utility.c 6.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
 * Copyright 2021 NXP
 *
 * SPDX-License-Identifier: BSD-3-Clause
 *
 */

#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#include <common/debug.h>
#include <ddr.h>
#include <immap.h>
#include <lib/mmio.h>

#define UL_5POW12	244140625UL
#define ULL_2E12	2000000000000ULL
#define UL_2POW13	(1UL << 13)
#define ULL_8FS		0xFFFFFFFFULL

#define do_div(n, base) ({				\
	unsigned int __base = (base);			\
	unsigned int __rem;				\
	__rem = ((unsigned long long)(n)) % __base;	\
	(n) = ((unsigned long long)(n)) / __base;	\
	__rem;						\
})

#define CCN_HN_F_SAM_NODEID_MASK	0x7f
#ifdef NXP_HAS_CCN504
#define CCN_HN_F_SAM_NODEID_DDR0	0x4
#define CCN_HN_F_SAM_NODEID_DDR1	0xe
#elif defined(NXP_HAS_CCN508)
#define CCN_HN_F_SAM_NODEID_DDR0	0x8
#define CCN_HN_F_SAM_NODEID_DDR1	0x18
#endif

unsigned long get_ddr_freq(struct sysinfo *sys, int ctrl_num)
{
	if (sys->freq_ddr_pll0 == 0) {
		get_clocks(sys);
	}

	switch (ctrl_num) {
	case 0:
		return sys->freq_ddr_pll0;
	case 1:
		return sys->freq_ddr_pll0;
	case 2:
		return sys->freq_ddr_pll1;
	}

	return 0;
}

unsigned int get_memory_clk_ps(const unsigned long data_rate)
{
	unsigned int result;
	/* Round to nearest 10ps, being careful about 64-bit multiply/divide */
	unsigned long long rem, mclk_ps = ULL_2E12;

	/* Now perform the big divide, the result fits in 32-bits */
	rem = do_div(mclk_ps, data_rate);
	result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;

	return result;
}

unsigned int picos_to_mclk(unsigned long data_rate, unsigned int picos)
{
	unsigned long long clks, clks_rem;

	/* Short circuit for zero picos */
	if ((picos == 0U) || (data_rate == 0UL)) {
		return 0U;
	}

	/* First multiply the time by the data rate (32x32 => 64) */
	clks = picos * (unsigned long long)data_rate;
	/*
	 * Now divide by 5^12 and track the 32-bit remainder, then divide
	 * by 2*(2^12) using shifts (and updating the remainder).
	 */
	clks_rem = do_div(clks, UL_5POW12);
	clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
	clks >>= 13U;

	/* If we had a remainder greater than the 1ps error, then round up */
	if (clks_rem > data_rate) {
		clks++;
	}

	/* Clamp to the maximum representable value */
	if (clks > ULL_8FS) {
		clks = ULL_8FS;
	}
	return (unsigned int) clks;
}

/* valid_spd_mask has been checked by parse_spd */
int disable_unused_ddrc(struct ddr_info *priv,
			int valid_spd_mask, uintptr_t nxp_ccn_hn_f0_addr)
{
#if defined(NXP_HAS_CCN504) || defined(NXP_HAS_CCN508)
	void *hnf_sam_ctrl = (void *)(nxp_ccn_hn_f0_addr + CCN_HN_F_SAM_CTL);
	uint32_t val, nodeid;
#ifdef NXP_HAS_CCN504
	uint32_t num_hnf_nodes = 4U;
#else
	uint32_t num_hnf_nodes = 8U;
#endif
	int disable_ddrc = 0;
	int i;

	if (priv->num_ctlrs < 2) {
		debug("%s: nothing to do.\n", __func__);
	}

	switch (priv->dimm_on_ctlr) {
	case 1:
		disable_ddrc = ((valid_spd_mask &0x2) == 0) ? 2 : 0;
		disable_ddrc = ((valid_spd_mask &0x1) == 0) ? 1 : disable_ddrc;
		break;
	case 2:
		disable_ddrc = ((valid_spd_mask &0x4) == 0) ? 2 : 0;
		disable_ddrc = ((valid_spd_mask &0x1) == 0) ? 1 : disable_ddrc;
		break;
	default:
		ERROR("Invalid number of DIMMs %d\n", priv->dimm_on_ctlr);
		return -EINVAL;
	}

	if (disable_ddrc != 0) {
		debug("valid_spd_mask = 0x%x\n", valid_spd_mask);
	}

	switch (disable_ddrc) {
	case 1:
		priv->num_ctlrs = 1;
		priv->spd_addr = &priv->spd_addr[priv->dimm_on_ctlr];
		priv->ddr[0] = priv->ddr[1];
		priv->ddr[1] = NULL;
		priv->phy[0] = priv->phy[0];
		priv->phy[1] = NULL;
		debug("Disable first DDR controller\n");
		break;
	case 2:
		priv->num_ctlrs = 1;
		priv->ddr[1] = NULL;
		priv->phy[1] = NULL;
		debug("Disable second DDR controller\n");
		/* fallthrough */
	case 0:
		break;
	default:
		ERROR("Program error.\n");
		return -EINVAL;
	}

	if (disable_ddrc == 0) {
		debug("Both controllers in use.\n");
		return 0;
	}

	for (i = 0; i < num_hnf_nodes; i++) {
		val = mmio_read_64((uintptr_t)hnf_sam_ctrl);
		nodeid = disable_ddrc == 1 ? CCN_HN_F_SAM_NODEID_DDR1 :
			 (disable_ddrc == 2 ? CCN_HN_F_SAM_NODEID_DDR0 :
			  (i < 4 ? CCN_HN_F_SAM_NODEID_DDR0
				 : CCN_HN_F_SAM_NODEID_DDR1));
		if (nodeid != (val & CCN_HN_F_SAM_NODEID_MASK)) {
			debug("Setting HN-F node %d\n", i);
			debug("nodeid = 0x%x\n", nodeid);
			val &= ~CCN_HN_F_SAM_NODEID_MASK;
			val |= nodeid;
			mmio_write_64((uintptr_t)hnf_sam_ctrl, val);
		}
		hnf_sam_ctrl += CCN_HN_F_REGION_SIZE;
	}
#endif
	return 0;
}

unsigned int get_ddrc_version(const struct ccsr_ddr *ddr)
{
	unsigned int ver;

	ver = (ddr_in32(&ddr->ip_rev1) & 0xFFFF) << 8U;
	ver |= (ddr_in32(&ddr->ip_rev2) & 0xFF00) >> 8U;

	return ver;
}

void print_ddr_info(struct ccsr_ddr *ddr)
{
	unsigned int cs0_config = ddr_in32(&ddr->csn_cfg[0]);
	unsigned int sdram_cfg = ddr_in32(&ddr->sdram_cfg);
	int cas_lat;

	if ((sdram_cfg & SDRAM_CFG_MEM_EN) == 0U) {
		printf(" (DDR not enabled)\n");
		return;
	}

	printf("DDR");
	switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
		SDRAM_CFG_SDRAM_TYPE_SHIFT) {
	case SDRAM_TYPE_DDR4:
		printf("4");
		break;
	default:
		printf("?");
		break;
	}

	switch (sdram_cfg & SDRAM_CFG_DBW_MASK) {
	case SDRAM_CFG_32_BW:
		printf(", 32-bit");
		break;
	case SDRAM_CFG_16_BW:
		printf(", 16-bit");
		break;
	case SDRAM_CFG_8_BW:
		printf(", 8-bit");
		break;
	default:
		printf(", 64-bit");
		break;
	}

	/* Calculate CAS latency based on timing cfg values */
	cas_lat = ((ddr_in32(&ddr->timing_cfg_1) >> 16) & 0xf);
	cas_lat += 2;	/* for DDRC newer than 4.4 */
	cas_lat += ((ddr_in32(&ddr->timing_cfg_3) >> 12) & 3) << 4;
	printf(", CL=%d", cas_lat >> 1);
	if ((cas_lat & 0x1) != 0) {
		printf(".5");
	}

	if ((sdram_cfg & SDRAM_CFG_ECC_EN) != 0) {
		printf(", ECC on");
	} else {
		printf(", ECC off");
	}

	if ((cs0_config & 0x20000000) != 0) {
		printf(", ");
		switch ((cs0_config >> 24) & 0xf) {
		case DDR_256B_INTLV:
			printf("256B");
			break;
		default:
			printf("invalid");
			break;
		}
	}

	if (((sdram_cfg >> 8) & 0x7f) != 0) {
		printf(", ");
		switch (sdram_cfg >> 8 & 0x7f) {
		case DDR_BA_INTLV_CS0123:
			printf("CS0+CS1+CS2+CS3");
			break;
		case DDR_BA_INTLV_CS01:
			printf("CS0+CS1");
			break;
		default:
			printf("invalid");
			break;
		}
	}
	printf("\n");
}