sunxi_power.c 9.27 KB
Newer Older
1
2
3
4
5
6
7
/*
 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
 * Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io>
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

8
#include <errno.h>
9

10
#include <libfdt.h>
11

12
#include <platform_def.h>
13
14
15
16
17
18
19

#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/allwinner/sunxi_rsb.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>

20
21
#include <sunxi_def.h>
#include <sunxi_mmap.h>
22
#include <sunxi_private.h>
23

24
25
26
static enum pmic_type {
	GENERIC_H5,
	GENERIC_A64,
27
	REF_DESIGN_H5,	/* regulators controlled by GPIO pins on port L */
28
	AXP803_RSB,	/* PMIC connected via RSB on most A64 boards */
29
30
} pmic;

31
32
33
#define AXP803_HW_ADDR	0x3a3
#define AXP803_RT_ADDR	0x2d

34
35
36
37
38
39
40
41
/*
 * On boards without a proper PMIC we struggle to turn off the system properly.
 * Try to turn off as much off the system as we can, to reduce power
 * consumption. This should be entered with only one core running and SMP
 * disabled.
 * This function only cares about peripherals.
 */
void sunxi_turn_off_soc(uint16_t socid)
42
{
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
	int i;

	/** Turn off most peripherals, most importantly DRAM users. **/
	/* Keep DRAM controller running for now. */
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, ~BIT_32(14));
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, ~BIT_32(14));
	/* Contains msgbox (bit 21) and spinlock (bit 22) */
	mmio_write_32(SUNXI_CCU_BASE + 0x2c4, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x64, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x2c8, 0);
	/* Keep PIO controller running for now. */
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x68, ~(BIT_32(5)));
	mmio_write_32(SUNXI_CCU_BASE + 0x2d0, 0);
	/* Contains UART0 (bit 16) */
	mmio_write_32(SUNXI_CCU_BASE + 0x2d8, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x6c, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x70, 0);

	/** Turn off DRAM controller. **/
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, BIT_32(14));
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, BIT_32(14));
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
	/** Migrate CPU and bus clocks away from the PLLs. **/
	/* AHB1: use OSC24M/1, APB1 = AHB1 / 2 */
	mmio_write_32(SUNXI_CCU_BASE + 0x54, 0x1000);
	/* APB2: use OSC24M */
	mmio_write_32(SUNXI_CCU_BASE + 0x58, 0x1000000);
	/* AHB2: use AHB1 clock */
	mmio_write_32(SUNXI_CCU_BASE + 0x5c, 0);
	/* CPU: use OSC24M */
	mmio_write_32(SUNXI_CCU_BASE + 0x50, 0x10000);

	/** Turn off PLLs. **/
	for (i = 0; i < 6; i++)
		mmio_clrbits_32(SUNXI_CCU_BASE + i * 8, BIT(31));
	switch (socid) {
	case SUNXI_SOC_H5:
		mmio_clrbits_32(SUNXI_CCU_BASE + 0x44, BIT(31));
		break;
	case SUNXI_SOC_A64:
		mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c, BIT(31));
		mmio_clrbits_32(SUNXI_CCU_BASE + 0x4c, BIT(31));
		break;
	}
}

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
static int rsb_init(void)
{
	int ret;

	ret = rsb_init_controller();
	if (ret)
		return ret;

	/* Start with 400 KHz to issue the I2C->RSB switch command. */
	ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 400000);
	if (ret)
		return ret;

	/*
	 * Initiate an I2C transaction to write 0x7c into register 0x3e,
	 * switching the PMIC to RSB mode.
	 */
	ret = rsb_set_device_mode(0x7c3e00);
	if (ret)
		return ret;

	/* Now in RSB mode, switch to the recommended 3 MHz. */
	ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 3000000);
	if (ret)
		return ret;

	/* Associate the 8-bit runtime address with the 12-bit bus address. */
	return rsb_assign_runtime_address(AXP803_HW_ADDR,
					  AXP803_RT_ADDR);
}

120
121
122
123
124
static int axp_write(uint8_t reg, uint8_t val)
{
	return rsb_write(AXP803_RT_ADDR, reg, val);
}

125
static int axp_clrsetbits(uint8_t reg, uint8_t clr_mask, uint8_t set_mask)
126
127
128
129
130
131
132
133
{
	uint8_t regval;
	int ret;

	ret = rsb_read(AXP803_RT_ADDR, reg);
	if (ret < 0)
		return ret;

134
	regval = (ret & ~clr_mask) | set_mask;
135
136
137
138

	return rsb_write(AXP803_RT_ADDR, reg, regval);
}

139
140
141
#define axp_clrbits(reg, clr_mask) axp_clrsetbits(reg, clr_mask, 0)
#define axp_setbits(reg, set_mask) axp_clrsetbits(reg, 0, set_mask)

142
143
144
145
146
147
148
149
150
static bool should_enable_regulator(const void *fdt, int node)
{
	if (fdt_getprop(fdt, node, "phandle", NULL) != NULL)
		return true;
	if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL)
		return true;
	return false;
}

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * Retrieve the voltage from a given regulator DTB node.
 * Both the regulator-{min,max}-microvolt properties must be present and
 * have the same value. Return that value in millivolts.
 */
static int fdt_get_regulator_millivolt(const void *fdt, int node)
{
	const fdt32_t *prop;
	uint32_t min_volt;

	prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
	if (prop == NULL)
		return -EINVAL;
	min_volt = fdt32_to_cpu(*prop);

	prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
	if (prop == NULL)
		return -EINVAL;

	if (fdt32_to_cpu(*prop) != min_volt)
		return -EINVAL;

	return min_volt / 1000;
}

#define NO_SPLIT 0xff

178
static const struct axp_regulator {
179
180
181
182
183
184
185
186
187
	char *dt_name;
	uint16_t min_volt;
	uint16_t max_volt;
	uint16_t step;
	unsigned char split;
	unsigned char volt_reg;
	unsigned char switch_reg;
	unsigned char switch_bit;
} regulators[] = {
188
189
	{"dcdc1", 1600, 3400, 100, NO_SPLIT, 0x20, 0x10, 0},
	{"dcdc5",  800, 1840,  10,       32, 0x24, 0x10, 4},
190
	{"dcdc6",  600, 1520,  10,       50, 0x25, 0x10, 5},
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
	{"dldo1",  700, 3300, 100, NO_SPLIT, 0x15, 0x12, 3},
	{"dldo2",  700, 4200, 100,       27, 0x16, 0x12, 4},
	{"dldo3",  700, 3300, 100, NO_SPLIT, 0x17, 0x12, 5},
	{"fldo1",  700, 1450,  50, NO_SPLIT, 0x1c, 0x13, 2},
	{}
};

static int setup_regulator(const void *fdt, int node,
			   const struct axp_regulator *reg)
{
	int mvolt;
	uint8_t regval;

	if (!should_enable_regulator(fdt, node))
		return -ENOENT;

	mvolt = fdt_get_regulator_millivolt(fdt, node);
	if (mvolt < reg->min_volt || mvolt > reg->max_volt)
		return -EINVAL;

	regval = (mvolt / reg->step) - (reg->min_volt / reg->step);
	if (regval > reg->split)
		regval = ((regval - reg->split) / 2) + reg->split;

	axp_write(reg->volt_reg, regval);
	if (reg->switch_reg < 0xff)
		axp_setbits(reg->switch_reg, BIT(reg->switch_bit));

	INFO("PMIC: AXP803: %s voltage: %d.%03dV\n", reg->dt_name,
	     mvolt / 1000, mvolt % 1000);

	return 0;
}

225
226
227
static void setup_axp803_rails(const void *fdt)
{
	int node;
228
	bool dc1sw = false;
229
230
231

	/* locate the PMIC DT node, bail out if not found */
	node = fdt_node_offset_by_compatible(fdt, -1, "x-powers,axp803");
232
233
	if (node < 0) {
		WARN("BL31: PMIC: Cannot find AXP803 DT node, skipping initial setup.\n");
234
235
236
		return;
	}

237
238
239
240
241
	if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL)) {
		axp_clrbits(0x8f, BIT(4));
		axp_setbits(0x30, BIT(2));
		INFO("PMIC: AXP803: Enabling DRIVEVBUS\n");
	}
242
243

	/* descend into the "regulators" subnode */
244
245
246
247
248
	node = fdt_subnode_offset(fdt, node, "regulators");
	if (node < 0) {
		WARN("BL31: PMIC: Cannot find regulators subnode, skipping initial setup.\n");
		return;
	}
249
250
251

	/* iterate over all regulators to find used ones */
	for (node = fdt_first_subnode(fdt, node);
252
	     node >= 0;
253
	     node = fdt_next_subnode(fdt, node)) {
254
		const struct axp_regulator *reg;
255
256
257
258
259
260
261
262
		const char *name;
		int length;

		/* We only care if it's always on or referenced. */
		if (!should_enable_regulator(fdt, node))
			continue;

		name = fdt_get_name(fdt, node, &length);
263
264
265
266
267
268
269
		for (reg = regulators; reg->dt_name; reg++) {
			if (!strncmp(name, reg->dt_name, length)) {
				setup_regulator(fdt, node, reg);
				break;
			}
		}

270
		if (!strncmp(name, "dc1sw", length)) {
271
272
			/* Delay DC1SW enablement to avoid overheating. */
			dc1sw = true;
273
274
275
			continue;
		}
	}
276
277
278
279
280
281
282
283
	/*
	 * If DLDO2 is enabled after DC1SW, the PMIC overheats and shuts
	 * down. So always enable DC1SW as the very last regulator.
	 */
	if (dc1sw) {
		INFO("PMIC: AXP803: Enabling DC1SW\n");
		axp_setbits(0x12, BIT(7));
	}
284
285
}

286
int sunxi_pmic_setup(uint16_t socid, const void *fdt)
287
{
288
289
	int ret;

290
291
	switch (socid) {
	case SUNXI_SOC_H5:
292
293
		pmic = REF_DESIGN_H5;
		NOTICE("BL31: PMIC: Defaulting to PortL GPIO according to H5 reference design.\n");
294
295
296
		break;
	case SUNXI_SOC_A64:
		pmic = GENERIC_A64;
297
298
299
300
301
302
303
304
305
306
307
		ret = sunxi_init_platform_r_twi(socid, true);
		if (ret)
			return ret;

		ret = rsb_init();
		if (ret)
			return ret;

		pmic = AXP803_RSB;
		NOTICE("BL31: PMIC: Detected AXP803 on RSB.\n");

308
309
310
		if (fdt)
			setup_axp803_rails(fdt);

311
312
313
314
315
		break;
	default:
		NOTICE("BL31: PMIC: No support for Allwinner %x SoC.\n", socid);
		return -ENODEV;
	}
316
317
	return 0;
}
318
319
320

void __dead2 sunxi_power_down(void)
{
321
322
323
324
325
326
327
328
329
330
331
332
	switch (pmic) {
	case GENERIC_H5:
		/* Turn off as many peripherals and clocks as we can. */
		sunxi_turn_off_soc(SUNXI_SOC_H5);
		/* Turn off the pin controller now. */
		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
		break;
	case GENERIC_A64:
		/* Turn off as many peripherals and clocks as we can. */
		sunxi_turn_off_soc(SUNXI_SOC_A64);
		/* Turn off the pin controller now. */
		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
		break;
	case REF_DESIGN_H5:
		sunxi_turn_off_soc(SUNXI_SOC_H5);

		/*
		 * Switch PL pins to power off the board:
		 * - PL5 (VCC_IO) -> high
		 * - PL8 (PWR-STB = CPU power supply) -> low
		 * - PL9 (PWR-DRAM) ->low
		 * - PL10 (power LED) -> low
		 * Note: Clearing PL8 will reset the board, so keep it up.
		 */
		sunxi_set_gpio_out('L', 5, 1);
		sunxi_set_gpio_out('L', 9, 0);
		sunxi_set_gpio_out('L', 10, 0);

		/* Turn off pin controller now. */
		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);

352
353
354
355
356
357
358
359
		break;
	case AXP803_RSB:
		/* (Re-)init RSB in case the rich OS has disabled it. */
		sunxi_init_platform_r_twi(SUNXI_SOC_A64, true);
		rsb_init();

		/* Set "power disable control" bit */
		axp_setbits(0x32, BIT(7));
360
361
362
363
364
365
366
		break;
	default:
		break;
	}

	udelay(1000);
	ERROR("PSCI: Cannot turn off system, halting.\n");
367
368
369
	wfi();
	panic();
}