plat_gic.c 9.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <gic_v2.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include "juno_def.h"
#include "juno_private.h"


/* Value used to initialise Non-Secure irq priorities four at a time */
#define DEFAULT_NS_PRIORITY_X4 \
	(GIC_HIGHEST_NS_PRIORITY | \
	(GIC_HIGHEST_NS_PRIORITY << 8) | \
	(GIC_HIGHEST_NS_PRIORITY << 16) | \
	(GIC_HIGHEST_NS_PRIORITY << 24))


/*******************************************************************************
 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
 * and set the priority mask register to allow all interrupts to trickle in.
 ******************************************************************************/
void gic_cpuif_setup(unsigned int gicc_base)
{
	unsigned int val;

	gicc_write_pmr(gicc_base, GIC_PRI_MASK);

	val = ENABLE_GRP0 | FIQ_EN;
	val |= FIQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP0;
	val |= FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
	gicc_write_ctlr(gicc_base, val);
}

/*******************************************************************************
 * Place the cpu interface in a state where it can never make a cpu exit wfi as
 * as result of an asserted interrupt. This is critical for powering down a cpu
 ******************************************************************************/
void gic_cpuif_deactivate(unsigned int gicc_base)
{
	unsigned int val;

	/* Disable secure, non-secure interrupts and disable their bypass */
	val = gicc_read_ctlr(gicc_base);
	val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
	gicc_write_ctlr(gicc_base, val);
}

static void gic_set_secure(unsigned int gicd_base, unsigned id)
{
	/* Set interrupt as Group 0 */
	gicd_clr_igroupr(gicd_base, id);

	/* Set priority to max */
	gicd_set_ipriorityr(gicd_base, id, GIC_HIGHEST_SEC_PRIORITY);
}

/*******************************************************************************
 * Per cpu gic distributor setup which will be done by all cpus after a cold
 * boot/hotplug. This marks out the secure interrupts & enables them.
 ******************************************************************************/
void gic_pcpu_distif_setup(unsigned int gicd_base)
{
	unsigned i;

	/* Mark all 32 PPI interrupts as Group 1 (non-secure) */
	mmio_write_32(gicd_base + GICD_IGROUPR, 0xffffffffu);

	/* Setup PPI priorities doing four at a time */
	for (i = 0; i < 32; i += 4)
		mmio_write_32(gicd_base + GICD_IPRIORITYR + i, DEFAULT_NS_PRIORITY_X4);

	/* Configure those PPIs we want as secure, and enable them. */
	static const char sec_irq[] = {
		IRQ_SEC_PHY_TIMER,
		IRQ_SEC_SGI_0,
		IRQ_SEC_SGI_1,
		IRQ_SEC_SGI_2,
		IRQ_SEC_SGI_3,
		IRQ_SEC_SGI_4,
		IRQ_SEC_SGI_5,
		IRQ_SEC_SGI_6,
		IRQ_SEC_SGI_7
	};
	for (i = 0; i < sizeof(sec_irq) / sizeof(sec_irq[0]); i++) {
		gic_set_secure(gicd_base, sec_irq[i]);
		gicd_set_isenabler(gicd_base, sec_irq[i]);
	}
}

/*******************************************************************************
 * Global gic distributor setup which will be done by the primary cpu after a
 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
 * then enables the secure GIC distributor interface.
 ******************************************************************************/
static void gic_distif_setup(unsigned int gicd_base)
{
	unsigned int i, ctlr;
	const unsigned int ITLinesNumber =
				gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;

	/* Disable the distributor before going further */
	ctlr = gicd_read_ctlr(gicd_base);
	ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
	gicd_write_ctlr(gicd_base, ctlr);

	/* Mark all lines of SPIs as Group 1 (non-secure) */
	for (i = 0; i < ITLinesNumber; i++)
		mmio_write_32(gicd_base + GICD_IGROUPR + 4 + i * 4, 0xffffffffu);

	/* Setup SPI priorities doing four at a time */
	for (i = 0; i < ITLinesNumber * 32; i += 4)
		mmio_write_32(gicd_base + GICD_IPRIORITYR + 32 + i, DEFAULT_NS_PRIORITY_X4);

	/* Configure the SPIs we want as secure */
	static const char sec_irq[] = {
		IRQ_MHU,
		IRQ_GPU_SMMU_0,
		IRQ_GPU_SMMU_1,
		IRQ_ETR_SMMU,
		IRQ_TZC400,
		IRQ_TZ_WDOG
	};
	for (i = 0; i < sizeof(sec_irq) / sizeof(sec_irq[0]); i++)
		gic_set_secure(gicd_base, sec_irq[i]);

	/* Route watchdog interrupt to this CPU and enable it. */
	gicd_set_itargetsr(gicd_base, IRQ_TZ_WDOG,
			   platform_get_core_pos(read_mpidr()));
	gicd_set_isenabler(gicd_base, IRQ_TZ_WDOG);

	/* Now setup the PPIs */
	gic_pcpu_distif_setup(gicd_base);

	/* Enable Group 0 (secure) interrupts */
	gicd_write_ctlr(gicd_base, ctlr | ENABLE_GRP0);
}

void gic_setup(void)
{
	gic_cpuif_setup(GICC_BASE);
	gic_distif_setup(GICD_BASE);
}

/*******************************************************************************
 * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
 * The interrupt controller knows which pin/line it uses to signal a type of
 * interrupt. The platform knows which interrupt controller type is being used
 * in a particular security state e.g. with an ARM GIC, normal world could use
 * the GICv2 features while the secure world could use GICv3 features and vice
 * versa.
 * This function is exported by the platform to let the interrupt management
 * framework determine for a type of interrupt and security state, which line
 * should be used in the SCR_EL3 to control its routing to EL3. The interrupt
 * line is represented as the bit position of the IRQ or FIQ bit in the SCR_EL3.
 ******************************************************************************/
uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state)
{
	assert(type == INTR_TYPE_S_EL1 ||
	       type == INTR_TYPE_EL3 ||
	       type == INTR_TYPE_NS);

	assert(sec_state_is_valid(security_state));

	/*
	 * We ignore the security state parameter because Juno is GICv2 only
	 * so both normal and secure worlds are using ARM GICv2.
	 */
	return gicv2_interrupt_type_to_line(GICC_BASE, type);
}

/*******************************************************************************
 * This function returns the type of the highest priority pending interrupt at
 * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
 * interrupt pending.
 ******************************************************************************/
uint32_t plat_ic_get_pending_interrupt_type(void)
{
	uint32_t id;

	id = gicc_read_hppir(GICC_BASE);

	/* Assume that all secure interrupts are S-EL1 interrupts */
	if (id < 1022)
		return INTR_TYPE_S_EL1;

	if (id == GIC_SPURIOUS_INTERRUPT)
		return INTR_TYPE_INVAL;

	return INTR_TYPE_NS;
}

/*******************************************************************************
 * This function returns the id of the highest priority pending interrupt at
 * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
 * interrupt pending.
 ******************************************************************************/
uint32_t plat_ic_get_pending_interrupt_id(void)
{
	uint32_t id;

	id = gicc_read_hppir(GICC_BASE);

	if (id < 1022)
		return id;

	if (id == 1023)
		return INTR_ID_UNAVAILABLE;

	/*
	 * Find out which non-secure interrupt it is under the assumption that
	 * the GICC_CTLR.AckCtl bit is 0.
	 */
	return gicc_read_ahppir(GICC_BASE);
}

/*******************************************************************************
 * This functions reads the GIC cpu interface Interrupt Acknowledge register
 * to start handling the pending interrupt. It returns the contents of the IAR.
 ******************************************************************************/
uint32_t plat_ic_acknowledge_interrupt(void)
{
	return gicc_read_IAR(GICC_BASE);
}

/*******************************************************************************
 * This functions writes the GIC cpu interface End Of Interrupt register with
 * the passed value to finish handling the active interrupt
 ******************************************************************************/
void plat_ic_end_of_interrupt(uint32_t id)
{
	gicc_write_EOIR(GICC_BASE, id);
}

/*******************************************************************************
 * This function returns the type of the interrupt id depending upon the group
 * this interrupt has been configured under by the interrupt controller i.e.
 * group0 or group1.
 ******************************************************************************/
uint32_t plat_ic_get_interrupt_type(uint32_t id)
{
	uint32_t group;

	group = gicd_get_igroupr(GICD_BASE, id);

	/* Assume that all secure interrupts are S-EL1 interrupts */
	if (group == GRP0)
		return INTR_TYPE_S_EL1;
	else
		return INTR_TYPE_NS;
}