psci_afflvl_suspend.c 19.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>
32
33
#include <bl_common.h>
#include <arch.h>
34
#include <arch_helpers.h>
35
#include <context.h>
36
#include <context_mgmt.h>
37
#include <runtime_svc.h>
38
#include <stddef.h>
39
#include "psci_private.h"
40

41
42
typedef int (*afflvl_suspend_handler_t)(unsigned long,
				      aff_map_node_t *,
43
44
45
46
				      unsigned long,
				      unsigned long,
				      unsigned int);

47
/*******************************************************************************
48
49
 * This function sets the power state of the current cpu while
 * powering down during a cpu_suspend call
50
 ******************************************************************************/
51
void psci_set_suspend_power_state(aff_map_node_t *node, unsigned int power_state)
52
53
54
55
56
57
58
59
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

60
61
62
	/* Save PSCI power state parameter for the core in suspend context */
	psci_suspend_context[node->data].power_state = power_state;

63
	/*
64
65
	 * Flush the suspend data to PoC since it will be accessed while
	 * returning back from suspend with the caches turned off
66
	 */
67
68
	flush_dcache_range(
		(unsigned long)&psci_suspend_context[node->data],
69
		sizeof(suspend_context_t));
70
71
}

72
73
74
75
76
77
78
/*******************************************************************************
 * This function gets the affinity level till which a cpu is powered down
 * during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
int psci_get_suspend_afflvl(unsigned long mpidr)
{
79
	aff_map_node_t *node;
80
81
82
83
84
85
86
87
88

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);

	return psci_get_aff_map_node_suspend_afflvl(node);
}


89
90
/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
91
92
93
 * down during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
94
int psci_get_aff_map_node_suspend_afflvl(aff_map_node_t *node)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
{
	unsigned int power_state;

	assert(node->level == MPIDR_AFFLVL0);

	power_state = psci_suspend_context[node->data].power_state;
	return ((power_state == PSCI_INVALID_DATA) ?
				power_state : psci_get_pstate_afflvl(power_state));
}

/*******************************************************************************
 * This function gets the state id of a cpu stored in suspend context
 * while powering down during a cpu_suspend call. Returns 0xFFFFFFFF
 * if the power state saved for the node is invalid
109
 ******************************************************************************/
110
int psci_get_suspend_stateid(unsigned long mpidr)
111
{
112
	aff_map_node_t *node;
113
114
115
116
117
118
119
120
121
122
	unsigned int power_state;

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);
	assert(node->level == MPIDR_AFFLVL0);

	power_state = psci_suspend_context[node->data].power_state;
	return ((power_state == PSCI_INVALID_DATA) ?
					power_state : psci_get_pstate_id(power_state));
123
124
}

125
126
127
128
129
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
static int psci_afflvl0_suspend(unsigned long mpidr,
130
				aff_map_node_t *cpu_node,
131
132
133
134
135
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	unsigned int index, plat_state;
136
	unsigned long psci_entrypoint, sctlr;
137
	el3_state_t *saved_el3_state;
138
139
140
141
142
	int rc = PSCI_E_SUCCESS;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

143
144
145
	/* Save PSCI power state parameter for the core in suspend context */
	psci_set_suspend_power_state(cpu_node, power_state);

146
147
148
149
150
151
152
153
154
155
	/*
	 * Generic management: Store the re-entry information for the non-secure
	 * world and allow the secure world to suspend itself
	 */

	/*
	 * Call the cpu suspend handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
156
157
	if (psci_spd_pm && psci_spd_pm->svc_suspend)
		psci_spd_pm->svc_suspend(power_state);
158

159
160
161
	/* State management: mark this cpu as suspended */
	psci_set_state(cpu_node, PSCI_STATE_SUSPEND);

162
163
164
165
166
167
168
169
170
171
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
172
173
	 * Arch. management: Save the EL3 state in the 'cpu_context'
	 * structure that has been allocated for this cpu, flush the
174
175
	 * L1 caches and exit intra-cluster coherency et al
	 */
176
177
	cm_el3_sysregs_context_save(NON_SECURE);
	rc = PSCI_E_SUCCESS;
178

179
180
181
182
183
184
185
	/*
	 * The EL3 state to PoC since it will be accessed after a
	 * reset with the caches turned off
	 */
	saved_el3_state = get_el3state_ctx(cm_get_context(mpidr, NON_SECURE));
	flush_dcache_range((uint64_t) saved_el3_state, sizeof(*saved_el3_state));

186
187
188
189
190
191
192
193
194
195
196
197
	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
198
	sctlr = read_sctlr_el3();
199
	sctlr &= ~SCTLR_C_BIT;
200
	write_sctlr_el3(sctlr);
201
	isb();	/* ensure MMU disable takes immediate effect */
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {
218
		plat_state = psci_get_phys_state(cpu_node);
219
220
221
222
223
224
225
226
227
228
229
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

static int psci_afflvl1_suspend(unsigned long mpidr,
230
				aff_map_node_t *cluster_node,
231
232
233
234
235
236
237
238
239
240
241
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

242
243
244
	/* State management: Decrement the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_SUSPEND);

245
246
247
248
	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
249
	plat_state = psci_get_phys_state(cluster_node);
250
251
252
253
254
255
256
257
258

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
259
	 * Plat. Management. Allow the platform to do its cluster
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


static int psci_afflvl2_suspend(unsigned long mpidr,
284
				aff_map_node_t *system_node,
285
286
287
288
289
290
291
292
293
294
295
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

296
297
298
	/* State management: Decrement the system reference count */
	psci_set_state(system_node, PSCI_STATE_SUSPEND);

299
300
301
302
	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
303
	plat_state = psci_get_phys_state(system_node);
304
305

	/*
306
	 * Plat. Management : Allow the platform to do its bookeeping
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

328
static const afflvl_suspend_handler_t psci_afflvl_suspend_handlers[] = {
329
330
331
332
333
334
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
335
336
337
338
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
339
static int psci_call_suspend_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
340
341
342
343
344
345
346
347
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long mpidr,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
348
	aff_map_node_t *node;
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
		rc = psci_afflvl_suspend_handlers[level](mpidr,
							 node,
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency can
 * be turned off and caches can be flushed safely.
393
394
395
396
397
 ******************************************************************************/
int psci_afflvl_suspend(unsigned long mpidr,
			unsigned long entrypoint,
			unsigned long context_id,
			unsigned int power_state,
398
399
			int start_afflvl,
			int end_afflvl)
400
{
401
	int rc = PSCI_E_SUCCESS;
402
	mpidr_aff_map_nodes_t mpidr_nodes;
403
404
405
406

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
407
408
409
410
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
411
	 */
412
413
414
415
416
417
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
418
419

	/*
420
421
422
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
423
	 */
424
425
426
427
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
428

429
430
431
432
433
434
435
436
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					mpidr,
					entrypoint,
					context_id,
					power_state);
437
438

	/*
439
440
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
441
	 */
442
443
444
445
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
446
447
448
449
450
451
452
453
454

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
455
						aff_map_node_t *cpu_node)
456
{
457
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
458
	int32_t suspend_level;
459
460
461

	assert(cpu_node->level == MPIDR_AFFLVL0);

462
	/* Ensure we have been woken up from a suspended state */
463
	state = psci_get_state(cpu_node);
464
465
	assert(state == PSCI_STATE_SUSPEND);

466
467
468
469
470
471
472
473
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
474
475

		/* Get the physical state of this cpu */
476
		plat_state = get_phys_state(state);
477
478
479
480
481
482
483
484
485
486
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	index = cpu_node->data;

	/*
487
488
	 * Arch. management: Restore the stashed EL3 architectural
	 * context from the 'cpu_context' structure for this cpu.
489
	 */
490
491
	cm_el3_sysregs_context_restore(NON_SECURE);
	rc = PSCI_E_SUCCESS;
492

493
494
495
	/*
	 * Use the more complex exception vectors to enable SPD
	 * initialisation. SP_EL3 should point to a 'cpu_context'
496
497
	 * structure. The non-secure context should have been
	 * set on this cpu prior to suspension.
498
499
500
	 */
	assert(cm_get_context(mpidr, NON_SECURE));
	cm_set_next_eret_context(NON_SECURE);
501
	cm_init_pcpu_ptr_cache();
502
503
504
505
506
507
508
	write_vbar_el3((uint64_t) runtime_exceptions);

	/*
	 * Call the cpu suspend finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
509
	if (psci_spd_pm && psci_spd_pm->svc_suspend) {
510
511
		suspend_level = psci_get_aff_map_node_suspend_afflvl(cpu_node);
		assert (suspend_level != PSCI_INVALID_DATA);
512
		psci_spd_pm->svc_suspend_finish(suspend_level);
513
514
	}

515
516
517
	/* Invalidate the suspend context for the node */
	psci_set_suspend_power_state(cpu_node, PSCI_INVALID_DATA);

518
519
520
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
521
	 * call to set this cpu on its way.
522
	 */
523
	psci_get_ns_entry_info(index);
524

525
526
527
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

528
529
530
531
532
533
534
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_suspend_finish(unsigned long mpidr,
535
						aff_map_node_t *cluster_node)
536
{
537
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
538
539
540
541
542
543
544
545
546
547
548
549

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
550
551

		/* Get the physical state of this cpu */
552
		plat_state = psci_get_phys_state(cluster_node);
553
554
555
556
557
558
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

559
560
561
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

562
563
564
565
566
	return rc;
}


static unsigned int psci_afflvl2_suspend_finish(unsigned long mpidr,
567
						aff_map_node_t *system_node)
568
{
569
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
588
589

		/* Get the physical state of the system */
590
		plat_state = psci_get_phys_state(system_node);
591
592
593
594
595
596
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

597
598
599
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

600
601
602
	return rc;
}

603
const afflvl_power_on_finisher_t psci_afflvl_suspend_finishers[] = {
604
605
606
607
608
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};