psci_afflvl_suspend.c 18.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>
32
33
#include <bl_common.h>
#include <arch.h>
34
#include <arch_helpers.h>
35
#include <context.h>
36
#include <context_mgmt.h>
37
#include <runtime_svc.h>
38
#include <stddef.h>
39
#include "psci_private.h"
40

41
typedef int (*afflvl_suspend_handler_t)(aff_map_node_t *,
42
43
44
45
				      unsigned long,
				      unsigned long,
				      unsigned int);

46
/*******************************************************************************
47
48
 * This function sets the power state of the current cpu while
 * powering down during a cpu_suspend call
49
 ******************************************************************************/
50
void psci_set_suspend_power_state(aff_map_node_t *node, unsigned int power_state)
51
52
53
54
55
56
57
58
59
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

	/*
60
61
	 * Save PSCI power state parameter for the core in suspend context.
	 * The node is in always-coherent RAM so it does not need to be flushed
62
	 */
63
	node->power_state = power_state;
64
65
}

66
67
68
69
70
71
72
/*******************************************************************************
 * This function gets the affinity level till which a cpu is powered down
 * during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
int psci_get_suspend_afflvl(unsigned long mpidr)
{
73
	aff_map_node_t *node;
74
75
76
77
78
79
80
81
82

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);

	return psci_get_aff_map_node_suspend_afflvl(node);
}


83
84
/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
85
86
87
 * down during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
88
int psci_get_aff_map_node_suspend_afflvl(aff_map_node_t *node)
89
90
91
92
93
{
	unsigned int power_state;

	assert(node->level == MPIDR_AFFLVL0);

94
	power_state = node->power_state;
95
96
97
98
99
100
101
102
	return ((power_state == PSCI_INVALID_DATA) ?
				power_state : psci_get_pstate_afflvl(power_state));
}

/*******************************************************************************
 * This function gets the state id of a cpu stored in suspend context
 * while powering down during a cpu_suspend call. Returns 0xFFFFFFFF
 * if the power state saved for the node is invalid
103
 ******************************************************************************/
104
int psci_get_suspend_stateid(unsigned long mpidr)
105
{
106
	aff_map_node_t *node;
107
108
109
110
111
112
113
	unsigned int power_state;

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);
	assert(node->level == MPIDR_AFFLVL0);

114
	power_state = node->power_state;
115
116
	return ((power_state == PSCI_INVALID_DATA) ?
					power_state : psci_get_pstate_id(power_state));
117
118
}

119
120
121
122
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
123
static int psci_afflvl0_suspend(aff_map_node_t *cpu_node,
124
125
126
127
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
128
	unsigned int plat_state;
129
	unsigned long psci_entrypoint, sctlr;
130
	el3_state_t *saved_el3_state;
131
132
133
	uint32_t ns_scr_el3 = read_scr_el3();
	uint32_t ns_sctlr_el1 = read_sctlr_el1();
	int rc;
134
135
136
137

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

138
139
140
	/* Save PSCI power state parameter for the core in suspend context */
	psci_set_suspend_power_state(cpu_node, power_state);

141
142
143
144
145
146
147
148
149
150
	/*
	 * Generic management: Store the re-entry information for the non-secure
	 * world and allow the secure world to suspend itself
	 */

	/*
	 * Call the cpu suspend handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
151
152
	if (psci_spd_pm && psci_spd_pm->svc_suspend)
		psci_spd_pm->svc_suspend(power_state);
153

154
155
156
	/* State management: mark this cpu as suspended */
	psci_set_state(cpu_node, PSCI_STATE_SUSPEND);

157
158
159
160
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
161
162
	rc = psci_save_ns_entry(read_mpidr_el1(), ns_entrypoint, context_id,
				ns_scr_el3, ns_sctlr_el1);
163
164
165
166
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
167
168
	 * Arch. management: Save the EL3 state in the 'cpu_context'
	 * structure that has been allocated for this cpu, flush the
169
170
	 * L1 caches and exit intra-cluster coherency et al
	 */
171
	cm_el3_sysregs_context_save(NON_SECURE);
172

173
174
175
176
	/*
	 * The EL3 state to PoC since it will be accessed after a
	 * reset with the caches turned off
	 */
177
	saved_el3_state = get_el3state_ctx(cm_get_context(NON_SECURE));
178
179
	flush_dcache_range((uint64_t) saved_el3_state, sizeof(*saved_el3_state));

180
181
182
183
184
185
186
187
188
189
190
191
	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
192
	sctlr = read_sctlr_el3();
193
	sctlr &= ~SCTLR_C_BIT;
194
	write_sctlr_el3(sctlr);
195
	isb();	/* ensure MMU disable takes immediate effect */
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
211
212
	rc = PSCI_E_SUCCESS;

213
	if (psci_plat_pm_ops->affinst_suspend) {
214
		plat_state = psci_get_phys_state(cpu_node);
215
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
216
217
218
219
220
221
222
223
224
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

225
static int psci_afflvl1_suspend(aff_map_node_t *cluster_node,
226
227
228
229
230
231
232
233
234
235
236
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

237
238
239
	/* State management: Decrement the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_SUSPEND);

240
241
242
243
	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
244
	plat_state = psci_get_phys_state(cluster_node);
245
246
247
248
249
250
251
252
253

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
254
	 * Plat. Management. Allow the platform to do its cluster
255
256
257
258
259
260
261
262
263
264
265
266
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
267
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
268
269
270
271
272
273
274
275
276
277
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


278
static int psci_afflvl2_suspend(aff_map_node_t *system_node,
279
280
281
282
283
284
285
286
287
288
289
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

290
291
292
	/* State management: Decrement the system reference count */
	psci_set_state(system_node, PSCI_STATE_SUSPEND);

293
294
295
296
	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
297
	plat_state = psci_get_phys_state(system_node);
298
299

	/*
300
	 * Plat. Management : Allow the platform to do its bookeeping
301
302
303
304
305
306
307
308
309
310
311
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
312
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
313
314
315
316
317
318
319
320
321
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

322
static const afflvl_suspend_handler_t psci_afflvl_suspend_handlers[] = {
323
324
325
326
327
328
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
329
330
331
332
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
333
static int psci_call_suspend_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
334
335
336
337
338
339
340
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
341
	aff_map_node_t *node;
342
343
344
345
346
347
348
349
350
351
352

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
353
		rc = psci_afflvl_suspend_handlers[level](node,
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency can
 * be turned off and caches can be flushed safely.
385
 ******************************************************************************/
386
int psci_afflvl_suspend(unsigned long entrypoint,
387
388
			unsigned long context_id,
			unsigned int power_state,
389
390
			int start_afflvl,
			int end_afflvl)
391
{
392
	int rc = PSCI_E_SUCCESS;
393
	mpidr_aff_map_nodes_t mpidr_nodes;
394
395

	/*
396
397
398
399
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
400
	 */
401
	rc = psci_get_aff_map_nodes(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
402
403
404
405
406
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
407
408

	/*
409
410
411
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
412
	 */
413
	psci_acquire_afflvl_locks(start_afflvl,
414
415
				  end_afflvl,
				  mpidr_nodes);
416

417
418
419
420
421
422
423
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					entrypoint,
					context_id,
					power_state);
424
425

	/*
426
427
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
428
	 */
429
	psci_release_afflvl_locks(start_afflvl,
430
431
				  end_afflvl,
				  mpidr_nodes);
432
433
434
435
436
437
438
439

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
440
static unsigned int psci_afflvl0_suspend_finish(aff_map_node_t *cpu_node)
441
{
442
	unsigned int plat_state, state, rc;
443
	int32_t suspend_level;
444
445
446

	assert(cpu_node->level == MPIDR_AFFLVL0);

447
	/* Ensure we have been woken up from a suspended state */
448
	state = psci_get_state(cpu_node);
449
450
	assert(state == PSCI_STATE_SUSPEND);

451
452
453
454
455
456
457
458
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
459
460

		/* Get the physical state of this cpu */
461
		plat_state = get_phys_state(state);
462
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
463
464
465
466
467
468
469
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	/*
470
471
	 * Arch. management: Restore the stashed EL3 architectural
	 * context from the 'cpu_context' structure for this cpu.
472
	 */
473
	cm_el3_sysregs_context_restore(NON_SECURE);
474

475
476
477
478
479
	/*
	 * Call the cpu suspend finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
480
	if (psci_spd_pm && psci_spd_pm->svc_suspend) {
481
482
		suspend_level = psci_get_aff_map_node_suspend_afflvl(cpu_node);
		assert (suspend_level != PSCI_INVALID_DATA);
483
		psci_spd_pm->svc_suspend_finish(suspend_level);
484
485
	}

486
487
488
	/* Invalidate the suspend context for the node */
	psci_set_suspend_power_state(cpu_node, PSCI_INVALID_DATA);

489
490
491
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
492
	 * call to set this cpu on its way.
493
	 */
494
	cm_prepare_el3_exit(NON_SECURE);
495

496
497
498
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

499
500
501
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

502
	rc = PSCI_E_SUCCESS;
503
504
505
	return rc;
}

506
static unsigned int psci_afflvl1_suspend_finish(aff_map_node_t *cluster_node)
507
{
508
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
509
510
511
512
513
514
515
516
517
518
519
520

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
521
522

		/* Get the physical state of this cpu */
523
		plat_state = psci_get_phys_state(cluster_node);
524
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
525
526
527
528
529
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

530
531
532
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

533
534
535
536
	return rc;
}


537
static unsigned int psci_afflvl2_suspend_finish(aff_map_node_t *system_node)
538
{
539
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
558
559

		/* Get the physical state of the system */
560
		plat_state = psci_get_phys_state(system_node);
561
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
562
563
564
565
566
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

567
568
569
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

570
571
572
	return rc;
}

573
const afflvl_power_on_finisher_t psci_afflvl_suspend_finishers[] = {
574
575
576
577
578
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};