juno_helpers.S 9.35 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
 */

#include <arch.h>
#include <asm_macros.S>
#include <bl_common.h>
10
#include <cortex_a53.h>
11
#include <cortex_a57.h>
12
#include <cortex_a72.h>
13
14
#include <cpu_macros.S>
#include <css_def.h>
15
#include <v2m_def.h>
16
17
18
#include "../juno_def.h"


19
	.globl	plat_reset_handler
20
	.globl	plat_arm_calc_core_pos
21
22
23
24
#if JUNO_AARCH32_EL3_RUNTIME
	.globl	plat_get_my_entrypoint
	.globl	juno_reset_to_aarch32_state
#endif
25

26
27
28
29
30
#define JUNO_REVISION(rev)	REV_JUNO_R##rev
#define JUNO_HANDLER(rev)	plat_reset_handler_juno_r##rev
#define JUMP_TO_HANDLER_IF_JUNO_R(revision)	\
	jump_to_handler JUNO_REVISION(revision), JUNO_HANDLER(revision)

31
	/* --------------------------------------------------------------------
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
	 * Helper macro to jump to the given handler if the board revision
	 * matches.
	 * Expects the Juno board revision in x0.
	 * --------------------------------------------------------------------
	 */
	.macro jump_to_handler _revision, _handler
	cmp	x0, #\_revision
	b.eq	\_handler
	.endm

	/* --------------------------------------------------------------------
	 * Helper macro that reads the part number of the current CPU and jumps
	 * to the given label if it matches the CPU MIDR provided.
	 *
	 * Clobbers x0.
	 * --------------------------------------------------------------------
	 */
	.macro  jump_if_cpu_midr _cpu_midr, _label
	mrs	x0, midr_el1
	ubfx	x0, x0, MIDR_PN_SHIFT, #12
	cmp     w0, #((\_cpu_midr >> MIDR_PN_SHIFT) & MIDR_PN_MASK)
	b.eq	\_label
	.endm

	/* --------------------------------------------------------------------
	 * Platform reset handler for Juno R0.
58
	 *
59
60
61
62
63
	 * Juno R0 has the following topology:
	 * - Quad core Cortex-A53 processor cluster;
	 * - Dual core Cortex-A57 processor cluster.
	 *
	 * This handler does the following:
64
65
66
67
68
	 * - Implement workaround for defect id 831273 by enabling an event
	 *   stream every 65536 cycles.
	 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
	 * - Set the L2 Tag RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
	 * --------------------------------------------------------------------
69
	 */
70
func JUNO_HANDLER(0)
71
	/* --------------------------------------------------------------------
72
	 * Enable the event stream every 65536 cycles
73
74
	 * --------------------------------------------------------------------
	 */
75
76
77
78
79
80
81
	mov     x0, #(0xf << EVNTI_SHIFT)
	orr     x0, x0, #EVNTEN_BIT
	msr     CNTKCTL_EL1, x0

	/* --------------------------------------------------------------------
	 * Nothing else to do on Cortex-A53.
	 * --------------------------------------------------------------------
82
	 */
83
	jump_if_cpu_midr CORTEX_A53_MIDR, 1f
84
85

	/* --------------------------------------------------------------------
86
	 * Cortex-A57 specific settings
87
88
	 * --------------------------------------------------------------------
	 */
89
90
91
	mov	x0, #((CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT) |	\
		      (CORTEX_A57_L2_TAG_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_TAG_RAM_LATENCY_SHIFT))
	msr     CORTEX_A57_L2CTLR_EL1, x0
92
93
94
95
1:
	isb
	ret
endfunc JUNO_HANDLER(0)
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
	/* --------------------------------------------------------------------
	 * Platform reset handler for Juno R1.
	 *
	 * Juno R1 has the following topology:
	 * - Quad core Cortex-A53 processor cluster;
	 * - Dual core Cortex-A57 processor cluster.
	 *
	 * This handler does the following:
	 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
	 *
	 * Note that:
	 * - The default value for the L2 Tag RAM latency for Cortex-A57 is
	 *   suitable.
	 * - Defect #831273 doesn't affect Juno R1.
	 * --------------------------------------------------------------------
	 */
func JUNO_HANDLER(1)
	/* --------------------------------------------------------------------
	 * Nothing to do on Cortex-A53.
	 * --------------------------------------------------------------------
	 */
	jump_if_cpu_midr CORTEX_A57_MIDR, A57
119
120
121
122
123
124
125
	ret

A57:
	/* --------------------------------------------------------------------
	 * Cortex-A57 specific settings
	 * --------------------------------------------------------------------
	 */
126
127
	mov	x0, #(CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT)
	msr     CORTEX_A57_L2CTLR_EL1, x0
128
129
130
	isb
	ret
endfunc JUNO_HANDLER(1)
131

132
	/* --------------------------------------------------------------------
133
134
135
136
137
138
	 * Platform reset handler for Juno R2.
	 *
	 * Juno R2 has the following topology:
	 * - Quad core Cortex-A53 processor cluster;
	 * - Dual core Cortex-A72 processor cluster.
	 *
139
140
141
142
143
144
	 * This handler does the following:
	 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A72
	 * - Set the L2 Tag RAM latency to 1 (i.e. 2 cycles) for Cortex-A72
	 *
	 * Note that:
	 * - Defect #831273 doesn't affect Juno R2.
145
	 * --------------------------------------------------------------------
146
	 */
147
func JUNO_HANDLER(2)
148
149
150
151
152
153
154
155
156
157
158
159
	/* --------------------------------------------------------------------
	 * Nothing to do on Cortex-A53.
	 * --------------------------------------------------------------------
	 */
	jump_if_cpu_midr CORTEX_A72_MIDR, A72
	ret

A72:
	/* --------------------------------------------------------------------
	 * Cortex-A72 specific settings
	 * --------------------------------------------------------------------
	 */
160
161
162
	mov	x0, #((CORTEX_A72_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A72_L2CTLR_DATA_RAM_LATENCY_SHIFT) |	\
		      (CORTEX_A72_L2_TAG_RAM_LATENCY_2_CYCLES << CORTEX_A72_L2CTLR_TAG_RAM_LATENCY_SHIFT))
	msr     CORTEX_A57_L2CTLR_EL1, x0
163
	isb
164
	ret
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
endfunc JUNO_HANDLER(2)

	/* --------------------------------------------------------------------
	 * void plat_reset_handler(void);
	 *
	 * Determine the Juno board revision and call the appropriate reset
	 * handler.
	 * --------------------------------------------------------------------
	 */
func plat_reset_handler
	/* Read the V2M SYS_ID register */
	mov_imm	x0, (V2M_SYSREGS_BASE + V2M_SYS_ID)
	ldr	w1, [x0]
	/* Extract board revision from the SYS_ID */
	ubfx	x0, x1, #V2M_SYS_ID_REV_SHIFT, #4

	JUMP_TO_HANDLER_IF_JUNO_R(0)
	JUMP_TO_HANDLER_IF_JUNO_R(1)
	JUMP_TO_HANDLER_IF_JUNO_R(2)

	/* Board revision is not supported */
186
	no_ret	plat_panic_handler
187

188
endfunc plat_reset_handler
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
	/* -----------------------------------------------------
	 *  void juno_do_reset_to_aarch32_state(void);
	 *
	 *  Request warm reset to AArch32 mode.
	 * -----------------------------------------------------
	 */
func juno_do_reset_to_aarch32_state
	mov	x0, #RMR_EL3_RR_BIT
	dsb	sy
	msr	rmr_el3, x0
	isb
	wfi
endfunc juno_do_reset_to_aarch32_state

204
	/* -----------------------------------------------------
205
	 *  unsigned int plat_arm_calc_core_pos(u_register_t mpidr)
206
207
208
209
210
211
	 *  Helper function to calculate the core position.
	 * -----------------------------------------------------
	 */
func plat_arm_calc_core_pos
	b	css_calc_core_pos_swap_cluster
endfunc plat_arm_calc_core_pos
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

#if JUNO_AARCH32_EL3_RUNTIME
	/* ---------------------------------------------------------------------
	 * uintptr_t plat_get_my_entrypoint (void);
	 *
	 * Main job of this routine is to distinguish between a cold and a warm
	 * boot. On JUNO platform, this distinction is based on the contents of
	 * the Trusted Mailbox. It is initialised to zero by the SCP before the
	 * AP cores are released from reset. Therefore, a zero mailbox means
	 * it's a cold reset. If it is a warm boot then a request to reset to
	 * AArch32 state is issued. This is the only way to reset to AArch32
	 * in EL3 on Juno. A trampoline located at the high vector address
	 * has already been prepared by BL1.
	 *
	 * This functions returns the contents of the mailbox, i.e.:
	 *  - 0 for a cold boot;
	 *  - request warm reset in AArch32 state for warm boot case;
	 * ---------------------------------------------------------------------
	 */
func plat_get_my_entrypoint
	mov_imm	x0, PLAT_ARM_TRUSTED_MAILBOX_BASE
	ldr	x0, [x0]
	cbz	x0, return
	b	juno_do_reset_to_aarch32_state
1:
	b	1b
return:
	ret
endfunc plat_get_my_entrypoint

/*
 * Emit a "movw r0, #imm16" which moves the lower
 * 16 bits of `_val` into r0.
 */
.macro emit_movw _reg_d, _val
	mov_imm	\_reg_d, (0xe3000000 | \
			((\_val & 0xfff) | \
			((\_val & 0xf000) << 4)))
.endm

/*
 * Emit a "movt r0, #imm16" which moves the upper
 * 16 bits of `_val` into r0.
 */
.macro emit_movt _reg_d, _val
	mov_imm	\_reg_d, (0xe3400000 | \
			(((\_val & 0x0fff0000) >> 16) | \
			((\_val & 0xf0000000) >> 12)))
.endm

/*
 * This function writes the trampoline code at HI-VEC (0xFFFF0000)
 * address which loads r0 with the entrypoint address for
 * BL32 (a.k.a SP_MIN) when EL3 is in AArch32 mode. A warm reset
 * to AArch32 mode is then requested by writing into RMR_EL3.
 */
func juno_reset_to_aarch32_state
269
270
271
272
273
274
275
276
277
278
	/*
	 * Invalidate all caches before the warm reset to AArch32 state.
	 * This is required on the Juno AArch32 boot flow because the L2
	 * unified cache may contain code and data from when the processor
	 * was still executing in AArch64 state.  This code only runs on
	 * the primary core, all other cores are powered down.
	 */
	mov	x0, #DCISW
	bl	dcsw_op_all

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
	emit_movw	w0, BL32_BASE
	emit_movt	w1, BL32_BASE
	/* opcode "bx r0" to branch using r0 in AArch32 mode */
	mov_imm	w2, 0xe12fff10

	/* Write the above opcodes at HI-VECTOR location */
	mov_imm	x3, HI_VECTOR_BASE
	str	w0, [x3], #4
	str	w1, [x3], #4
	str	w2, [x3]

	bl	juno_do_reset_to_aarch32_state
1:
	b	1b
endfunc juno_reset_to_aarch32_state

#endif /* JUNO_AARCH32_EL3_RUNTIME */