fvp_pm.c 13.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
 */

#include <arch_helpers.h>
8
#include <arm_config.h>
9
#include <assert.h>
10
#include <debug.h>
11
#include <errno.h>
12
#include <gicv3.h>
13
#include <mmio.h>
14
#include <plat_arm.h>
15
#include <platform.h>
16
#include <psci.h>
17
#include <spe.h>
18
#include <v2m_def.h>
19
#include "drivers/pwrc/fvp_pwrc.h"
20
21
#include "fvp_def.h"
#include "fvp_private.h"
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#if ARM_RECOM_STATE_ID_ENC
/*
 *  The table storing the valid idle power states. Ensure that the
 *  array entries are populated in ascending order of state-id to
 *  enable us to use binary search during power state validation.
 *  The table must be terminated by a NULL entry.
 */
const unsigned int arm_pm_idle_states[] = {
	/* State-id - 0x01 */
	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
			ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
	/* State-id - 0x02 */
	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
			ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
	/* State-id - 0x22 */
	arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
			ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
41
42
43
	/* State-id - 0x222 */
	arm_make_pwrstate_lvl2(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
		ARM_LOCAL_STATE_OFF, ARM_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
44
45
46
47
	0,
};
#endif

48
49
50
51
/*******************************************************************************
 * Function which implements the common FVP specific operations to power down a
 * cluster in response to a CPU_OFF or CPU_SUSPEND request.
 ******************************************************************************/
52
static void fvp_cluster_pwrdwn_common(void)
53
54
55
{
	uint64_t mpidr = read_mpidr_el1();

56
57
58
59
60
#if ENABLE_SPE_FOR_LOWER_ELS
	/*
	 * On power down we need to disable statistical profiling extensions
	 * before exiting coherency.
	 */
61
	spe_disable();
62
63
#endif

64
	/* Disable coherency if this cluster is to be turned off */
65
	fvp_interconnect_disable();
66
67
68
69
70

	/* Program the power controller to turn the cluster off */
	fvp_pwrc_write_pcoffr(mpidr);
}

71
72
73
74
75
76
77
78
79
80
81
82
/*
 * Empty implementation of these hooks avoid setting the GICR_WAKER.Sleep bit
 * on ARM GICv3 implementations on FVP. This is required, because FVP does not
 * support SYSTEM_SUSPEND and it is `faked` in firmware. Hence, for wake up
 * from `fake` system suspend the GIC must not be powered off.
 */
void arm_gicv3_distif_pre_save(unsigned int proc_num)
{}

void arm_gicv3_distif_post_restore(unsigned int proc_num)
{}

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
{
	unsigned long mpidr;

	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_OFF);

	/* Get the mpidr for this cpu */
	mpidr = read_mpidr_el1();

	/* Perform the common cluster specific operations */
	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
					ARM_LOCAL_STATE_OFF) {
		/*
		 * This CPU might have woken up whilst the cluster was
		 * attempting to power down. In this case the FVP power
		 * controller will have a pending cluster power off request
		 * which needs to be cleared by writing to the PPONR register.
		 * This prevents the power controller from interpreting a
		 * subsequent entry of this cpu into a simple wfi as a power
		 * down request.
		 */
		fvp_pwrc_write_pponr(mpidr);

		/* Enable coherency if this cluster was off */
108
		fvp_interconnect_enable();
109
	}
110
111
112
113
	/* Perform the common system specific operations */
	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
						ARM_LOCAL_STATE_OFF)
		arm_system_pwr_domain_resume();
114
115
116
117
118
119
120
121
122

	/*
	 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
	 * with a cpu power down unless the bit is set again
	 */
	fvp_pwrc_clr_wen(mpidr);
}


123
/*******************************************************************************
124
 * FVP handler called when a CPU is about to enter standby.
125
 ******************************************************************************/
126
void fvp_cpu_standby(plat_local_state_t cpu_state)
127
{
128
129
130

	assert(cpu_state == ARM_LOCAL_STATE_RET);

131
132
133
134
135
	/*
	 * Enter standby state
	 * dsb is good practice before using wfi to enter low power states
	 */
	dsb();
136
137
138
	wfi();
}

139
/*******************************************************************************
140
141
 * FVP handler called when a power domain is about to be turned on. The
 * mpidr determines the CPU to be turned on.
142
 ******************************************************************************/
143
int fvp_pwr_domain_on(u_register_t mpidr)
144
145
146
147
148
{
	int rc = PSCI_E_SUCCESS;
	unsigned int psysr;

	/*
149
150
151
	 * Ensure that we do not cancel an inflight power off request for the
	 * target cpu. That would leave it in a zombie wfi. Wait for it to power
	 * off and then program the power controller to turn that CPU on.
152
153
154
155
156
157
158
159
160
161
	 */
	do {
		psysr = fvp_pwrc_read_psysr(mpidr);
	} while (psysr & PSYSR_AFF_L0);

	fvp_pwrc_write_pponr(mpidr);
	return rc;
}

/*******************************************************************************
162
163
 * FVP handler called when a power domain is about to be turned off. The
 * target_state encodes the power state that each level should transition to.
164
 ******************************************************************************/
165
void fvp_pwr_domain_off(const psci_power_state_t *target_state)
166
{
167
168
	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_OFF);
169

170
	/*
171
172
173
	 * If execution reaches this stage then this power domain will be
	 * suspended. Perform at least the cpu specific actions followed
	 * by the cluster specific operations if applicable.
174
	 */
175
176
177
178
179
180
181
182
183

	/* Prevent interrupts from spuriously waking up this cpu */
	plat_arm_gic_cpuif_disable();

	/* Turn redistributor off */
	plat_arm_gic_redistif_off();

	/* Program the power controller to power off this cpu. */
	fvp_pwrc_write_ppoffr(read_mpidr_el1());
184

185
186
	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
					ARM_LOCAL_STATE_OFF)
187
188
		fvp_cluster_pwrdwn_common();

189
190
191
}

/*******************************************************************************
192
193
 * FVP handler called when a power domain is about to be suspended. The
 * target_state encodes the power state that each level should transition to.
194
 ******************************************************************************/
195
void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
196
{
197
198
	unsigned long mpidr;

199
200
201
202
203
204
	/*
	 * FVP has retention only at cpu level. Just return
	 * as nothing is to be done for retention.
	 */
	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_RET)
205
		return;
206

207
208
209
	assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_OFF);

210
211
212
	/* Get the mpidr for this cpu */
	mpidr = read_mpidr_el1();

213
214
215
	/* Program the power controller to enable wakeup interrupts. */
	fvp_pwrc_set_wen(mpidr);

216
217
218
219
220
221
222
223
224
	/* Prevent interrupts from spuriously waking up this cpu */
	plat_arm_gic_cpuif_disable();

	/*
	 * The Redistributor is not powered off as it can potentially prevent
	 * wake up events reaching the CPUIF and/or might lead to losing
	 * register context.
	 */

225
	/* Perform the common cluster specific operations */
226
227
	if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
					ARM_LOCAL_STATE_OFF)
228
		fvp_cluster_pwrdwn_common();
229
230
231
232
233
234
235
236

	/* Perform the common system specific operations */
	if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
						ARM_LOCAL_STATE_OFF)
		arm_system_pwr_domain_save();

	/* Program the power controller to power off this cpu. */
	fvp_pwrc_write_ppoffr(read_mpidr_el1());
237
238
239
}

/*******************************************************************************
240
241
242
 * FVP handler called when a power domain has just been powered on after
 * being turned off earlier. The target_state encodes the low power state that
 * each level has woken up from.
243
 ******************************************************************************/
244
void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
245
{
246
	fvp_power_domain_on_finish_common(target_state);
247

248
	/* Enable the gic cpu interface */
249
250
251
252
	plat_arm_gic_pcpu_init();

	/* Program the gic per-cpu distributor or re-distributor interface */
	plat_arm_gic_cpuif_enable();
253
254
255
}

/*******************************************************************************
256
257
258
 * FVP handler called when a power domain has just been powered on after
 * having been suspended earlier. The target_state encodes the low power state
 * that each level has woken up from.
259
260
261
 * TODO: At the moment we reuse the on finisher and reinitialize the secure
 * context. Need to implement a separate suspend finisher.
 ******************************************************************************/
262
void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
263
{
264
265
266
267
268
269
270
	/*
	 * Nothing to be done on waking up from retention from CPU level.
	 */
	if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
					ARM_LOCAL_STATE_RET)
		return;

271
272
273
	fvp_power_domain_on_finish_common(target_state);

	/* Enable the gic cpu interface */
274
	plat_arm_gic_cpuif_enable();
275
276
}

277
278
279
280
281
282
/*******************************************************************************
 * FVP handlers to shutdown/reboot the system
 ******************************************************************************/
static void __dead2 fvp_system_off(void)
{
	/* Write the System Configuration Control Register */
283
284
285
286
	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
		V2M_CFGCTRL_START |
		V2M_CFGCTRL_RW |
		V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
287
288
289
290
291
292
293
294
	wfi();
	ERROR("FVP System Off: operation not handled.\n");
	panic();
}

static void __dead2 fvp_system_reset(void)
{
	/* Write the System Configuration Control Register */
295
296
297
298
	mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
		V2M_CFGCTRL_START |
		V2M_CFGCTRL_RW |
		V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
299
300
301
302
	wfi();
	ERROR("FVP System Reset: operation not handled.\n");
	panic();
}
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
static int fvp_node_hw_state(u_register_t target_cpu,
			     unsigned int power_level)
{
	unsigned int psysr;
	int ret;

	/*
	 * The format of 'power_level' is implementation-defined, but 0 must
	 * mean a CPU. We also allow 1 to denote the cluster
	 */
	if (power_level != ARM_PWR_LVL0 && power_level != ARM_PWR_LVL1)
		return PSCI_E_INVALID_PARAMS;

	/*
	 * Read the status of the given MPDIR from FVP power controller. The
	 * power controller only gives us on/off status, so map that to expected
	 * return values of the PSCI call
	 */
	psysr = fvp_pwrc_read_psysr(target_cpu);
	if (psysr == PSYSR_INVALID)
		return PSCI_E_INVALID_PARAMS;

	switch (power_level) {
	case ARM_PWR_LVL0:
		ret = (psysr & PSYSR_AFF_L0) ? HW_ON : HW_OFF;
		break;
	case ARM_PWR_LVL1:
		ret = (psysr & PSYSR_AFF_L1) ? HW_ON : HW_OFF;
		break;
	}

	return ret;
}

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
 * The FVP doesn't truly support power management at SYSTEM power domain. The
 * SYSTEM_SUSPEND will be down-graded to the cluster level within the platform
 * layer. The `fake` SYSTEM_SUSPEND allows us to validate some of the driver
 * save and restore sequences on FVP.
 */
void fvp_get_sys_suspend_power_state(psci_power_state_t *req_state)
{
	unsigned int i;

	for (i = ARM_PWR_LVL0; i <= PLAT_MAX_PWR_LVL; i++)
		req_state->pwr_domain_state[i] = ARM_LOCAL_STATE_OFF;
}

/*******************************************************************************
 * Handler to filter PSCI requests.
 ******************************************************************************/
/*
 * The system power domain suspend is only supported only via
 * PSCI SYSTEM_SUSPEND API. PSCI CPU_SUSPEND request to system power domain
 * will be downgraded to the lower level.
 */
static int fvp_validate_power_state(unsigned int power_state,
			    psci_power_state_t *req_state)
{
	int rc;
	rc = arm_validate_power_state(power_state, req_state);

	/*
	 * Ensure that the system power domain level is never suspended
	 * via PSCI CPU SUSPEND API. Currently system suspend is only
	 * supported via PSCI SYSTEM SUSPEND API.
	 */
	req_state->pwr_domain_state[ARM_PWR_LVL2] = ARM_LOCAL_STATE_RUN;
	return rc;
}

/*
 * Custom `translate_power_state_by_mpidr` handler for FVP. Unlike in the
 * `fvp_validate_power_state`, we do not downgrade the system power
 * domain level request in `power_state` as it will be used to query the
 * PSCI_STAT_COUNT/RESIDENCY at the system power domain level.
 */
static int fvp_translate_power_state_by_mpidr(u_register_t mpidr,
		unsigned int power_state,
		psci_power_state_t *output_state)
{
	return arm_validate_power_state(power_state, output_state);
}

388
/*******************************************************************************
389
390
 * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
 * platform layer will take care of registering the handlers with PSCI.
391
 ******************************************************************************/
392
plat_psci_ops_t plat_arm_psci_pm_ops = {
393
394
395
396
397
398
	.cpu_standby = fvp_cpu_standby,
	.pwr_domain_on = fvp_pwr_domain_on,
	.pwr_domain_off = fvp_pwr_domain_off,
	.pwr_domain_suspend = fvp_pwr_domain_suspend,
	.pwr_domain_on_finish = fvp_pwr_domain_on_finish,
	.pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
399
	.system_off = fvp_system_off,
400
	.system_reset = fvp_system_reset,
401
	.validate_power_state = fvp_validate_power_state,
402
	.validate_ns_entrypoint = arm_validate_psci_entrypoint,
403
	.translate_power_state_by_mpidr = fvp_translate_power_state_by_mpidr,
404
	.get_node_hw_state = fvp_node_hw_state,
405
406
407
408
409
410
411
#if !ARM_BL31_IN_DRAM
	/*
	 * The TrustZone Controller is set up during the warmboot sequence after
	 * resuming the CPU from a SYSTEM_SUSPEND. If BL31 is located in SRAM
	 * this is  not a problem but, if it is in TZC-secured DRAM, it tries to
	 * reconfigure the same memory it is running on, causing an exception.
	 */
412
	.get_sys_suspend_power_state = fvp_get_sys_suspend_power_state,
413
#endif
414
#if !RESET_TO_BL31 && !RESET_TO_SP_MIN
415
416
417
418
	/*
	 * mem_protect is not supported in RESET_TO_BL31 and RESET_TO_SP_MIN,
	 * as that would require mapping in all of NS DRAM into BL31 or BL32.
	 */
419
420
421
422
	.mem_protect_chk	= arm_psci_mem_protect_chk,
	.read_mem_protect	= arm_psci_read_mem_protect,
	.write_mem_protect	= arm_nor_psci_write_mem_protect,
#endif
423
};