psci_afflvl_suspend.c 17.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>
32
33
#include <bl_common.h>
#include <arch.h>
34
#include <arch_helpers.h>
35
#include <context.h>
36
#include <context_mgmt.h>
37
#include <cpu_data.h>
38
#include <platform.h>
39
#include <runtime_svc.h>
40
#include <stddef.h>
41
#include "psci_private.h"
42

43
typedef int (*afflvl_suspend_handler_t)(aff_map_node_t *,
44
45
46
47
				      unsigned long,
				      unsigned long,
				      unsigned int);

48
/*******************************************************************************
49
50
 * This function saves the power state parameter passed in the current PSCI
 * cpu_suspend call in the per-cpu data array.
51
 ******************************************************************************/
52
void psci_set_suspend_power_state(unsigned int power_state)
53
{
54
55
	set_cpu_data(psci_svc_cpu_data.power_state, power_state);
	flush_cpu_data(psci_svc_cpu_data.power_state);
56
57
}

58
/*******************************************************************************
59
60
61
 * This function gets the affinity level till which the current cpu could be
 * powered down during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state is invalid.
62
 ******************************************************************************/
63
int psci_get_suspend_afflvl()
64
{
65
	unsigned int power_state;
66

67
	power_state = get_cpu_data(psci_svc_cpu_data.power_state);
68

69
70
	return ((power_state == PSCI_INVALID_DATA) ?
		power_state : psci_get_pstate_afflvl(power_state));
71
72
}

73
/*******************************************************************************
74
75
76
 * This function gets the state id of the current cpu from the power state
 * parameter saved in the per-cpu data array. Returns PSCI_INVALID_DATA if the
 * power state saved is invalid.
77
 ******************************************************************************/
78
int psci_get_suspend_stateid()
79
80
81
{
	unsigned int power_state;

82
	power_state = get_cpu_data(psci_svc_cpu_data.power_state);
83
84

	return ((power_state == PSCI_INVALID_DATA) ?
85
		power_state : psci_get_pstate_id(power_state));
86
87
88
}

/*******************************************************************************
89
90
91
 * This function gets the state id of the cpu specified by the 'mpidr' parameter
 * from the power state parameter saved in the per-cpu data array. Returns
 * PSCI_INVALID_DATA if the power state saved is invalid.
92
 ******************************************************************************/
93
int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
94
{
95
96
	unsigned int power_state;

97
98
	power_state = get_cpu_data_by_mpidr(mpidr,
					    psci_svc_cpu_data.power_state);
99
100

	return ((power_state == PSCI_INVALID_DATA) ?
101
		power_state : psci_get_pstate_id(power_state));
102
103
}

104
105
106
107
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
108
static int psci_afflvl0_suspend(aff_map_node_t *cpu_node,
109
110
111
112
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
113
	unsigned int plat_state;
114
	unsigned long psci_entrypoint;
115
116
117
	uint32_t ns_scr_el3 = read_scr_el3();
	uint32_t ns_sctlr_el1 = read_sctlr_el1();
	int rc;
118
119
120
121

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

122
	/* Save PSCI power state parameter for the core in suspend context */
123
	psci_set_suspend_power_state(power_state);
124

125
126
127
128
129
130
131
132
133
134
	/*
	 * Generic management: Store the re-entry information for the non-secure
	 * world and allow the secure world to suspend itself
	 */

	/*
	 * Call the cpu suspend handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
135
136
	if (psci_spd_pm && psci_spd_pm->svc_suspend)
		psci_spd_pm->svc_suspend(power_state);
137

138
139
140
141
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
142
143
	rc = psci_save_ns_entry(read_mpidr_el1(), ns_entrypoint, context_id,
				ns_scr_el3, ns_sctlr_el1);
144
145
146
147
148
149
150
151
152
153
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 */
154
	psci_do_pwrdown_cache_maintenance(MPIDR_AFFLVL0);
155
156
157
158
159
160
161

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
162
163
	rc = PSCI_E_SUCCESS;

164
	if (psci_plat_pm_ops->affinst_suspend) {
165
		plat_state = psci_get_phys_state(cpu_node);
166
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
167
168
169
170
171
172
173
174
175
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

176
static int psci_afflvl1_suspend(aff_map_node_t *cluster_node,
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
192
	plat_state = psci_get_phys_state(cluster_node);
193
194
195

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
196
	 * cluster is to be shutdown.
197
	 */
198
	psci_do_pwrdown_cache_maintenance(MPIDR_AFFLVL1);
199
200

	/*
201
	 * Plat. Management. Allow the platform to do its cluster
202
203
204
205
206
207
208
209
210
211
212
213
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
214
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
215
216
217
218
219
220
221
222
223
224
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


225
static int psci_afflvl2_suspend(aff_map_node_t *system_node,
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
241
	plat_state = psci_get_phys_state(system_node);
242

243
244
245
246
247
248
	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * system is to be shutdown.
	 */
	psci_do_pwrdown_cache_maintenance(MPIDR_AFFLVL2);

249
	/*
250
	 * Plat. Management : Allow the platform to do its bookeeping
251
252
253
254
255
256
257
258
259
260
261
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
262
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
263
264
265
266
267
268
269
270
271
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

272
static const afflvl_suspend_handler_t psci_afflvl_suspend_handlers[] = {
273
274
275
276
277
278
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
279
280
281
282
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
283
static int psci_call_suspend_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
284
285
286
287
288
289
290
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
291
	aff_map_node_t *node;
292
293
294
295
296
297
298
299
300
301
302

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
303
		rc = psci_afflvl_suspend_handlers[level](node,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
332
 ******************************************************************************/
333
int psci_afflvl_suspend(unsigned long entrypoint,
334
335
			unsigned long context_id,
			unsigned int power_state,
336
337
			int start_afflvl,
			int end_afflvl)
338
{
339
	int rc = PSCI_E_SUCCESS;
340
	mpidr_aff_map_nodes_t mpidr_nodes;
341
	unsigned int max_phys_off_afflvl;
342
343

	/*
344
345
346
347
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
348
	 */
349
	rc = psci_get_aff_map_nodes(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
350
351
352
353
354
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
355
356

	/*
357
358
359
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
360
	 */
361
	psci_acquire_afflvl_locks(start_afflvl,
362
363
				  end_afflvl,
				  mpidr_nodes);
364

365
366
367
368
369
370
371
372
373
	/*
	 * This function updates the state of each affinity instance
	 * corresponding to the mpidr in the range of affinity levels
	 * specified.
	 */
	psci_do_afflvl_state_mgmt(start_afflvl,
				  end_afflvl,
				  mpidr_nodes,
				  PSCI_STATE_SUSPEND);
374
375
376
377
378
379
380
381
382

	max_phys_off_afflvl = psci_find_max_phys_off_afflvl(start_afflvl,
							    end_afflvl,
							    mpidr_nodes);
	assert(max_phys_off_afflvl != PSCI_INVALID_DATA);

	/* Stash the highest affinity level that will be turned off */
	psci_set_max_phys_off_afflvl(max_phys_off_afflvl);

383
384
385
386
387
388
389
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					entrypoint,
					context_id,
					power_state);
390

391
392
393
394
395
396
397
	/*
	 * Invalidate the entry for the highest affinity level stashed earlier.
	 * This ensures that any reads of this variable outside the power
	 * up/down sequences return PSCI_INVALID_DATA.
	 */
	psci_set_max_phys_off_afflvl(PSCI_INVALID_DATA);

398
	/*
399
400
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
401
	 */
402
	psci_release_afflvl_locks(start_afflvl,
403
404
				  end_afflvl,
				  mpidr_nodes);
405
406
407
408
409
410
411
412

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
413
static unsigned int psci_afflvl0_suspend_finish(aff_map_node_t *cpu_node)
414
{
415
	unsigned int plat_state, state, rc;
416
	int32_t suspend_level;
417
	uint64_t counter_freq;
418
419
420

	assert(cpu_node->level == MPIDR_AFFLVL0);

421
	/* Ensure we have been woken up from a suspended state */
422
	state = psci_get_state(cpu_node);
423
424
	assert(state == PSCI_STATE_SUSPEND);

425
426
427
428
429
430
431
432
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
433
434

		/* Get the physical state of this cpu */
435
		plat_state = get_phys_state(state);
436
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
437
438
439
440
441
442
443
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	/*
444
445
446
	 * Arch. management: Enable the data cache, manage stack memory and
	 * restore the stashed EL3 architectural context from the 'cpu_context'
	 * structure for this cpu.
447
	 */
448
	psci_do_pwrup_cache_maintenance();
449
450
451
452

	/* Re-init the cntfrq_el0 register */
	counter_freq = plat_get_syscnt_freq();
	write_cntfrq_el0(counter_freq);
453

454
455
456
457
458
	/*
	 * Call the cpu suspend finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
459
	if (psci_spd_pm && psci_spd_pm->svc_suspend) {
460
		suspend_level = psci_get_suspend_afflvl();
461
		assert (suspend_level != PSCI_INVALID_DATA);
462
		psci_spd_pm->svc_suspend_finish(suspend_level);
463
464
	}

465
	/* Invalidate the suspend context for the node */
466
	psci_set_suspend_power_state(PSCI_INVALID_DATA);
467

468
469
470
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
471
	 * call to set this cpu on its way.
472
	 */
473
	cm_prepare_el3_exit(NON_SECURE);
474
475
476
477

	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

478
	rc = PSCI_E_SUCCESS;
479
480
481
	return rc;
}

482
static unsigned int psci_afflvl1_suspend_finish(aff_map_node_t *cluster_node)
483
{
484
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
485
486
487
488
489
490
491
492
493
494
495
496

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
497
498

		/* Get the physical state of this cpu */
499
		plat_state = psci_get_phys_state(cluster_node);
500
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
501
502
503
504
505
506
507
508
509
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	return rc;
}


510
static unsigned int psci_afflvl2_suspend_finish(aff_map_node_t *system_node)
511
{
512
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
531
532

		/* Get the physical state of the system */
533
		plat_state = psci_get_phys_state(system_node);
534
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
535
536
537
538
539
540
541
542
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	return rc;
}

543
const afflvl_power_on_finisher_t psci_afflvl_suspend_finishers[] = {
544
545
546
547
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};