user-guide.md 40.2 KB
Newer Older
1
2
3
4
5
6
ARM Trusted Firmware User Guide
===============================

Contents :

1.  Introduction
7
8
9
10
2.  Host machine requirements
3.  Tools
4.  Building the Trusted Firmware
5.  Obtaining the normal world software
11
12
13
14
6.  Preparing the images to run on FVP
7.  Running the software on FVP
8.  Preparing the images to run on Juno
9.  Running the software on Juno
15
16
17
18


1.  Introduction
----------------
19
20
21
22
23
This document describes how to build ARM Trusted Firmware and run it with a
tested set of other software components using defined configurations on ARM
Fixed Virtual Platform (FVP) models. It is possible to use other software
components, configurations and platforms but that is outside the scope of this
document.
24

25
This document should be used in conjunction with the [Firmware Design].
26
27


28
29
2.  Host machine requirements
-----------------------------
30

31
The minimum recommended machine specification for building the software and
32
33
34
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
35

36
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
37
38
for building the software were installed from that distribution unless
otherwise specified.
39
40


41
42
3.  Tools
---------
43
44
45

The following tools are required to use the ARM Trusted Firmware:

46
*   `git` package to obtain source code.
47

48
*   `ia32-libs` package.
49

50
51
*   `build-essential`, `uuid-dev` and `iasl` packages for building UEFI and the
    Firmware Image Package(FIP) tool.
52

53
54
55
56
*   `bc` and `ncurses-dev` packages for building Linux.

*   `device-tree-compiler` package for building the Flattened Device Tree (FDT)
    source files (`.dts` files) provided with this software.
57
58
59

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
60
    `gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz` tools are used.
61

62
63
        wget http://releases.linaro.org/14.07/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
64

65
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.19.
66
67


68
69
4.  Building the Trusted Firmware
---------------------------------
70

71
To build the Trusted Firmware images, follow these steps:
72

73
1.  Clone the ARM Trusted Firmware repository from GitHub:
74
75
76
77
78
79
80

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

81
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
82
    a valid platform and build:
83

84
85
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
86
        make PLAT=<platform> all fip
87

88
89
90
91
92
93
94
95
96
97
    If `PLAT` is not specified, `fvp` is assumed by default. See the "Summary of
    build options" for more information on available build options.

    The BL3-3 image corresponds to the software that is executed after switching
    to the non-secure world. UEFI can be used as the BL3-3 image. Refer to the
    "Obtaining the normal world software" section below.

    The TSP (Test Secure Payload), corresponding to the BL3-2 image, is not
    compiled in by default. Refer to the "Building the Test Secure Payload"
    section below.
98

99
    By default this produces a release version of the build. To produce a debug
100
    version instead, refer to the "Debugging options" section below.
101

102
103
104
105
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
106

107
108
109
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
110

111
    where `<platform>` is the name of the chosen platform and `<build-type>` is
112
113
    either `debug` or `release`. A Firmare Image Package(FIP) will be created as
    part of the build. It contains all boot loader images except for `bl1.bin`.
114

115
    *   `build/<platform>/<build-type>/fip.bin`
116

117
118
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
119

120
121
122
123
124
125
126
127
128
4.  (Optional) Some platforms may require a BL3-0 image to boot. This image can
    be included in the FIP when building the Trusted Firmware by specifying the
    BL30 build option:

        BL30=<path-to>/<bl30_image>

5.  Output binary files `bl1.bin` and `fip.bin` are both required to boot the
    system. How these files are used is platform specific. Refer to the
    platform documentation on how to use the firmware images.
129

130
6.  (Optional) Build products for a specific build variant can be removed using:
131

132
        make DEBUG=<D> PLAT=<platform> clean
133
134
135
136
137
138

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
139

140
141
142
143
144
145
146
147
148
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

149
150
#### Common build options

151
152
153
154
*   `BL30`: Path to BL3-0 image in the host file system. This image is optional.
    If a BL3-0 image is present then this option must be passed for the `fip`
    target

155
156
157
158
159
160
161
162
163
*   `BL33`: Path to BL33 image in the host file system. This is mandatory for
    `fip` target

*   `CROSS_COMPILE`: Prefix to tool chain binaries. Please refer to examples in
    this document for usage

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
    (release) or 1 (debug) as values. 0 is the default

164
165
166
167
168
169
170
171
172
173
174
175
176
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

177
178
179
180
181
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
    1 (do save and restore). 0 is the default. An SPD could set this to 1 if it
    wants the timer registers to be saved and restored

182
183
184
185
186
187
188
189
190
191
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
    directory other than `common`

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
    SPD source; the directory is expected to contain `spd.mk` makefile

*   `V`: Verbose build. If assigned anything other than 0, the build commands
    are printed. Default is 0
192

193
194
195
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
    by the interrupt management framework. Default is 2 i.e. version 2.0.
196

197
198
199
200
201
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

202
203
204
205
206
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector in place
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

207
208
209
210
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
211

212
213
214
215
216
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
    value of `DEBUG` - i.e. by default this is only enabled for a debug
    build of the firmware.

217
218
219
220
221
222
*   `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
    synchronous, e.g. "(see "Initializing a BL3-2 Image" section in [Firmware
    Design])". It can take the value 0 (BL3-2 is initialized using
    synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
    Default is 0.

223
224
225
226
227
228
229
230
231
232
233
234
235
#### FVP specific build options

*   `FVP_SHARED_DATA_LOCATION`: location of the shared memory page. Available
    options:
      - 'tsram' (default) : top of Trusted SRAM
      - 'tdram' : base of Trusted DRAM

*   `FVP_TSP_RAM_LOCATION`: location of the TSP binary. Options:
      - 'tsram' (default) : base of Trusted SRAM
      - 'tdram' : Trusted DRAM (above shared data)

For a better understanding of FVP options, the FVP memory map is detailed in
[Firmware Design].
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

251
Create a Firmware package that contains existing BL2 and BL3-1 images:
252
253
254
255

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
256
       --bl2 build/<platform>/debug/bl2.bin --bl31 build/<platform>/debug/bl31.bin
257
258
259
260

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
261
      file: 'build/<platform>/debug/bl2.bin'
262
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
263
      file: 'build/<platform>/debug/bl31.bin'
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
281
      --bl2 build/<platform>/release/bl2.bin
282
283
284
285

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
286
      file: 'build/<platform>/release/bl2.bin'
287
288
289
290
291
292
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
293
294
295

To compile a debug version and make the build more verbose use

296
297
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
298
    make PLAT=<platform> DEBUG=1 V=1 all fip
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
might need to be recalculated (see the later memory layout section).

Extra debug options can be passed to the build system by setting `CFLAGS`:

314
315
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
316
    BL33=<path-to>/<bl33_image>                               \
317
    make PLAT=<platform> DEBUG=1 V=1 all fip
318
319


320
321
322
323
324
325
326
327
328
329
330
331
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
332
    make PLAT=<platform> SPD=tspd all fip
333
334
335
336
337

An additional boot loader binary file is created in the `build` directory:

    *   `build/<platform>/<build-type>/bl32.bin`

338
339
340
The FIP will now contain the additional BL3-2 image. Here is an example
output from an FVP build in release mode including BL3-2 and using
FVP_AARCH64_EFI.fd as BL3-3 image:
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"


356
### Checking source code style
357
358
359
360
361
362
363
364
365
366

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
the project Makefile contains two targets, which both utilise the checkpatch.pl
script that ships with the Linux source tree.

To check the entire source tree, you must first download a copy of checkpatch.pl
(or the full Linux source), set the CHECKPATCH environment variable to point to
the script and build the target checkcodebase:

367
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
368
369
370
371

To just check the style on the files that differ between your local branch and
the remote master, use:

372
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
373
374
375
376
377
378

If you wish to check your patch against something other than the remote master,
set the BASE_COMMIT variable to your desired branch.  By default, BASE_COMMIT
is set to 'origin/master'.


379
380
5.  Obtaining the normal world software
---------------------------------------
381

382
### Obtaining EDK2
383

384
385
386
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
387

388
389
To build the software to be compatible with Foundation and Base FVPs and the
Juno platform, follow these steps:
390

391
1.  Clone the [EDK2 source code][EDK2] from GitHub:
392

393
        git clone -n https://github.com/tianocore/edk2.git
394

395
396
397
398
399
400
    Not all required features are available in the EDK2 mainline yet. These can
    be obtained from the ARM-software EDK2 repository instead:

        cd edk2
        git remote add -f --tags arm-software https://github.com/ARM-software/edk2.git
        git checkout --detach v1.2
401

402
2.  Copy build config templates to local workspace
403

404
        # in edk2/
405
        . edksetup.sh
406

407
3.  Build the EDK2 host tools
408

409
410
        make -C BaseTools clean
        make -C BaseTools
411

412
4.  Build the EDK2 software
413

414
415
416
417
418
419
420
421
422
423
424
425
    1.  Build for FVP

            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64 \
            EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE \
            EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"

        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:

             Build/ArmVExpress-FVP-AArch64/RELEASE_GCC49/FV/FVP_AARCH64_EFI.fd
426

427
    2.  Build for Juno
428

429
430
431
            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/ArmJunoPkg/Makefile EDK2_ARCH=AARCH64 \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE
432

433
434
        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:
435

436
437
438
439
440
441
442
443
444
445
            Build/ArmJuno/RELEASE_GCC49/FV/BL33_AP_UEFI.fd

    The EDK2 binary should be specified as `BL33` in in the `make` command line
    when building the Trusted Firmware. See the "Building the Trusted Firmware"
    section above.

5.  (Optional) To build EDK2 in debug mode, remove `EDK2_BUILD=RELEASE` from the
    command line.

6.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
446
447
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
448

449
7.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
450
451
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
452

453
454
455
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
456

457
    Then rebuild EDK2 as described in step 3, using the following flag:
458

459
460
461
462
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
463

464

465
### Obtaining a Linux kernel
466

467
468
Preparing a Linux kernel for use on the FVPs can be done as follows
(GICv2 support only):
469
470
471
472
473

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

474
475
    Not all required features are available in the kernel mainline yet. These
    can be obtained from the ARM-software EDK2 repository instead:
476
477

        cd linux
478
479
        git remote add -f --tags arm-software https://github.com/ARM-software/linux.git
        git checkout --detach 1.1-Juno
480
481
482
483
484
485
486

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

487
488
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
489

490
491
492
493
494
The compiled Linux image will now be found at `arch/arm64/boot/Image`.


6.  Preparing the images to run on FVP
--------------------------------------
495

496
### Obtaining the Flattened Device Trees
497
498

Depending on the FVP configuration and Linux configuration used, different
499
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
500
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
501
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
502
and MMC support, and has only one CPU cluster.
503
504
505
506

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
507
    Base memory map configuration.
508
509
510

*   `fvp-base-gicv2legacy-psci.dtb`

511
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
512
513
514

*   `fvp-base-gicv3-psci.dtb`

515
516
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
517

518
519
520
521
522
523
524
525
526
527
528
529
530
531
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


532
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
533
is launched. Alternatively a symbolic link may be used.
534

535
536
537
538
539
### Preparing the kernel image

Copy the kernel image file `arch/arm64/boot/Image` to the directory from which
the FVP is launched. Alternatively a symbolic link may be used.

540
### Obtaining a root file-system
541
542
543
544
545

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

546
#### Prepare VirtioBlock
547
548
549
550
551

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

552
    NOTE: The unpacked disk image grows to 3 GiB in size.
553

554
555
        wget http://releases.linaro.org/14.07/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
556
557
558
559
560
561
562
563
564

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
565
566
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
567
568
569
570
571

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

572
    1.  In EDK2, edit the following file:
573
574
575
576
577
578
579
580
581
582
583
584
585
586

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
587
    passing it the correct command line option. In the FVPs the following
588
    option should be provided in addition to the ones described in the
589
    "Running the software on FVP" section below.
590
591
592
593

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

594
    On the Base FVPs:
595

596
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
597

598
    On the Foundation FVP:
599

600
        --block-device="<path-to>/<file-system-image>"
601
602


603
604
605
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

606
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
607
608
609
610
611

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

612
#### Prepare RAM-disk
613

614
To prepare a RAM-disk root file-system, do the following:
615
616
617

1.  Download the file-system image:

618
        wget http://releases.linaro.org/14.07/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz
619
620
621
622
623
624

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
625
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz | cpio -id"
626
627
628
629
630
631
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
632
    launched from. Alternatively a symbolic link may be used.
633
634


635
636
7.  Running the software on FVP
-------------------------------
637

638
This version of the ARM Trusted Firmware has been tested on the following ARM
639
640
FVPs (64-bit versions only).

641
642
643
644
645
646
647
648
*   `Foundation_v8` (Version 2.1, Build 9.0.24)
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 5.8, Build 0.8.5802)

NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
649
650
651

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
652

653
654
NOTE: The Foundation FVP does not provide a debugger interface.

655
656
657
658
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

659
660
661
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

662
663

### Running on the Foundation FVP with reset to BL1 entrypoint
664
665
666
667
668
669
670

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

671
672
673
674
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

675
    <path-to>/Foundation_v8                   \
676
677
678
679
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --gicv3                                   \
680
681
682
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
683

684
685
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
686
687
688
689
690
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

691
### Notes regarding Base FVP configuration options
692

693
694
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
695

696
697
698
1.  The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
    Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
    section above).
699

700
701
702
2.  Using `cache_state_modelled=1` makes booting very slow. The software will
    still work (and run much faster) without this option but this will hide any
    cache maintenance defects in the software.
703

704
705
706
3.  Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
    if a Linux RAM-disk file-system is used (see the "Obtaining a root
    file-system" section above).
707

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
4.  Setting the `-C bp.secure_memory` parameter to `1` is only supported on
    Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
    supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
    instructs the FVP to provide some helpful information if a secure memory
    violation occurs.

5.  This and the following notes only apply when the firmware is built with
    the `RESET_TO_BL31` option.

    The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
    parameter is used to load bootloader images into Base FVP memory (see the
    "Building the Trusted Firmware" section above). The base addresses used
    should match the image base addresses in `platform_def.h` used while linking
    the images. The BL3-2 image is only needed if BL3-1 has been built to expect
    a Secure-EL1 Payload.

6.  The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
    X and Y are the cluster and CPU numbers respectively, is used to set the
    reset vector for each core.

7.  Changing the default value of `FVP_SHARED_DATA_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl31-binary>"@<base-address-of-bl31>` and
    `-C cluster<X>.cpu<X>.RVBAR=@<base-address-of-bl31>`, to the new value of
    `BL31_BASE` in `platform_def.h`.

8.  Changing the default value of `FVP_TSP_RAM_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
    `BL32_BASE` in `platform_def.h`.
738

739
740
741
742
743
744
745
746

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
747

748
749
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
750
751
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
752
753
754
755
756
757
758
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
759

760
761
762
763
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
764
765
766
767

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

768
769
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
770
771
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
772
773
774
775
776
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
777

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
794
795
796
797
798
799
800
801
802
    -C cluster0.cpu0.RVBAR=0x04022000                            \
    -C cluster0.cpu1.RVBAR=0x04022000                            \
    -C cluster0.cpu2.RVBAR=0x04022000                            \
    -C cluster0.cpu3.RVBAR=0x04022000                            \
    -C cluster1.cpu0.RVBAR=0x04022000                            \
    -C cluster1.cpu1.RVBAR=0x04022000                            \
    -C cluster1.cpu2.RVBAR=0x04022000                            \
    -C cluster1.cpu3.RVBAR=0x04022000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04022000    \
803
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04000000    \
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
821
822
823
824
825
826
827
828
829
    -C cluster0.cpu0.RVBARADDR=0x04022000                        \
    -C cluster0.cpu1.RVBARADDR=0x04022000                        \
    -C cluster0.cpu2.RVBARADDR=0x04022000                        \
    -C cluster0.cpu3.RVBARADDR=0x04022000                        \
    -C cluster1.cpu0.RVBARADDR=0x04022000                        \
    -C cluster1.cpu1.RVBARADDR=0x04022000                        \
    -C cluster1.cpu2.RVBARADDR=0x04022000                        \
    -C cluster1.cpu3.RVBARADDR=0x04022000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04022000    \
830
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04000000    \
831
832
833
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

834
835
836
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
837
838
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
839
840
841
842
843
844

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

845
The AEMv8 Base FVP can be configured to support GICv2 at addresses
846
847
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
848
849
850
851
852
853

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

854
855
856
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
857
858
859

*   `SYS_ID.Build[15:12]`

860
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
861
    default value on the Base FVPs.
862
863
864

*   `SYS_ID.Build[15:12]`

865
866
867
868
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
869

870
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
871
BL3-3 images should be used.
872

873
874
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

875
876
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
877

878
879
880
881
882
883
884
885
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
886
887
888

Explicit configuration of the `SYS_ID` register is not required.

889
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
890

891
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
892
893
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
894
895
896
897
898
899
900
901
902
903
904
905
906
907

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
908
    -C bp.variant=0x0
909

910
911
912
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
913
914


915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
8.  Preparing the images to run on Juno
---------------------------------------

### Preparing Trusted Firmware images

The Juno platform requires a BL3-0 image to boot up. This image contains the
runtime firmware that runs on the SCP (System Control Processor). It can be
downloaded from the [ARM Silver SCP website] (requires registration).

Rebuild the Trusted Firmware specifying the BL3-0 image. Refer to the section
"Building the Trusted Firmware". Alternatively, the FIP image can be updated
manually with the BL3-0 image:

    fip_create --dump --bl30 <path-to>/<bl30-binary> <path-to>/<FIP-binary>

### Obtaining the Flattened Device Tree

Juno's device tree blob is built along with the kernel. It is located in:

    <path-to-linux>/arch/arm64/boot/dts/juno.dtb

### Deploying a root filesystem on a USB mass storage device

1.  Format the partition on the USB mass storage as ext4 filesystem.

    A 2GB or larger USB mass storage device is required. If another filesystem
    type is preferred then support needs to be enabled in the kernel. For
    example, if the USB mass storage corresponds to /dev/sdb device on your
    computer, use the following command to format partition 1 as ext4:

        sudo mkfs.ext4 /dev/sdb1

    Note: Please be cautious with this command as it could format your hard
    drive instead if you specify the wrong device.

2.  Mount the USB mass storage on the computer (if not done automatically):

        sudo mount /dev/sdb1 /media/usb_storage

    where '/media/usb_storage' corresponds to the mount point (the directory
    must exist prior to using the mount command).

3.  Download the rootfs specified in section "Prepare RAM-disk" and extract the
    files as root user onto the formatted partition:

        sudo tar zxf <linaro-image>.tar.gz -C /media/usb_storage/

    Note: It is not necessary to modify the Linaro image as described in that
    section since we are not using a RAM-disk.

5.  Unmount the USB mass storage:

        sudo umount /media/usb_storage


9.  Running the software on Juno
--------------------------------

The steps to install and run the binaries on Juno are as follows:

1.  Connect a serial cable to the UART0 port (the top UART port on the back
    panel). The UART settings are 115200 bauds, 8 bits data, no parity, 1 stop
    bit.

2.  Mount the Juno board storage via the CONFIG USB port

    This is the only USB type B port on the board, labelled DBG_USB and located
    on the back panel next to the ON/OFF and HW RESET buttons. Plug a type B USB
    cable into this port on the Juno board and plug the other end into a host
    PC, and then issue the following command in the UART0 session:

        Cmd> usb_on

    If the board doesn't show the Cmd> prompt then press the black HW RESET
    button once. Once the Juno board storage is detected by your PC, mount it
    (if not automatically done by your operating system).

        mount /dev/sdbX /media/JUNO

    For the rest of the installation instructions, we will assume that the Juno
    board storage has been mounted under the /media/JUNO directory.

3.  Copy the files obtained from the build process into /media/JUNO/SOFTWARE:

        bl1.bin
        fip.bin
        Image
        juno.dtb

4.  Umount the Juno board storage

        umount /media/JUNO

5.  Reboot the board. In the UART0 session, type:

        Cmd> reboot


1013
1014
- - - - - - - - - - - - - - - - - - - - - - - - - -

1015
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
1016
1017


1018
[Firmware Design]:  ./firmware-design.md
1019

1020
1021
1022
1023
1024
[ARM FVP website]:         http://www.arm.com/fvp
[ARM Silver SCP website]:  https://silver.arm.com/download/download.tm?pv=1764630
[Linaro Toolchain]:        http://releases.linaro.org/14.07/components/toolchain/binaries/
[EDK2]:                    http://github.com/tianocore/edk2
[DS-5]:                    http://www.arm.com/products/tools/software-tools/ds-5/index.php