user-guide.md 45.4 KB
Newer Older
1
2
3
4
5
ARM Trusted Firmware User Guide
===============================

Contents :

6
7
8
9
10
11
12
1.  [Introduction](#1--introduction)
2.  [Host machine requirements](#2--host-machine-requirements)
3.  [Tools](#3--tools)
4.  [Building the Trusted Firmware](#4--building-the-trusted-firmware)
5.  [Obtaining the normal world software](#5--obtaining-the-normal-world-software)
6.  [Preparing the images to run on FVP](#6--preparing-the-images-to-run-on-fvp)
7.  [Running the software on FVP](#7--running-the-software-on-fvp)
13
8.  [Running the software on Juno](#8--running-the-software-on-juno)
14
15
16
17


1.  Introduction
----------------
18
This document describes how to build ARM Trusted Firmware and run it with a
19
20
21
22
tested set of other software components using defined configurations on the Juno
ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
23

24
This document should be used in conjunction with the [Firmware Design].
25
26


27
28
2.  Host machine requirements
-----------------------------
29

30
The minimum recommended machine specification for building the software and
31
32
33
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
34

35
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
36
37
for building the software were installed from that distribution unless
otherwise specified.
38
39


40
41
3.  Tools
---------
42
43
44

The following tools are required to use the ARM Trusted Firmware:

45
*   `git` package to obtain source code.
46

47
*   `build-essential`, `uuid-dev` and `iasl` packages for building UEFI and the
48
    Firmware Image Package (FIP) tool.
49

50
51
52
53
*   `bc` and `ncurses-dev` packages for building Linux.

*   `device-tree-compiler` package for building the Flattened Device Tree (FDT)
    source files (`.dts` files) provided with this software.
54
55
56

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
57
    `gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz` tools are used.
58

59
60
        wget http://releases.linaro.org/14.07/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
61

62
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.20.
63
64


65
66
4.  Building the Trusted Firmware
---------------------------------
67

68
To build the Trusted Firmware images, follow these steps:
69

70
1.  Clone the ARM Trusted Firmware repository from GitHub:
71
72
73
74
75
76
77

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

78
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
79
    a valid platform, and then build:
80

81
82
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
83
        make PLAT=<platform> all fip
84

85
86
87
88
89
90
91
92
93
94
    If `PLAT` is not specified, `fvp` is assumed by default. See the "Summary of
    build options" for more information on available build options.

    The BL3-3 image corresponds to the software that is executed after switching
    to the non-secure world. UEFI can be used as the BL3-3 image. Refer to the
    "Obtaining the normal world software" section below.

    The TSP (Test Secure Payload), corresponding to the BL3-2 image, is not
    compiled in by default. Refer to the "Building the Test Secure Payload"
    section below.
95

96
    By default this produces a release version of the build. To produce a debug
97
    version instead, refer to the "Debugging options" section below.
98

99
100
101
102
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
103

104
105
106
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
107

108
    where `<platform>` is the name of the chosen platform and `<build-type>` is
109
110
111
    either `debug` or `release`. A Firmare Image Package (FIP) will be created
    as part of the build. It contains all boot loader images except for
    `bl1.bin`.
112

113
    *   `build/<platform>/<build-type>/fip.bin`
114

115
116
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
117

118
119
4.  (Optional) Some platforms may require a BL3-0 image to boot. This image can
    be included in the FIP when building the Trusted Firmware by specifying the
120
    `BL30` build option:
121
122
123
124
125
126

        BL30=<path-to>/<bl30_image>

5.  Output binary files `bl1.bin` and `fip.bin` are both required to boot the
    system. How these files are used is platform specific. Refer to the
    platform documentation on how to use the firmware images.
127

128
6.  (Optional) Build products for a specific build variant can be removed using:
129

130
        make DEBUG=<D> PLAT=<platform> clean
131
132
133
134
135
136

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
137

138
139
140
141
142
143
144
145
146
147
7.  (Optional) Path to binary for certain BL stages (BL2, BL3-1 and BL3-2) can be
    provided by specifying the BLx=<path-to>/<blx_image> where BLx is the BL stage.
    This will bypass the build of the BL component from source, but will include
    the specified binary in the final FIP image. Please note that BL3-2 will be
    included in the build, only if the `SPD` build option is specified.

    For example, specifying BL2=<path-to>/<bl2_image> in the build option, will
    skip compilation of BL2 source in trusted firmware, but include the BL2
    binary specified in the final FIP image.

148
149
150
151
152
153
154
155
156
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

157
158
#### Common build options

159
160
*   `BL30`: Path to BL3-0 image in the host file system. This image is optional.
    If a BL3-0 image is present then this option must be passed for the `fip`
161
    target.
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
*   `BL33`: Path to BL3-3 image in the host file system. This is mandatory for
    `fip` target in case the BL2 from ARM Trusted Firmware is used.

*   `BL2`: This is an optional build option which specifies the path to BL2
    image for the `fip` target. In this case, the BL2 in the ARM Trusted
    Firmware will not be built.

*   `BL31`:  This is an optional build option which specifies the path to
    BL3-1 image for the `fip` target. In this case, the BL3-1 in the ARM
    Trusted Firmware will not be built.

*   `BL32`:  This is an optional build option which specifies the path to
    BL3-2 image for the `fip` target. In this case, the BL3-2 in the ARM
    Trusted Firmware will not be built.
177

178
179
180
*   `FIP_NAME`: This is an optional build option which specifies the FIP
    filename for the `fip` target. Default is `fip.bin`.

181
182
*   `CROSS_COMPILE`: Prefix to toolchain binaries. Please refer to examples in
    this document for usage.
183
184

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
185
    (release) or 1 (debug) as values. 0 is the default.
186

187
188
189
190
191
192
193
194
195
196
197
198
199
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

200
201
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
202
203
    1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
    wants the timer registers to be saved and restored.
204

205
206
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
207
    directory other than `common`.
208
209
210

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
211
212
    the SPD source, relative to `services/spd/`; the directory is expected to
    contain a makefile called `<spd-value>.mk`.
213
214

*   `V`: Verbose build. If assigned anything other than 0, the build commands
215
    are printed. Default is 0.
216

217
218
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
219
    by the interrupt management framework. Default is 2 (that is, version 2.0).
220

221
222
223
224
225
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

226
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector instead
227
228
229
230
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

231
232
233
234
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
235

236
237
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
238
    value of `DEBUG` - that is, by default this is only enabled for a debug
239
240
    build of the firmware.

241
*   `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
242
243
    synchronous, (see "Initializing a BL3-2 Image" section in [Firmware
    Design]). It can take the value 0 (BL3-2 is initialized using
244
245
246
    synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
    Default is 0.

247
248
249
250
251
252
*   `USE_COHERENT_MEM`: This flag determines whether to include the coherent
    memory region in the BL memory map or not (see "Use of Coherent memory in
    Trusted Firmware" section in [Firmware Design]). It can take the value 1
    (Coherent memory region is included) or 0 (Coherent memory region is
    excluded). Default is 1.

253
254
255
256
257
*   `TSPD_ROUTE_IRQ_TO_EL3`: A non zero value enables the routing model
    for non-secure interrupts in which they are routed to EL3 (TSPD). The
    default model (when the value is 0) is to route non-secure interrupts
    to S-EL1 (TSP).

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
*   `TRUSTED_BOARD_BOOT`: Boolean flag to include support for the Trusted Board
    Boot feature. When set to '1', BL1 and BL2 images include support to load
    and verify the certificates and images in a FIP. The default value is '0'.
    A successful build, when `TRUSTED_BOARD_BOOT=1`, depends upon the correct
    initialization of the `AUTH_MOD` option. Generation and inclusion of
    certificates in the FIP depends upon the value of the `GENERATE_COT` option.

*   `AUTH_MOD`: This option is used when `TRUSTED_BOARD_BOOT=1`. It specifies
    the name of the authentication module that will be used in the Trusted Board
    Boot sequence. The module must be located in `common/auth/<module name>`
    directory. The directory must contain a makefile `<module name>.mk` which
    will be used to build the module. More information can be found in
    [Trusted Board Boot]. The default module name is 'none'.

*   `GENERATE_COT`: Boolean flag used to build and execute the `cert_create`
    tool to create certificates as per the Chain of Trust described in
    [Trusted Board Boot].  The build system then calls the `fip_create` tool to
    include the certificates in the FIP. Default value is '0'.

    Specify `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=1` to include support for
    the Trusted Board Boot Sequence in the BL1 and BL2 images and the FIP.

    Note that if `TRUSTED_BOARD_BOOT=0` and `GENERATE_COT=1`, the BL1 and BL2
    images will not include support for Trusted Board Boot. The FIP will still
    include the key and content certificates. This FIP can be used to verify the
    Chain of Trust on the host machine through other mechanisms.

    Note that if `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=0`, the BL1 and BL2
    images will include support for Trusted Board Boot, but the FIP will not
    include the key and content certificates, causing a boot failure.

*   `CREATE_KEYS`: This option is used when `GENERATE_COT=1`. It tells the
    certificate generation tool to create new keys in case no valid keys are
    present or specified. Allowed options are '0' or '1'. Default is '1'.

*   `ROT_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the ROT private key in PEM format.

*   `TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
    specifies the file that contains the Trusted World private key in PEM
    format.

*   `NON_TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
    specifies the file that contains the Non-Trusted World private key in PEM
    format.

*   `BL30_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-0 private key in PEM format.

*   `BL31_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-1 private key in PEM format.

*   `BL32_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-2 private key in PEM format.

*   `BL33_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-3 private key in PEM format.

316
317
318
#### FVP specific build options

*   `FVP_TSP_RAM_LOCATION`: location of the TSP binary. Options:
319
    -   `tsram` : Trusted SRAM (default option)
320
    -   `tdram` : Trusted DRAM
321
    -   `dram`  : Secure region in DRAM (configured by the TrustZone controller)
322

323
324
For a better understanding of FVP options, the FVP memory map is explained in
the [Firmware Design].
325

326
327
328
329
330
331
#### Juno specific build options

*   `PLAT_TSP_LOCATION`: location of the TSP binary. Options:
    -   `tsram` : Trusted SRAM (default option)
    -   `dram`  : Secure region in DRAM (set by the TrustZone controller)

332
333
334
335
336
337
338
339
340
341
342
343
344
345
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

346
Create a Firmware package that contains existing BL2 and BL3-1 images:
347
348
349
350

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
351
       --bl2 build/<platform>/debug/bl2.bin --bl31 build/<platform>/debug/bl31.bin
352
353
354
355

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
356
      file: 'build/<platform>/debug/bl2.bin'
357
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
358
      file: 'build/<platform>/debug/bl31.bin'
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
376
      --bl2 build/<platform>/release/bl2.bin
377
378
379
380

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
381
      file: 'build/<platform>/release/bl2.bin'
382
383
384
385
386
387
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
388
389
390

To compile a debug version and make the build more verbose use

391
392
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
393
    make PLAT=<platform> DEBUG=1 V=1 all fip
394
395
396
397
398
399
400
401
402
403
404

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
405
406
might need to be recalculated (see the "Memory layout of BL images" section in
the [Firmware Design]).
407
408
409

Extra debug options can be passed to the build system by setting `CFLAGS`:

410
411
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
412
    BL33=<path-to>/<bl33_image>                               \
413
    make PLAT=<platform> DEBUG=1 V=1 all fip
414
415


416
417
418
419
420
421
422
423
424
425
426
427
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
428
    make PLAT=<platform> SPD=tspd all fip
429
430
431

An additional boot loader binary file is created in the `build` directory:

432
*   `build/<platform>/<build-type>/bl32.bin`
433

434
435
436
The FIP will now contain the additional BL3-2 image. Here is an example
output from an FVP build in release mode including BL3-2 and using
FVP_AARCH64_EFI.fd as BL3-3 image:
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"


452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
### Building the Certificate Generation Tool

The `cert_create` tool can be built separately through the following commands:

    $ cd tools/cert_create
    $ make [DEBUG=1] [V=1]

`DEBUG=1` builds the tool in debug mode. `V=1` makes the build process more
verbose. The following command should be used to obtain help about the tool:

    $ ./cert_create -h

The `cert_create` tool is automatically built with the `fip` target when
`GENERATE_COT=1`.


### Building a FIP image with support for Trusted Board Boot

The Trusted Board Boot feature is described in [Trusted Board Boot]. The
following steps should be followed to build a FIP image with support for this
feature.

1.  Fulfill the dependencies of the `polarssl` authentication module by checking
    out the tag `polarssl-1.3.9` from the [PolarSSL Repository].

    The `common/auth/polarssl/polarssl.mk` contains the list of PolarSSL source
    files the module depends upon. `common/auth/polarssl/polarssl_config.h`
    contains the configuration options required to build the PolarSSL sources.

    Note that the PolarSSL SSL library is licensed under the GNU GPL version 2
    or later license. Using PolarSSL source code will affect the licensing of
    Trusted Firmware binaries that are built using this library.

2.  Ensure that the following command line variables are set while invoking
    `make` to build Trusted Firmware:

    *   `POLARSSL_DIR=<path of the directory containing PolarSSL sources>`
    *   `AUTH_MOD=polarssl`
    *   `TRUSTED_BOARD_BOOT=1`
    *   `GENERATE_COT=1`


494
### Checking source code style
495
496
497

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
498
499
the project Makefile contains two targets, which both utilise the
`checkpatch.pl` script that ships with the Linux source tree.
500

501
502
503
To check the entire source tree, you must first download a copy of
`checkpatch.pl` (or the full Linux source), set the `CHECKPATCH` environment
variable to point to the script and build the target checkcodebase:
504

505
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
506
507
508
509

To just check the style on the files that differ between your local branch and
the remote master, use:

510
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
511
512

If you wish to check your patch against something other than the remote master,
513
514
set the `BASE_COMMIT` variable to your desired branch. By default, `BASE_COMMIT`
is set to `origin/master`.
515
516


517
518
5.  Obtaining the normal world software
---------------------------------------
519

520
### Obtaining EDK2
521

522
523
524
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
525

526
To build the software to be compatible with the Foundation and Base FVPs, or the
527
Juno platform, follow these steps:
528

529
1.  Clone the [EDK2 source code][EDK2] from GitHub:
530

531
        git clone -n https://github.com/tianocore/edk2.git
532

533
534
535
536
537
    Not all required features are available in the EDK2 mainline yet. These can
    be obtained from the ARM-software EDK2 repository instead:

        cd edk2
        git remote add -f --tags arm-software https://github.com/ARM-software/edk2.git
538
        git checkout --detach v2.1-rc0
539

540
2.  Copy build config templates to local workspace
541

542
        # in edk2/
543
        . edksetup.sh
544

545
3.  Build the EDK2 host tools
546

547
548
        make -C BaseTools clean
        make -C BaseTools
549

550
4.  Build the EDK2 software
551

552
553
554
555
556
557
558
559
560
561
562
563
    1.  Build for FVP

            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64 \
            EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE \
            EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"

        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:

             Build/ArmVExpress-FVP-AArch64/RELEASE_GCC49/FV/FVP_AARCH64_EFI.fd
564

565
    2.  Build for Juno
566

567
568
569
            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/ArmJunoPkg/Makefile EDK2_ARCH=AARCH64 \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE
570

571
572
        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:
573

574
575
576
577
578
579
580
581
582
583
            Build/ArmJuno/RELEASE_GCC49/FV/BL33_AP_UEFI.fd

    The EDK2 binary should be specified as `BL33` in in the `make` command line
    when building the Trusted Firmware. See the "Building the Trusted Firmware"
    section above.

5.  (Optional) To build EDK2 in debug mode, remove `EDK2_BUILD=RELEASE` from the
    command line.

6.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
584
585
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
586

587
7.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
588
589
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
590

591
592
593
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
594

595
    Then rebuild EDK2 as described in step 3, using the following flag:
596

597
598
599
600
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
601

602

603
### Obtaining a Linux kernel
604

605
606
Preparing a Linux kernel for use on the FVPs can be done as follows
(GICv2 support only):
607
608
609
610
611

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

612
    Not all required features are available in the kernel mainline yet. These
613
    can be obtained from the ARM-software Linux repository instead:
614
615

        cd linux
616
        git remote add -f --tags arm-software https://github.com/ARM-software/linux.git
617
        git checkout --detach 1.3-Juno
618
619
620
621
622
623
624

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

625
626
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
627

628
629
630
631
632
The compiled Linux image will now be found at `arch/arm64/boot/Image`.


6.  Preparing the images to run on FVP
--------------------------------------
633

634
### Obtaining the Flattened Device Trees
635
636

Depending on the FVP configuration and Linux configuration used, different
637
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
638
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
639
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
640
and MMC support, and has only one CPU cluster.
641
642
643
644

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
645
    Base memory map configuration.
646
647
648

*   `fvp-base-gicv2legacy-psci.dtb`

649
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
650
651
652

*   `fvp-base-gicv3-psci.dtb`

653
654
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
655

656
657
658
659
660
661
662
663
664
665
666
667
668
669
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


670
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
671
is launched. Alternatively a symbolic link may be used.
672

673
674
675
676
677
### Preparing the kernel image

Copy the kernel image file `arch/arm64/boot/Image` to the directory from which
the FVP is launched. Alternatively a symbolic link may be used.

678
### Obtaining a root file-system
679
680
681
682
683

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

684
#### Prepare VirtioBlock
685
686
687
688
689

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

690
    NOTE: The unpacked disk image grows to 3 GiB in size.
691

692
693
        wget http://releases.linaro.org/14.12/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.9_20141211-701.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.9_20141211-701.img.gz
694
695
696
697
698
699
700
701
702

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
703
704
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
705
706
707
708
709

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

710
    1.  In EDK2, edit the following file:
711
712
713
714
715
716
717
718
719
720
721
722
723
724

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
725
    passing it the correct command line option. In the FVPs the following
726
    option should be provided in addition to the ones described in the
727
    "Running the software on FVP" section below.
728
729
730
731

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

732
    On the Base FVPs:
733

734
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
735

736
    On the Foundation FVP:
737

738
        --block-device="<path-to>/<file-system-image>"
739

740
741
742
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

743
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
744
745
746
747
748

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

749
#### Prepare RAM-disk
750

751
To prepare a RAM-disk root file-system, do the following:
752
753
754

1.  Download the file-system image:

755
        wget http://releases.linaro.org/14.12/openembedded/aarch64/linaro-image-lamp-genericarmv8-20141212-729.rootfs.tar.gz
756
757
758
759
760
761

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
762
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20141212-729.rootfs.tar.gz | cpio -id"
763
764
765
766
767
768
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
769
    launched from. Alternatively a symbolic link may be used.
770
771


772
773
7.  Running the software on FVP
-------------------------------
774

775
This version of the ARM Trusted Firmware has been tested on the following ARM
776
777
FVPs (64-bit versions only).

778
779
780
781
782
*   `Foundation_Platform` (Version 9.1, Build 9.1.33)
*   `FVP_Base_AEMv8A-AEMv8A` (Version 6.2, Build 0.8.6202)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 6.2, Build 0.8.6202)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 6.2, Build 0.8.6202)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 6.2, Build 0.8.6202)
783
784
785

NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
786
787
788

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
789

790
791
NOTE: The Foundation FVP does not provide a debugger interface.

792
793
794
795
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

796
797
798
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

799
800

### Running on the Foundation FVP with reset to BL1 entrypoint
801

802
The following `Foundation_Platform` parameters should be used to boot Linux with
803
804
805
806
807
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

808
809
810
811
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

812
    <path-to>/Foundation_Platform             \
813
    --cores=4                                 \
814
    --secure-memory                           \
815
816
    --visualization                           \
    --gicv3                                   \
817
818
819
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
820

821
822
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
823
824
825
826
827
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

828
### Notes regarding Base FVP configuration options
829

830
831
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
832

833
834
835
1.  The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
    Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
    section above).
836

837
838
839
2.  Using `cache_state_modelled=1` makes booting very slow. The software will
    still work (and run much faster) without this option but this will hide any
    cache maintenance defects in the software.
840

841
842
843
3.  Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
    if a Linux RAM-disk file-system is used (see the "Obtaining a root
    file-system" section above).
844

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
4.  Setting the `-C bp.secure_memory` parameter to `1` is only supported on
    Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
    supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
    instructs the FVP to provide some helpful information if a secure memory
    violation occurs.

5.  This and the following notes only apply when the firmware is built with
    the `RESET_TO_BL31` option.

    The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
    parameter is used to load bootloader images into Base FVP memory (see the
    "Building the Trusted Firmware" section above). The base addresses used
    should match the image base addresses in `platform_def.h` used while linking
    the images. The BL3-2 image is only needed if BL3-1 has been built to expect
    a Secure-EL1 Payload.

6.  The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
    X and Y are the cluster and CPU numbers respectively, is used to set the
    reset vector for each core.

7.  Changing the default value of `FVP_SHARED_DATA_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl31-binary>"@<base-address-of-bl31>` and
    `-C cluster<X>.cpu<X>.RVBAR=@<base-address-of-bl31>`, to the new value of
    `BL31_BASE` in `platform_def.h`.

8.  Changing the default value of `FVP_TSP_RAM_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
    `BL32_BASE` in `platform_def.h`.
875

876
877
878
879
880
881
882
883

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
884

885
886
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
887
888
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
889
890
891
892
893
894
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
895

896
897
898
899
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
900
901
902
903

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

904
905
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
906
907
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
908
909
910
911
    -C cache_state_modelled=1                              \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
912

913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
928
929
930
931
932
933
934
935
936
937
    -C cluster0.cpu0.RVBAR=0x04023000                            \
    -C cluster0.cpu1.RVBAR=0x04023000                            \
    -C cluster0.cpu2.RVBAR=0x04023000                            \
    -C cluster0.cpu3.RVBAR=0x04023000                            \
    -C cluster1.cpu0.RVBAR=0x04023000                            \
    -C cluster1.cpu1.RVBAR=0x04023000                            \
    -C cluster1.cpu2.RVBAR=0x04023000                            \
    -C cluster1.cpu3.RVBAR=0x04023000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
954
955
956
957
958
959
960
961
962
963
    -C cluster0.cpu0.RVBARADDR=0x04023000                        \
    -C cluster0.cpu1.RVBARADDR=0x04023000                        \
    -C cluster0.cpu2.RVBARADDR=0x04023000                        \
    -C cluster0.cpu3.RVBARADDR=0x04023000                        \
    -C cluster1.cpu0.RVBARADDR=0x04023000                        \
    -C cluster1.cpu1.RVBARADDR=0x04023000                        \
    -C cluster1.cpu2.RVBARADDR=0x04023000                        \
    -C cluster1.cpu3.RVBARADDR=0x04023000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
964
965
966
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

967
968
969
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
970
971
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
972
973
974
975
976
977

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

978
The AEMv8 Base FVP can be configured to support GICv2 at addresses
979
980
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
981
982
983
984
985
986

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

987
988
989
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
990
991
992

*   `SYS_ID.Build[15:12]`

993
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
994
    default value on the Base FVPs.
995
996
997

*   `SYS_ID.Build[15:12]`

998
999
1000
1001
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
1002

1003
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
1004
BL3-3 images should be used.
1005

1006
1007
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

1008
1009
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
1010

1011
    <path-to>/Foundation_Platform             \
1012
    --cores=4                                 \
1013
    --secure-memory                           \
1014
1015
1016
1017
1018
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
1019
1020
1021

Explicit configuration of the `SYS_ID` register is not required.

1022
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
1023

1024
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
1025
1026
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
1041
    -C gicv3.gicv2-only=1                               \
1042
    -C bp.variant=0x0
1043

1044
1045
1046
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
1047
1048


1049
1050
8.  Running the software on Juno
--------------------------------
1051
1052
1053

### Preparing Trusted Firmware images

1054
1055
1056
1057
1058
1059
To execute the versions of software components on Juno referred to in this
document, the latest [Juno Board Recovery Image] must be installed. If you
have an earlier version installed or are unsure which version is installed,
follow the recovery image update instructions in the [Juno Software Guide]
on the [ARM Connected Community] website.

1060
The Juno platform requires a BL3-0 image to boot up. This image contains the
1061
1062
1063
runtime firmware that runs on the SCP (System Control Processor). This image is
embedded within the [Juno Board Recovery Image] but can also be
[downloaded directly][Juno SCP Firmware].
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

Rebuild the Trusted Firmware specifying the BL3-0 image. Refer to the section
"Building the Trusted Firmware". Alternatively, the FIP image can be updated
manually with the BL3-0 image:

    fip_create --dump --bl30 <path-to>/<bl30-binary> <path-to>/<FIP-binary>

### Obtaining the Flattened Device Tree

Juno's device tree blob is built along with the kernel. It is located in:

    <path-to-linux>/arch/arm64/boot/dts/juno.dtb

1077
### Other Juno software information
1078

1079
Please refer to the [Juno Software Guide] to:
1080

1081
1082
1083
*   Deploy a root filesystem
*   Install and run the Juno binaries on the board
*   Obtain any other Juno software information
1084
1085


1086
1087
- - - - - - - - - - - - - - - - - - - - - - - - - -

1088
_Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved._
1089
1090


1091
[Firmware Design]:  ./firmware-design.md
1092

1093
1094
1095
1096
1097
1098
1099
1100
[ARM FVP website]:             http://www.arm.com/fvp
[ARM Connected Community]:     http://community.arm.com
[Juno Software Guide]:         http://community.arm.com/docs/DOC-8396
[Juno Board Recovery Image]:   http://community.arm.com/servlet/JiveServlet/download/9427-1-15432/board_recovery_image_0.10.1.zip
[Juno SCP Firmware]:           http://community.arm.com/servlet/JiveServlet/download/9427-1-15422/bl30.bin.zip
[Linaro Toolchain]:            http://releases.linaro.org/14.07/components/toolchain/binaries/
[EDK2]:                        http://github.com/tianocore/edk2
[DS-5]:                        http://www.arm.com/products/tools/software-tools/ds-5/index.php
1101
1102
[Polarssl Repository]:         https://github.com/polarssl/polarssl.git
[Trusted Board Boot]:          trusted-board-boot.md