context_mgmt.c 20.2 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
Paul Beesley's avatar
Paul Beesley committed
2
 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
8
9
10
11
12
#include <assert.h>
#include <stdbool.h>
#include <string.h>

#include <platform_def.h>

13
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
14
#include <arch_helpers.h>
15
16
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
17
#include <context.h>
18
19
20
21
22
23
24
25
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/mpam.h>
#include <lib/extensions/spe.h>
#include <lib/extensions/sve.h>
#include <lib/utils.h>
#include <plat/common/platform.h>
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
26
#include <smccc_helpers.h>
Achin Gupta's avatar
Achin Gupta committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
42
void __init cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
43
44
45
46
47
48
49
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

50
/*******************************************************************************
51
 * The following function initializes the cpu_context 'ctx' for
52
53
54
55
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
56
 * of the entry_point_info.
57
 *
Paul Beesley's avatar
Paul Beesley committed
58
 * The EE and ST attributes are used to configure the endianness and secure
59
 * timer availability for the new execution context.
60
61
62
63
64
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
65
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66
{
67
	unsigned int security_state;
68
	uint32_t scr_el3, pmcr_el0;
69
70
	el3_state_t *state;
	gp_regs_t *gp_regs;
71
	unsigned long sctlr_elx, actlr_elx;
72

73
	assert(ctx != NULL);
74

75
76
	security_state = GET_SECURITY_STATE(ep->h.attr);

77
	/* Clear any residual register values from the context */
78
	zeromem(ctx, sizeof(*ctx));
79
80

	/*
81
82
83
84
85
86
87
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
88
	 */
89
	scr_el3 = (uint32_t)read_scr();
90
91
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
92
93
94
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
95
96
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
97
98
99
100
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
101
102
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
103
104
105
106
107
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
108
	if (EP_GET_ST(ep->h.attr) != 0U)
109
110
		scr_el3 |= SCR_ST_BIT;

111
#if !HANDLE_EA_EL3_FIRST
112
113
114
115
116
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
117
118
119
	scr_el3 &= ~SCR_EA_BIT;
#endif

120
121
122
123
124
#if FAULT_INJECTION_SUPPORT
	/* Enable fault injection from lower ELs */
	scr_el3 |= SCR_FIEN_BIT;
#endif

125
#ifdef IMAGE_BL31
126
	/*
Paul Beesley's avatar
Paul Beesley committed
127
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
128
	 *  indicated by the interrupt routing model for BL31.
129
	 */
130
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
131
#endif
132
133

	/*
134
135
136
137
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
138
139
140
	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
	    || ((GET_RW(ep->spsr) != MODE_RW_64)
		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
141
142
143
144
145
146
147
148
		scr_el3 |= SCR_HCE_BIT;
	}

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
149
	 *
150
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
151
	 *
152
153
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
154
	 */
155
	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
156
157
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
158
159
	else {
		/*
160
161
162
163
164
165
166
167
168
169
170
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
171
		 */
172
173
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
174
175
	}

176
177
178
179
180
181
182
183
#if ERRATA_A75_764081
	/*
	 * If workaround of errata 764081 for Cortex-A75 is used then set
	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
	 */
	sctlr_elx |= SCTLR_IESB_BIT;
#endif

184
185
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
Paul Beesley's avatar
Paul Beesley committed
186
	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
187
188
	 * are not part of the stored cpu_context.
	 */
189
190
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

191
192
193
194
195
196
197
198
199
200
	/*
	 * Base the context ACTLR_EL1 on the current value, as it is
	 * implementation defined. The context restore process will write
	 * the value from the context to the actual register and can cause
	 * problems for processor cores that don't expect certain bits to
	 * be zero.
	 */
	actlr_elx = read_actlr_el1();
	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
	if (security_state == SECURE) {
		/*
		 * Initialise PMCR_EL0 for secure context only, setting all
		 * fields rather than relying on hw. Some fields are
		 * architecturally UNKNOWN on reset.
		 *
		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
		 *
		 * PMCR_EL0.DP: Set to one so that the cycle counter,
		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
		 *
		 * PMCR_EL0.X: Set to zero to disable export of events.
		 *
		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
		 *  counts on every clock cycle.
		 */
		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
				| PMCR_EL0_DP_BIT)
				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
	}

225
226
227
228
229
230
231
232
233
234
235
236
237
238
	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

239
240
241
242
243
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
244
static void enable_extensions_nonsecure(bool el2_unused)
245
246
{
#if IMAGE_BL31
247
248
249
#if ENABLE_SPE_FOR_LOWER_ELS
	spe_enable(el2_unused);
#endif
250
251
252
253

#if ENABLE_AMU
	amu_enable(el2_unused);
#endif
David Cunado's avatar
David Cunado committed
254
255
256
257

#if ENABLE_SVE_FOR_NS
	sve_enable(el2_unused);
#endif
258
259
260
261

#if ENABLE_MPAM_FOR_LOWER_ELS
	mpam_enable(el2_unused);
#endif
262
263
264
#endif
}

265
266
267
268
269
270
271
272
273
274
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
275
	cm_setup_context(ctx, ep);
276
277
278
279
280
281
282
283
284
285
286
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
287
	cm_setup_context(ctx, ep);
288
289
}

290
291
292
293
294
295
296
297
298
299
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
300
	uint32_t sctlr_elx, scr_el3, mdcr_el2;
301
	cpu_context_t *ctx = cm_get_context(security_state);
302
	bool el2_unused = false;
303
	uint64_t hcr_el2 = 0U;
304

305
	assert(ctx != NULL);
306
307

	if (security_state == NON_SECURE) {
308
309
310
		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
						 CTX_SCR_EL3);
		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
311
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
312
313
			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
							   CTX_SCTLR_EL1);
Ken Kuang's avatar
Ken Kuang committed
314
			sctlr_elx &= SCTLR_EE_BIT;
315
			sctlr_elx |= SCTLR_EL2_RES1;
316
317
318
319
320
321
322
323
#if ERRATA_A75_764081
			/*
			 * If workaround of errata 764081 for Cortex-A75 is used
			 * then set SCTLR_EL2.IESB to enable Implicit Error
			 * Synchronization Barrier.
			 */
			sctlr_elx |= SCTLR_IESB_BIT;
#endif
324
			write_sctlr_el2(sctlr_elx);
325
		} else if (el_implemented(2) != EL_IMPL_NONE) {
326
			el2_unused = true;
327

328
329
330
331
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
332
333
			 * Set EL2 register width appropriately: Set HCR_EL2
			 * field to match SCR_EL3.RW.
334
			 */
335
			if ((scr_el3 & SCR_RW_BIT) != 0U)
336
337
338
339
340
341
342
343
344
345
				hcr_el2 |= HCR_RW_BIT;

			/*
			 * For Armv8.3 pointer authentication feature, disable
			 * traps to EL2 when accessing key registers or using
			 * pointer authentication instructions from lower ELs.
			 */
			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);

			write_hcr_el2(hcr_el2);
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
367

368
			/*
Paul Beesley's avatar
Paul Beesley committed
369
			 * Initialise CNTHCTL_EL2. All fields are
370
371
372
373
374
375
376
377
378
379
380
381
382
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
383

384
385
386
387
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
388
389
			write_cntvoff_el2(0);

390
391
392
393
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
394
395
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
396
397

			/*
398
399
400
401
402
403
404
405
406
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
407
			 */
408
409
410
411
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

412
			/*
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
444
			 */
445
			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
446
447
448
449
450
451
					((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT)) &
					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
					| MDCR_EL2_TPMCR_BIT));
452
453
454

			write_mdcr_el2(mdcr_el2);

455
			/*
456
457
458
459
460
461
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
462
			 */
463
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
464
			/*
465
466
467
468
469
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
470
			 */
471
472
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
473
		}
474
		enable_extensions_nonsecure(el2_unused);
475
476
	}

477
478
	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
479
480
}

Achin Gupta's avatar
Achin Gupta committed
481
/*******************************************************************************
482
483
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
484
485
486
487
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
488
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
489

490
	ctx = cm_get_context(security_state);
491
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
492
493

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
494
495
496
497
498
499
500

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
501
502
503
504
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
505
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
506

507
	ctx = cm_get_context(security_state);
508
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
509
510

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
511
512
513
514
515
516
517

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
518
519
520
}

/*******************************************************************************
521
522
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
523
 ******************************************************************************/
524
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
525
{
526
527
	cpu_context_t *ctx;
	el3_state_t *state;
528

529
	ctx = cm_get_context(security_state);
530
	assert(ctx != NULL);
531

532
	/* Populate EL3 state so that ERET jumps to the correct entry */
533
534
535
536
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

537
/*******************************************************************************
538
539
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
540
 ******************************************************************************/
541
void cm_set_elr_spsr_el3(uint32_t security_state,
542
			uintptr_t entrypoint, uint32_t spsr)
543
{
544
545
	cpu_context_t *ctx;
	el3_state_t *state;
546

547
	ctx = cm_get_context(security_state);
548
	assert(ctx != NULL);
549
550
551
552

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
553
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
554
555
}

556
557
558
559
560
561
562
563
564
565
566
567
568
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

569
	ctx = cm_get_context(security_state);
570
	assert(ctx != NULL);
571
572

	/* Ensure that the bit position is a valid one */
573
	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
574
575

	/* Ensure that the 'value' is only a bit wide */
576
	assert(value <= 1U);
577
578
579
580
581
582

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
583
584
	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1U << bit_pos);
585
586
587
588
589
590
591
592
593
594
595
596
597
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

598
	ctx = cm_get_context(security_state);
599
	assert(ctx != NULL);
600
601
602

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
603
	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
604
605
}

606
607
608
609
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
610
611
612
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
613
	cpu_context_t *ctx;
614

615
	ctx = cm_get_context(security_state);
616
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
617

618
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
619
}