context_mgmt.c 13.2 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
2
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
8
#include <arch_helpers.h>
9
#include <assert.h>
Achin Gupta's avatar
Achin Gupta committed
10
#include <bl_common.h>
11
#include <context.h>
Achin Gupta's avatar
Achin Gupta committed
12
#include <context_mgmt.h>
13
#include <interrupt_mgmt.h>
14
#include <platform.h>
15
#include <platform_def.h>
16
#include <smcc_helpers.h>
17
#include <string.h>
18
#include <utils.h>
Achin Gupta's avatar
Achin Gupta committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
34
void cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
35
36
37
38
39
40
41
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

42
/*******************************************************************************
43
 * The following function initializes the cpu_context 'ctx' for
44
45
46
47
48
49
50
51
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianess and secure
52
 * timer availability for the new execution context.
53
54
55
56
57
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
58
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59
{
60
	unsigned int security_state;
61
62
63
64
65
66
67
	uint32_t scr_el3;
	el3_state_t *state;
	gp_regs_t *gp_regs;
	unsigned long sctlr_elx;

	assert(ctx);

68
69
	security_state = GET_SECURITY_STATE(ep->h.attr);

70
	/* Clear any residual register values from the context */
71
	zeromem(ctx, sizeof(*ctx));
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

	/*
	 * Base the context SCR on the current value, adjust for entry point
	 * specific requirements and set trap bits from the IMF
	 * TODO: provide the base/global SCR bits using another mechanism?
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);

	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;

	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;

	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

91
92
93
94
95
#ifndef HANDLE_EA_EL3_FIRST
	/* Explicitly stop to trap aborts from lower exception levels. */
	scr_el3 &= ~SCR_EA_BIT;
#endif

96
#ifdef IMAGE_BL31
97
98
99
100
	/*
	 * IRQ/FIQ bits only need setting if interrupt routing
	 * model has been set up for BL31.
	 */
101
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
102
#endif
103
104
105

	/*
	 * Set up SCTLR_ELx for the target exception level:
Soren Brinkmann's avatar
Soren Brinkmann committed
106
	 * EE bit is taken from the entrypoint attributes
107
108
109
110
111
112
113
114
115
116
117
118
119
120
	 * M, C and I bits must be zero (as required by PSCI specification)
	 *
	 * The target exception level is based on the spsr mode requested.
	 * If execution is requested to EL2 or hyp mode, HVC is enabled
	 * via SCR_EL3.HCE.
	 *
	 * Always compute the SCTLR_EL1 value and save in the cpu_context
	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
	 * are not part of the stored cpu_context
	 *
	 * TODO: In debug builds the spsr should be validated and checked
	 * against the CPU support, security state, endianess and pc
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
121
122
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
123
	else {
124
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
125
126
127
128
129
130
131
132
133
134
135
		/*
		 * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI
		 * & nTWI bits. This aligns with SCTLR initialization on
		 * systems with an AArch32 EL3, where these bits
		 * architecturally reset to 1.
		 */
		if (security_state != SECURE)
			sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT
						| SCTLR_NTWE_BIT;
	}

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
	uint32_t sctlr_elx, scr_el3, cptr_el2;
	cpu_context_t *ctx = cm_get_context(security_state);

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
			sctlr_elx &= ~SCTLR_EE_BIT;
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
		} else if (read_id_aa64pfr0_el1() &
			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
			/* EL2 present but unused, need to disable safely */

			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

			/* SCTLR_EL2 : can be ignored when bypassing */

			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
			cptr_el2 = read_cptr_el2();
			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
			write_cptr_el2(cptr_el2);

			/* Enable EL1 access to timer */
			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);

225
226
227
			/* Reset CNTVOFF_EL2 */
			write_cntvoff_el2(0);

228
229
230
			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
231
232
233
234
235
236
237
238

			/*
			 * Reset VTTBR_EL2.
			 * Needed because cache maintenance operations depend on
			 * the VMID even when non-secure EL1&0 stage 2 address
			 * translation are disabled.
			 */
			write_vttbr_el2(0);
239
240
241
242
243
244
245
246
247
248
			/*
			 * Avoid unexpected debug traps in case where MDCR_EL2
			 * is not completely reset by the hardware - set
			 * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining
			 * bits.
			 * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size
			 * (5 bits) and HPMN is at offset zero within MDCR_EL2.
			 */
			write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT);
249
250
251
252
253
254
255
256
257
258
259
260
			/*
			 * Avoid unexpected traps of non-secure access to
			 * certain system registers at EL1 or lower where
			 * HSTR_EL2 is not completely reset to zero by the
			 * hardware - zero the entire register.
			 */
			write_hstr_el2(0);
			/*
			 * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer
			 * and therefore prevent timer interrupts.
			 */
			write_cnthp_ctl_el2(0);
261
262
263
264
265
266
267
268
		}
	}

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));

	cm_set_next_context(ctx);
}

Achin Gupta's avatar
Achin Gupta committed
269
/*******************************************************************************
270
271
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
272
273
274
275
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
276
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
277

278
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
279
280
281
282
283
284
285
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
286
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
287

288
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
289
290
291
292
293
294
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
}

/*******************************************************************************
295
296
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
297
 ******************************************************************************/
298
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
299
{
300
301
	cpu_context_t *ctx;
	el3_state_t *state;
302

303
	ctx = cm_get_context(security_state);
304
305
	assert(ctx);

306
	/* Populate EL3 state so that ERET jumps to the correct entry */
307
308
309
310
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

311
/*******************************************************************************
312
313
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
314
 ******************************************************************************/
315
void cm_set_elr_spsr_el3(uint32_t security_state,
316
			uintptr_t entrypoint, uint32_t spsr)
317
{
318
319
	cpu_context_t *ctx;
	el3_state_t *state;
320

321
	ctx = cm_get_context(security_state);
322
323
324
325
326
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
327
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
328
329
}

330
331
332
333
334
335
336
337
338
339
340
341
342
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

343
	ctx = cm_get_context(security_state);
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

372
	ctx = cm_get_context(security_state);
373
374
375
376
377
378
379
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

380
381
382
383
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
384
385
386
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
387
	cpu_context_t *ctx;
388

389
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
390
391
	assert(ctx);

392
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
393
}