context_mgmt.c 7.62 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
11
12
13
14
15
16
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <platform.h>
#include <platform_def.h>
#include <smcc_helpers.h>
#include <string.h>
17
#include <utils.h>
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload manages the context(s) corresponding to the secure state.
 * It also uses this library to get access to the non-secure
 * state cpu context pointers.
 ******************************************************************************/
void cm_init(void)
{
	/*
	 * The context management library has only global data to initialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

/*******************************************************************************
 * The following function initializes the cpu_context 'ctx' for
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianness and secure
 * timer availability for the new execution context.
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
{
	unsigned int security_state;
	uint32_t scr, sctlr;
	regs_t *reg_ctx;

	assert(ctx);

	security_state = GET_SECURITY_STATE(ep->h.attr);

	/* Clear any residual register values from the context */
64
	zeromem(ctx, sizeof(*ctx));
65

66
67
	reg_ctx = get_regs_ctx(ctx);

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
	/*
	 * Base the context SCR on the current value, adjust for entry point
	 * specific requirements
	 */
	scr = read_scr();
	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);

	if (security_state != SECURE)
		scr |= SCR_NS_BIT;

	/*
	 * Set up SCTLR for the Non Secure context.
	 * EE bit is taken from the entrypoint attributes
	 * M, C and I bits must be zero (as required by PSCI specification)
	 *
	 * The target exception level is based on the spsr mode requested.
	 * If execution is requested to hyp mode, HVC is enabled
	 * via SCR.HCE.
	 *
	 * Always compute the SCTLR_EL1 value and save in the cpu_context
	 * - the HYP registers are set up by cm_preapre_ns_entry() as they
	 * are not part of the stored cpu_context
	 *
	 * TODO: In debug builds the spsr should be validated and checked
	 * against the CPU support, security state, endianness and pc
	 */
	if (security_state != SECURE) {
		sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
96
97
98
99
100
101
		/*
		 * In addition to SCTLR_RES1, set the CP15_BEN, nTWI & nTWE
		 * bits that architecturally reset to 1.
		 */
		sctlr |= SCTLR_RES1 | SCTLR_CP15BEN_BIT |
				SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
	}

	if (GET_M32(ep->spsr) == MODE32_hyp)
		scr |= SCR_HCE_BIT;

	write_ctx_reg(reg_ctx, CTX_SCR, scr);
	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);

	/*
	 * Store the r0-r3 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
}

/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to hyp mode, HSCTLR is initialized
 * If execution is requested to non-secure PL1, and the CPU supports
 * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
 * registers.
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
	uint32_t sctlr, scr, hcptr;
	cpu_context_t *ctx = cm_get_context(security_state);

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
		if (scr & SCR_HCE_BIT) {
			/* Use SCTLR value to initialize HSCTLR */
			sctlr = read_ctx_reg(get_regs_ctx(ctx),
						 CTX_NS_SCTLR);
			sctlr |= HSCTLR_RES1;
			/* Temporarily set the NS bit to access HSCTLR */
			write_scr(read_scr() | SCR_NS_BIT);
			/*
			 * Make sure the write to SCR is complete so that
			 * we can access HSCTLR
			 */
			isb();
			write_hsctlr(sctlr);
			isb();

			write_scr(read_scr() & ~SCR_NS_BIT);
			isb();
		} else if (read_id_pfr1() &
			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) {
180
181
182
183
			/*
			 * Set the NS bit to access NS copies of certain banked
			 * registers
			 */
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
			write_scr(read_scr() | SCR_NS_BIT);
			isb();

			/* PL2 present but unused, need to disable safely */
			write_hcr(0);

			/* HSCTLR : can be ignored when bypassing */

			/* HCPTR : disable all traps TCPAC, TTA, TCP */
			hcptr = read_hcptr();
			hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT);
			write_hcptr(hcptr);

			/* Enable EL1 access to timer */
			write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT);

			/* Reset CNTVOFF_EL2 */
			write64_cntvoff(0);

			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
			write_vpidr(read_midr());
			write_vmpidr(read_mpidr());

			/*
			 * Reset VTTBR.
			 * Needed because cache maintenance operations depend on
			 * the VMID even when non-secure EL1&0 stage 2 address
			 * translation are disabled.
			 */
			write64_vttbr(0);
214
215
216
217
218
219
220
221
222

			/*
			 * Avoid unexpected debug traps in case where HDCR
			 * is not completely reset by the hardware - set
			 * HDCR.HPMN to PMCR.N and zero the remaining bits.
			 * The HDCR.HPMN and PMCR.N fields are the same size
			 * (5 bits) and HPMN is at offset zero within HDCR.
			 */
			write_hdcr((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT);
223
224
225
226
227
228

			/*
			 * Reset CNTHP_CTL to disable the EL2 physical timer and
			 * therefore prevent timer interrupts.
			 */
			write_cnthp_ctl(0);
229
230
231
232
233
234
235
			isb();

			write_scr(read_scr() & ~SCR_NS_BIT);
			isb();
		}
	}
}