dimm.c 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
 * Copyright 2021 NXP
 *
 * SPDX-License-Identifier: BSD-3-Clause
 *
 */

#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>


#include <common/debug.h>
#include <ddr.h>
#include <dimm.h>
#include <i2c.h>
#include <lib/utils.h>

int read_spd(unsigned char chip, void *buf, int len)
{
	unsigned char dummy = 0U;
	int ret;

	if (len < 256) {
		ERROR("Invalid SPD length\n");
		return -EINVAL;
	}

	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
	ret = i2c_read(chip, 0, 1, buf, 256);
	if (ret == 0) {
		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
		ret = i2c_read(chip, 0, 1, buf + 256, min(256, len - 256));
	}
	if (ret != 0) {
		zeromem(buf, len);
	}

	return ret;
}

int crc16(unsigned char *ptr, int count)
{
	int i;
	int crc = 0;

	while (--count >= 0) {
		crc = crc ^ (int)*ptr++ << 8;
		for (i = 0; i < 8; ++i) {
			if ((crc & 0x8000) != 0) {
				crc = crc << 1 ^ 0x1021;
			} else {
				crc = crc << 1;
			}
		}
	}
	return crc & 0xffff;
}

static int ddr4_spd_check(const struct ddr4_spd *spd)
{
	void *p = (void *)spd;
	int csum16;
	int len;
	char crc_lsb;	/* byte 126 */
	char crc_msb;	/* byte 127 */

	len = 126;
	csum16 = crc16(p, len);

	crc_lsb = (char) (csum16 & 0xff);
	crc_msb = (char) (csum16 >> 8);

	if (spd->crc[0] != crc_lsb || spd->crc[1] != crc_msb) {
		ERROR("SPD CRC = 0x%x%x, computed CRC = 0x%x%x\n",
		      spd->crc[1], spd->crc[0], crc_msb, crc_lsb);
		return -EINVAL;
	}

	p = (void *)spd + 128;
	len = 126;
	csum16 = crc16(p, len);

	crc_lsb = (char) (csum16 & 0xff);
	crc_msb = (char) (csum16 >> 8);

	if (spd->mod_section.uc[126] != crc_lsb ||
	    spd->mod_section.uc[127] != crc_msb) {
		ERROR("SPD CRC = 0x%x%x, computed CRC = 0x%x%x\n",
		      spd->mod_section.uc[127], spd->mod_section.uc[126],
		      crc_msb, crc_lsb);
		return -EINVAL;
	}

	return 0;
}

static unsigned long long
compute_ranksize(const struct ddr4_spd *spd)
{
	unsigned long long bsize;

	int nbit_sdram_cap_bsize = 0;
	int nbit_primary_bus_width = 0;
	int nbit_sdram_width = 0;
	int die_count = 0;
	bool package_3ds;

	if ((spd->density_banks & 0xf) <= 7) {
		nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
	}
	if ((spd->bus_width & 0x7) < 4) {
		nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
	}
	if ((spd->organization & 0x7) < 4) {
		nbit_sdram_width = (spd->organization & 0x7) + 2;
	}
	package_3ds = (spd->package_type & 0x3) == 0x2;
	if (package_3ds) {
		die_count = (spd->package_type >> 4) & 0x7;
	}

	bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
			 nbit_primary_bus_width - nbit_sdram_width +
			 die_count);

	return bsize;
}

int cal_dimm_params(const struct ddr4_spd *spd, struct dimm_params *pdimm)
{
	int ret;
	int i;
	static const unsigned char udimm_rc_e_dq[18] = {
		0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15,
		0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36
	};
	int spd_error = 0;
	unsigned char *ptr;
	unsigned char val;

	if (spd->mem_type != SPD_MEMTYPE_DDR4) {
		ERROR("Not a DDR4 DIMM.\n");
		return -EINVAL;
	}

	ret = ddr4_spd_check(spd);
	if (ret != 0) {
		ERROR("DIMM SPD checksum mismatch\n");
		return -EINVAL;
	}

	/*
	 * The part name in ASCII in the SPD EEPROM is not null terminated.
	 * Guarantee null termination here by presetting all bytes to 0
	 * and copying the part name in ASCII from the SPD onto it
	 */
	if ((spd->info_size_crc & 0xF) > 2) {
		memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
	}

	/* DIMM organization parameters */
	pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
	debug("n_ranks %d\n", pdimm->n_ranks);
	pdimm->rank_density = compute_ranksize(spd);
	if (pdimm->rank_density == 0) {
		return -EINVAL;
	}

	debug("rank_density 0x%llx\n", pdimm->rank_density);
	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
	debug("capacity 0x%llx\n", pdimm->capacity);
	pdimm->die_density = spd->density_banks & 0xf;
	debug("die density 0x%x\n", pdimm->die_density);
	pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
	debug("primary_sdram_width %d\n", pdimm->primary_sdram_width);
	if (((spd->bus_width >> 3) & 0x3) != 0) {
		pdimm->ec_sdram_width = 8;
	} else {
		pdimm->ec_sdram_width = 0;
	}
	debug("ec_sdram_width %d\n", pdimm->ec_sdram_width);
	pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
	debug("device_width %d\n", pdimm->device_width);
	pdimm->package_3ds = (spd->package_type & 0x3) == 0x2 ?
			     (spd->package_type >> 4) & 0x7 : 0;
	debug("package_3ds %d\n", pdimm->package_3ds);

	switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) {
	case DDR4_SPD_RDIMM:
	case DDR4_SPD_MINI_RDIMM:
	case DDR4_SPD_72B_SO_RDIMM:
		pdimm->rdimm = 1;
		pdimm->rc = spd->mod_section.registered.ref_raw_card & 0x8f;
		if ((spd->mod_section.registered.reg_map & 0x1) != 0) {
			pdimm->mirrored_dimm = 1;
		}
		val = spd->mod_section.registered.ca_stren;
		pdimm->rcw[3] = val >> 4;
		pdimm->rcw[4] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
		val = spd->mod_section.registered.clk_stren;
		pdimm->rcw[5] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
		pdimm->rcw[6] = 0xf;
		/* A17 used for 16Gb+, C[2:0] used for 3DS */
		pdimm->rcw[8] = pdimm->die_density >= 0x6 ? 0x0 : 0x8 |
				(pdimm->package_3ds > 0x3 ? 0x0 :
				 (pdimm->package_3ds > 0x1 ? 0x1 :
				  (pdimm->package_3ds > 0 ? 0x2 : 0x3)));
		if (pdimm->package_3ds != 0 || pdimm->n_ranks != 4) {
			pdimm->rcw[13] = 0x4;
		} else {
			pdimm->rcw[13] = 0x5;
		}
		pdimm->rcw[13] |= pdimm->mirrored_dimm ? 0x8 : 0;
		break;

	case DDR4_SPD_UDIMM:
	case DDR4_SPD_SO_DIMM:
	case DDR4_SPD_MINI_UDIMM:
	case DDR4_SPD_72B_SO_UDIMM:
	case DDR4_SPD_16B_SO_DIMM:
	case DDR4_SPD_32B_SO_DIMM:
		pdimm->rc = spd->mod_section.unbuffered.ref_raw_card & 0x8f;
		if ((spd->mod_section.unbuffered.addr_mapping & 0x1) != 0) {
			pdimm->mirrored_dimm = 1;
		}
		if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 &&
		    (spd->mod_section.unbuffered.ref_raw_card == 0x04)) {
			/* Fix SPD error found on DIMMs with raw card E0 */
			for (i = 0; i < 18; i++) {
				if (spd->mapping[i] == udimm_rc_e_dq[i]) {
					continue;
				}
				spd_error = 1;
				ptr = (unsigned char *)&spd->mapping[i];
				*ptr = udimm_rc_e_dq[i];
			}
			if (spd_error != 0) {
				INFO("SPD DQ mapping error fixed\n");
			}
		}
		break;

	default:
		ERROR("Unknown module_type 0x%x\n", spd->module_type);
		return -EINVAL;
	}
	debug("rdimm %d\n", pdimm->rdimm);
	debug("mirrored_dimm %d\n", pdimm->mirrored_dimm);
	debug("rc 0x%x\n", pdimm->rc);

	/* SDRAM device parameters */
	pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
	debug("n_row_addr %d\n", pdimm->n_row_addr);
	pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
	debug("n_col_addr %d\n", pdimm->n_col_addr);
	pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
	debug("bank_addr_bits %d\n", pdimm->bank_addr_bits);
	pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
	debug("bank_group_bits %d\n", pdimm->bank_group_bits);

	if (pdimm->ec_sdram_width != 0) {
		pdimm->edc_config = 0x02;
	} else {
		pdimm->edc_config = 0x00;
	}
	debug("edc_config %d\n", pdimm->edc_config);

	/* DDR4 spec has BL8 -bit3, BC4 -bit2 */
	pdimm->burst_lengths_bitmask = 0x0c;
	debug("burst_lengths_bitmask 0x%x\n", pdimm->burst_lengths_bitmask);

	/* MTB - medium timebase
	 * The MTB in the SPD spec is 125ps,
	 *
	 * FTB - fine timebase
	 * use 1/10th of ps as our unit to avoid floating point
	 * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
	 */
	if ((spd->timebases & 0xf) == 0x0) {
		pdimm->mtb_ps = 125;
		pdimm->ftb_10th_ps = 10;

	} else {
		ERROR("Unknown Timebases\n");
		return -EINVAL;
	}

	/* sdram minimum cycle time */
	pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
	debug("tckmin_x_ps %d\n", pdimm->tckmin_x_ps);

	/* sdram max cycle time */
	pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
	debug("tckmax_ps %d\n", pdimm->tckmax_ps);

	/*
	 * CAS latency supported
	 * bit0 - CL7
	 * bit4 - CL11
	 * bit8 - CL15
	 * bit12- CL19
	 * bit16- CL23
	 */
	pdimm->caslat_x  = (spd->caslat_b1 << 7)	|
			   (spd->caslat_b2 << 15)	|
			   (spd->caslat_b3 << 23);
	debug("caslat_x 0x%x\n", pdimm->caslat_x);

	if (spd->caslat_b4 != 0) {
		WARN("Unhandled caslat_b4 value\n");
	}

	/*
	 * min CAS latency time
	 */
	pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
	debug("taa_ps %d\n", pdimm->taa_ps);

	/*
	 * min RAS to CAS delay time
	 */
	pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
	debug("trcd_ps %d\n", pdimm->trcd_ps);

	/*
	 * Min Row Precharge Delay Time
	 */
	pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
	debug("trp_ps %d\n", pdimm->trp_ps);

	/* min active to precharge delay time */
	pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
			  spd->tras_min_lsb) * pdimm->mtb_ps;
	debug("tras_ps %d\n", pdimm->tras_ps);

	/* min active to actice/refresh delay time */
	pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
				   spd->trc_min_lsb), spd->fine_trc_min);
	debug("trc_ps %d\n", pdimm->trc_ps);
	/* Min Refresh Recovery Delay Time */
	pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
		       pdimm->mtb_ps;
	debug("trfc1_ps %d\n", pdimm->trfc1_ps);
	pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
		       pdimm->mtb_ps;
	debug("trfc2_ps %d\n", pdimm->trfc2_ps);
	pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
			pdimm->mtb_ps;
	debug("trfc4_ps %d\n", pdimm->trfc4_ps);
	/* min four active window delay time */
	pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
			pdimm->mtb_ps;
	debug("tfaw_ps %d\n", pdimm->tfaw_ps);

	/* min row active to row active delay time, different bank group */
	pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
	debug("trrds_ps %d\n", pdimm->trrds_ps);
	/* min row active to row active delay time, same bank group */
	pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
	debug("trrdl_ps %d\n", pdimm->trrdl_ps);
	/* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
	pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
	debug("tccdl_ps %d\n", pdimm->tccdl_ps);
	if (pdimm->package_3ds != 0) {
		if (pdimm->die_density > 5) {
			debug("Unsupported logical rank density 0x%x\n",
				  pdimm->die_density);
			return -EINVAL;
		}
		pdimm->trfc_slr_ps = (pdimm->die_density <= 4) ?
				     260000 : 350000;
	}
	debug("trfc_slr_ps %d\n", pdimm->trfc_slr_ps);

	/* 15ns for all speed bins */
	pdimm->twr_ps = 15000;
	debug("twr_ps %d\n", pdimm->twr_ps);

	/*
	 * Average periodic refresh interval
	 * tREFI = 7.8 us at normal temperature range
	 */
	pdimm->refresh_rate_ps = 7800000;
	debug("refresh_rate_ps %d\n", pdimm->refresh_rate_ps);

	for (i = 0; i < 18; i++) {
		pdimm->dq_mapping[i] = spd->mapping[i];
		debug("dq_mapping 0x%x\n", pdimm->dq_mapping[i]);
	}

	pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
	debug("dq_mapping_ors %d\n", pdimm->dq_mapping_ors);

	return 0;
}