	mrs	x18, scr_el3
	stp	x16, x17, [x6, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]
388
	str	x18, [x6, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]
389
390
391
392
393
394

	/* Copy SCR_EL3.NS bit to the flag to indicate caller's security */
	bfi	x7, x18, #0, #1

	mov	sp, x12

395
396
397
398
	/*
	 * Call the Secure Monitor Call handler and then drop directly into
	 * el3_exit() which will program any remaining architectural state
	 * prior to issuing the ERET to the desired lower EL.
399
400
401
402
403
404
	 */
#if DEBUG
	cbz	x15, rt_svc_fw_critical_error
#endif
	blr	x15

405
	b	el3_exit
406

407
408
smc_unknown:
	/*
409
410
	 * Unknown SMC call. Populate return value with SMC_UNK, restore
	 * GP registers, and return to caller.
411
	 */
412
	mov	x0, #SMC_UNK
413
414
	str	x0, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0]
	b	restore_gp_registers_eret
415
416

smc_prohibited:
417
	ldr	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
418
	mov	x0, #SMC_UNK
419
420
421
	eret

rt_svc_fw_critical_error:
422
423
	/* Switch to SP_ELx */
	msr	spsel, #1
424
	no_ret	report_unhandled_exception
425
endfunc smc_handler