context_mgmt.c 21.2 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
Paul Beesley's avatar
Paul Beesley committed
2
 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
8
9
10
11
12
#include <assert.h>
#include <stdbool.h>
#include <string.h>

#include <platform_def.h>

13
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
14
#include <arch_helpers.h>
15
#include <arch_features.h>
16
17
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
18
#include <context.h>
19
20
21
22
23
24
25
26
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/mpam.h>
#include <lib/extensions/spe.h>
#include <lib/extensions/sve.h>
#include <lib/utils.h>
#include <plat/common/platform.h>
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
27
#include <smccc_helpers.h>
Achin Gupta's avatar
Achin Gupta committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
43
void __init cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
44
45
46
47
48
49
50
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

51
/*******************************************************************************
52
 * The following function initializes the cpu_context 'ctx' for
53
54
55
56
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
57
 * of the entry_point_info.
58
 *
Paul Beesley's avatar
Paul Beesley committed
59
 * The EE and ST attributes are used to configure the endianness and secure
60
 * timer availability for the new execution context.
61
62
63
64
65
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
66
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
67
{
68
	unsigned int security_state;
69
	uint32_t scr_el3;
70
71
	el3_state_t *state;
	gp_regs_t *gp_regs;
72
	unsigned long sctlr_elx, actlr_elx;
73

74
	assert(ctx != NULL);
75

76
77
	security_state = GET_SECURITY_STATE(ep->h.attr);

78
	/* Clear any residual register values from the context */
79
	zeromem(ctx, sizeof(*ctx));
80
81

	/*
82
83
84
85
86
87
88
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
89
	 */
90
	scr_el3 = (uint32_t)read_scr();
91
92
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
93
94
95
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
96
97
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
98
99
100
101
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
102
103
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
104
105
106
107
108
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
109
	if (EP_GET_ST(ep->h.attr) != 0U)
110
111
		scr_el3 |= SCR_ST_BIT;

112
#if !HANDLE_EA_EL3_FIRST
113
114
115
116
117
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
118
119
120
	scr_el3 &= ~SCR_EA_BIT;
#endif

121
122
123
124
125
#if FAULT_INJECTION_SUPPORT
	/* Enable fault injection from lower ELs */
	scr_el3 |= SCR_FIEN_BIT;
#endif

126
127
128
129
130
131
132
133
134
135
136
137
138
139
#if !CTX_INCLUDE_PAUTH_REGS
	/*
	 * If the pointer authentication registers aren't saved during world
	 * switches the value of the registers can be leaked from the Secure to
	 * the Non-secure world. To prevent this, rather than enabling pointer
	 * authentication everywhere, we only enable it in the Non-secure world.
	 *
	 * If the Secure world wants to use pointer authentication,
	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
	 */
	if (security_state == NON_SECURE)
		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
#endif /* !CTX_INCLUDE_PAUTH_REGS */

140
141
142
143
144
145
146
147
148
149
150
151
	unsigned int mte = get_armv8_5_mte_support();

	/*
	 * Enable MTE support unilaterally for normal world if the CPU supports
	 * it.
	 */
	if (mte != MTE_UNIMPLEMENTED) {
		if (security_state == NON_SECURE) {
			scr_el3 |= SCR_ATA_BIT;
		}
	}

152
#ifdef IMAGE_BL31
153
	/*
Paul Beesley's avatar
Paul Beesley committed
154
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
155
	 *  indicated by the interrupt routing model for BL31.
156
	 */
157
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
158
#endif
159
160

	/*
161
162
163
164
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
165
166
167
	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
	    || ((GET_RW(ep->spsr) != MODE_RW_64)
		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
168
169
170
171
172
173
174
175
		scr_el3 |= SCR_HCE_BIT;
	}

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
176
	 *
177
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
178
	 *
179
180
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
181
	 */
182
	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
183
184
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
185
186
	else {
		/*
187
188
189
190
191
192
193
194
195
196
197
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
198
		 */
199
200
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
201
202
	}

203
204
205
206
207
208
209
210
#if ERRATA_A75_764081
	/*
	 * If workaround of errata 764081 for Cortex-A75 is used then set
	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
	 */
	sctlr_elx |= SCTLR_IESB_BIT;
#endif

211
212
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
Paul Beesley's avatar
Paul Beesley committed
213
	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
214
215
	 * are not part of the stored cpu_context.
	 */
216
217
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

218
219
220
221
222
223
224
225
226
227
	/*
	 * Base the context ACTLR_EL1 on the current value, as it is
	 * implementation defined. The context restore process will write
	 * the value from the context to the actual register and can cause
	 * problems for processor cores that don't expect certain bits to
	 * be zero.
	 */
	actlr_elx = read_actlr_el1();
	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));

228
229
230
231
	/*
	 * Populate EL3 state so that we've the right context
	 * before doing ERET
	 */
232
233
234
235
236
237
238
239
240
241
242
243
244
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

245
246
247
248
249
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
250
static void enable_extensions_nonsecure(bool el2_unused)
251
252
{
#if IMAGE_BL31
253
254
255
#if ENABLE_SPE_FOR_LOWER_ELS
	spe_enable(el2_unused);
#endif
256
257
258
259

#if ENABLE_AMU
	amu_enable(el2_unused);
#endif
David Cunado's avatar
David Cunado committed
260
261
262
263

#if ENABLE_SVE_FOR_NS
	sve_enable(el2_unused);
#endif
264
265
266
267

#if ENABLE_MPAM_FOR_LOWER_ELS
	mpam_enable(el2_unused);
#endif
268
269
270
#endif
}

271
272
273
274
275
276
277
278
279
280
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
281
	cm_setup_context(ctx, ep);
282
283
284
285
286
287
288
289
290
291
292
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
293
	cm_setup_context(ctx, ep);
294
295
}

296
297
298
299
300
301
302
303
304
305
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
306
	uint32_t sctlr_elx, scr_el3, mdcr_el2;
307
	cpu_context_t *ctx = cm_get_context(security_state);
308
	bool el2_unused = false;
309
	uint64_t hcr_el2 = 0U;
310

311
	assert(ctx != NULL);
312
313

	if (security_state == NON_SECURE) {
314
315
316
		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
						 CTX_SCR_EL3);
		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
317
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
318
319
			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
							   CTX_SCTLR_EL1);
Ken Kuang's avatar
Ken Kuang committed
320
			sctlr_elx &= SCTLR_EE_BIT;
321
			sctlr_elx |= SCTLR_EL2_RES1;
322
323
324
325
326
327
328
329
#if ERRATA_A75_764081
			/*
			 * If workaround of errata 764081 for Cortex-A75 is used
			 * then set SCTLR_EL2.IESB to enable Implicit Error
			 * Synchronization Barrier.
			 */
			sctlr_elx |= SCTLR_IESB_BIT;
#endif
330
			write_sctlr_el2(sctlr_elx);
331
		} else if (el_implemented(2) != EL_IMPL_NONE) {
332
			el2_unused = true;
333

334
335
336
337
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
338
339
			 * Set EL2 register width appropriately: Set HCR_EL2
			 * field to match SCR_EL3.RW.
340
			 */
341
			if ((scr_el3 & SCR_RW_BIT) != 0U)
342
343
344
345
346
347
348
349
350
351
				hcr_el2 |= HCR_RW_BIT;

			/*
			 * For Armv8.3 pointer authentication feature, disable
			 * traps to EL2 when accessing key registers or using
			 * pointer authentication instructions from lower ELs.
			 */
			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);

			write_hcr_el2(hcr_el2);
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
373

374
			/*
Paul Beesley's avatar
Paul Beesley committed
375
			 * Initialise CNTHCTL_EL2. All fields are
376
377
378
379
380
381
382
383
384
385
386
387
388
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
389

390
391
392
393
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
394
395
			write_cntvoff_el2(0);

396
397
398
399
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
400
401
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
402
403

			/*
404
405
406
407
408
409
410
411
412
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
413
			 */
414
415
416
417
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

418
			/*
419
420
421
422
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
			 * MDCR_EL2.HLP: Set to one so that event counter
			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
			 *  occurs on the increment that changes
			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
			 *  implemented. This bit is RES0 in versions of the
			 *  architecture earlier than ARMv8.5, setting it to 1
			 *  doesn't have any effect on them.
			 *
			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
			 *  Filter Control register TRFCR_EL1 at EL1 is not
			 *  trapped to EL2. This bit is RES0 in versions of
			 *  the architecture earlier than ARMv8.4.
			 *
			 * MDCR_EL2.HPMD: Set to one so that event counting is
			 *  prohibited at EL2. This bit is RES0 in versions of
			 *  the architecture earlier than ARMv8.1, setting it
			 *  to 1 doesn't have any effect on them.
			 *
			 * MDCR_EL2.TPMS: Set to zero so that accesses to
			 *  Statistical Profiling control registers from EL1
			 *  do not trap to EL2. This bit is RES0 when SPE is
			 *  not implemented.
			 *
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
473
			 */
474
475
476
477
478
479
480
481
482
			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
				     MDCR_EL2_HPMD) |
				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
				   >> PMCR_EL0_N_SHIFT)) &
				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
				     MDCR_EL2_TPMCR_BIT);
483
484
485

			write_mdcr_el2(mdcr_el2);

486
			/*
487
488
489
490
491
492
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
493
			 */
494
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
495
			/*
496
497
498
499
500
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
501
			 */
502
503
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
504
		}
505
		enable_extensions_nonsecure(el2_unused);
506
507
	}

508
509
	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
510
511
}

Achin Gupta's avatar
Achin Gupta committed
512
/*******************************************************************************
513
514
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
515
516
517
518
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
519
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
520

521
	ctx = cm_get_context(security_state);
522
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
523
524

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
525
526
527
528
529
530
531

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
532
533
534
535
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
536
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
537

538
	ctx = cm_get_context(security_state);
539
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
540
541

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
542
543
544
545
546
547
548

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
549
550
551
}

/*******************************************************************************
552
553
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
554
 ******************************************************************************/
555
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
556
{
557
558
	cpu_context_t *ctx;
	el3_state_t *state;
559

560
	ctx = cm_get_context(security_state);
561
	assert(ctx != NULL);
562

563
	/* Populate EL3 state so that ERET jumps to the correct entry */
564
565
566
567
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

568
/*******************************************************************************
569
570
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
571
 ******************************************************************************/
572
void cm_set_elr_spsr_el3(uint32_t security_state,
573
			uintptr_t entrypoint, uint32_t spsr)
574
{
575
576
	cpu_context_t *ctx;
	el3_state_t *state;
577

578
	ctx = cm_get_context(security_state);
579
	assert(ctx != NULL);
580
581
582
583

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
584
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
585
586
}

587
588
589
590
591
592
593
594
595
596
597
598
599
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

600
	ctx = cm_get_context(security_state);
601
	assert(ctx != NULL);
602
603

	/* Ensure that the bit position is a valid one */
604
	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
605
606

	/* Ensure that the 'value' is only a bit wide */
607
	assert(value <= 1U);
608
609
610
611
612
613

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
614
615
	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1U << bit_pos);
616
617
618
619
620
621
622
623
624
625
626
627
628
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

629
	ctx = cm_get_context(security_state);
630
	assert(ctx != NULL);
631
632
633

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
634
	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
635
636
}

637
638
639
640
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
641
642
643
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
644
	cpu_context_t *ctx;
645

646
	ctx = cm_get_context(security_state);
647
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
648

649
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
650
}