psci_afflvl_suspend.c 17 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>

typedef int (*afflvl_suspend_handler)(unsigned long,
				      aff_map_node *,
				      unsigned long,
				      unsigned long,
				      unsigned int);

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*******************************************************************************
 * This function sets the affinity level till which the current cpu is being
 * powered down to during a cpu_suspend call
 ******************************************************************************/
void psci_set_suspend_afflvl(aff_map_node *node, int afflvl)
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

	/*
	 * Store the affinity level we are powering down to in our context.
	 * The cache flush in the suspend code will ensure that this info
	 * is available immediately upon resuming.
	 */
	psci_suspend_context[node->data].suspend_level = afflvl;
}

/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
 * down during a cpu_suspend call.
 ******************************************************************************/
int psci_get_suspend_afflvl(aff_map_node *node)
{
	/* Return the target affinity level */
	return psci_suspend_context[node->data].suspend_level;
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
static int psci_afflvl0_suspend(unsigned long mpidr,
				aff_map_node *cpu_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	unsigned int index, plat_state;
	unsigned long psci_entrypoint, sctlr = read_sctlr();
	int rc = PSCI_E_SUCCESS;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

94
95
96
	/* State management: mark this cpu as suspended */
	psci_set_state(cpu_node, PSCI_STATE_SUSPEND);

97
98
99
100
101
102
103
104
105
106
107
108
109
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
	 * Arch. management: Save the secure context, flush the
	 * L1 caches and exit intra-cluster coherency et al
	 */
110
111
112
113
114
115
116
117
118
	psci_suspend_context[index].sec_sysregs.sctlr = read_sctlr();
	psci_suspend_context[index].sec_sysregs.scr = read_scr();
	psci_suspend_context[index].sec_sysregs.cptr = read_cptr();
	psci_suspend_context[index].sec_sysregs.cpacr = read_cpacr();
	psci_suspend_context[index].sec_sysregs.cntfrq = read_cntfrq_el0();
	psci_suspend_context[index].sec_sysregs.mair = read_mair();
	psci_suspend_context[index].sec_sysregs.tcr = read_tcr();
	psci_suspend_context[index].sec_sysregs.ttbr = read_ttbr0();
	psci_suspend_context[index].sec_sysregs.pstate =
119
		read_daif() & (DAIF_ABT_BIT | DAIF_DBG_BIT);
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
	sctlr &= ~SCTLR_C_BIT;
	write_sctlr(sctlr);

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {
151
		plat_state = psci_get_phys_state(cpu_node);
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

static int psci_afflvl1_suspend(unsigned long mpidr,
				aff_map_node *cluster_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

175
176
177
	/* State management: Decrement the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_SUSPEND);

178
179
180
181
	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
182
	plat_state = psci_get_phys_state(cluster_node);
183
184
185
186
187
188
189
190
191

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
192
	 * Plat. Management. Allow the platform to do its cluster
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


static int psci_afflvl2_suspend(unsigned long mpidr,
				aff_map_node *system_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

229
230
231
	/* State management: Decrement the system reference count */
	psci_set_state(system_node, PSCI_STATE_SUSPEND);

232
233
234
235
	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
236
	plat_state = psci_get_phys_state(system_node);
237
238

	/*
239
	 * Plat. Management : Allow the platform to do its bookeeping
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

static const afflvl_suspend_handler psci_afflvl_suspend_handlers[] = {
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
static int psci_call_suspend_handlers(mpidr_aff_map_nodes mpidr_nodes,
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long mpidr,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
	aff_map_node *node;

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
		rc = psci_afflvl_suspend_handlers[level](mpidr,
							 node,
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency can
 * be turned off and caches can be flushed safely.
326
327
328
329
330
 ******************************************************************************/
int psci_afflvl_suspend(unsigned long mpidr,
			unsigned long entrypoint,
			unsigned long context_id,
			unsigned int power_state,
331
332
			int start_afflvl,
			int end_afflvl)
333
{
334
335
	int rc = PSCI_E_SUCCESS;
	mpidr_aff_map_nodes mpidr_nodes;
336
337
338
339

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
340
341
342
343
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
344
	 */
345
346
347
348
349
350
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
351
352

	/*
353
354
355
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
356
	 */
357
358
359
360
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
361

362

363
364
365
	/* Save the affinity level till which this cpu can be powered down */
	psci_set_suspend_afflvl(mpidr_nodes[MPIDR_AFFLVL0], end_afflvl);

366
367
368
369
370
371
372
373
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					mpidr,
					entrypoint,
					context_id,
					power_state);
374
375

	/*
376
377
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
378
	 */
379
380
381
382
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
383
384
385
386
387
388
389
390
391

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
392
						aff_map_node *cpu_node)
393
{
394
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
395
396
397

	assert(cpu_node->level == MPIDR_AFFLVL0);

398
	/* Ensure we have been woken up from a suspended state */
399
	state = psci_get_state(cpu_node);
400
401
	assert(state == PSCI_STATE_SUSPEND);

402
403
404
405
406
407
408
409
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
410
411

		/* Get the physical state of this cpu */
412
		plat_state = get_phys_state(state);
413
414
415
416
417
418
419
420
421
422
423
424
425
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	index = cpu_node->data;

	/*
	 * Arch. management: Restore the stashed secure architectural
	 * context in the right order.
	 */
426
427
428
429
430
	write_daif(read_daif() | psci_suspend_context[index].sec_sysregs.pstate);
	write_mair(psci_suspend_context[index].sec_sysregs.mair);
	write_tcr(psci_suspend_context[index].sec_sysregs.tcr);
	write_ttbr0(psci_suspend_context[index].sec_sysregs.ttbr);
	write_sctlr(psci_suspend_context[index].sec_sysregs.sctlr);
431
432

	/* MMU and coherency should be enabled by now */
433
434
435
436
	write_scr(psci_suspend_context[index].sec_sysregs.scr);
	write_cptr(psci_suspend_context[index].sec_sysregs.cptr);
	write_cpacr(psci_suspend_context[index].sec_sysregs.cpacr);
	write_cntfrq_el0(psci_suspend_context[index].sec_sysregs.cntfrq);
437
438
439
440

	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
441
	 * call to set this cpu on its way.
442
	 */
443
	psci_get_ns_entry_info(index);
444

445
446
447
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

448
449
450
451
452
453
454
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_suspend_finish(unsigned long mpidr,
455
						aff_map_node *cluster_node)
456
{
457
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
458
459
460
461
462
463
464
465
466
467
468
469

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
470
471

		/* Get the physical state of this cpu */
472
		plat_state = psci_get_phys_state(cluster_node);
473
474
475
476
477
478
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

479
480
481
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

482
483
484
485
486
	return rc;
}


static unsigned int psci_afflvl2_suspend_finish(unsigned long mpidr,
487
						aff_map_node *system_node)
488
{
489
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
508
509

		/* Get the physical state of the system */
510
		plat_state = psci_get_phys_state(system_node);
511
512
513
514
515
516
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

517
518
519
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

520
521
522
523
524
525
526
527
528
	return rc;
}

const afflvl_power_on_finisher psci_afflvl_suspend_finishers[] = {
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};