el3_common_macros.S 11 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
11
12
13
14
15
16
17
18
 */

#ifndef __EL3_COMMON_MACROS_S__
#define __EL3_COMMON_MACROS_S__

#include <arch.h>
#include <asm_macros.S>
#include <assert_macros.S>

	/*
	 * Helper macro to initialise EL3 registers we care about.
	 */
	.macro el3_arch_init_common _exception_vectors
	/* ---------------------------------------------------------------------
19
20
21
22
23
24
25
26
27
	 * SCTLR has already been initialised - read current value before
	 * modifying.
	 *
	 * SCTLR.I: Enable the instruction cache.
	 *
	 * SCTLR.A: Enable Alignment fault checking. All instructions that load
	 *  or store one or more registers have an alignment check that the
	 *  address being accessed is aligned to the size of the data element(s)
	 *  being accessed.
28
29
	 * ---------------------------------------------------------------------
	 */
30
	ldr	r1, =(SCTLR_I_BIT | SCTLR_A_BIT)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
	ldcopr	r0, SCTLR
	orr	r0, r0, r1
	stcopr	r0, SCTLR
	isb

	/* ---------------------------------------------------------------------
	 * Set the exception vectors (VBAR/MVBAR).
	 * ---------------------------------------------------------------------
	 */
	ldr	r0, =\_exception_vectors
	stcopr	r0, VBAR
	stcopr	r0, MVBAR
	isb

45
46
47
48
49
50
	/* ---------------------------------------------------------------------
	 * Initialise SCR, setting all fields rather than relying on the hw.
	 *
	 * SCR.SIF: Enabled so that Secure state instruction fetches from
	 *  Non-secure memory are not permitted.
	 * ---------------------------------------------------------------------
51
	 */
52
	ldr	r0, =(SCR_RESET_VAL | SCR_SIF_BIT)
53
54
55
56
57
58
59
60
61
62
	stcopr	r0, SCR

	/* -----------------------------------------------------
	 * Enable the Asynchronous data abort now that the
	 * exception vectors have been setup.
	 * -----------------------------------------------------
	 */
	cpsie   a
	isb

63
64
65
66
67
68
69
70
71
72
73
	/* ---------------------------------------------------------------------
	 * Initialise NSACR, setting all the fields, except for the
	 * IMPLEMENTATION DEFINED field, rather than relying on the hw. Some
	 * fields are architecturally UNKNOWN on reset.
	 *
	 * NSACR_ENABLE_FP_ACCESS: Represents NSACR.cp11 and NSACR.cp10. The
	 *  cp11 field is ignored, but is set to same value as cp10. The cp10
	 *  field is set to allow access to Advanced SIMD and floating point
	 *  features from both Security states.
	 * ---------------------------------------------------------------------
	 */
74
	ldcopr	r0, NSACR
75
76
	and	r0, r0, #NSACR_IMP_DEF_MASK
	orr	r0, r0, #(NSACR_RESET_VAL | NSACR_ENABLE_FP_ACCESS)
77
78
79
	stcopr	r0, NSACR
	isb

80
81
82
83
84
85
86
87
88
89
90
91
	/* ---------------------------------------------------------------------
	 * Initialise CPACR, setting all fields rather than relying on hw. Some
	 * fields are architecturally UNKNOWN on reset.
	 *
	 * CPACR.TRCDIS: Trap control for PL0 and PL1 System register accesses
	 *  to trace registers. Set to zero to allow access.
	 *
	 * CPACR_ENABLE_FP_ACCESS: Represents CPACR.cp11 and CPACR.cp10. The
	 *  cp11 field is ignored, but is set to same value as cp10. The cp10
	 *  field is set to allow full access from PL0 and PL1 to floating-point
	 *  and Advanced SIMD features.
	 * ---------------------------------------------------------------------
92
	 */
93
	ldr	r0, =((CPACR_RESET_VAL | CPACR_ENABLE_FP_ACCESS) & ~(TRCDIS_BIT))
94
95
96
	stcopr	r0, CPACR
	isb

97
98
99
100
101
102
103
104
105
106
	/* ---------------------------------------------------------------------
	 * Initialise FPEXC, setting all fields rather than relying on hw. Some
	 * fields are architecturally UNKNOWN on reset and are set to zero
	 * except for field(s) listed below.
	 *
	 * FPEXC.EN: Enable access to Advanced SIMD and floating point features
	 *  from all exception levels.
	 * ---------------------------------------------------------------------
	 */
	ldr	r0, =(FPEXC_RESET_VAL | FPEXC_EN_BIT)
107
108
	vmsr	FPEXC, r0
	isb
109

Etienne Carriere's avatar
Etienne Carriere committed
110
#if (ARM_ARCH_MAJOR > 7)
111
112
113
114
115
116
117
118
	/* ---------------------------------------------------------------------
	 * Initialise SDCR, setting all the fields rather than relying on hw.
	 *
	 * SDCR.SPD: Disable AArch32 privileged debug. Debug exceptions from
	 * Secure EL1 are disabled.
	 * ---------------------------------------------------------------------
	 */
	ldr	r0, =(SDCR_RESET_VAL | SDCR_SPD(SDCR_SPD_DISABLE))
119
	stcopr	r0, SDCR
Etienne Carriere's avatar
Etienne Carriere committed
120
#endif
121

122
123
124
125
126
127
128
129
130
131
132
133
	.endm

/* -----------------------------------------------------------------------------
 * This is the super set of actions that need to be performed during a cold boot
 * or a warm boot in EL3. This code is shared by BL1 and BL32 (SP_MIN).
 *
 * This macro will always perform reset handling, architectural initialisations
 * and stack setup. The rest of the actions are optional because they might not
 * be needed, depending on the context in which this macro is called. This is
 * why this macro is parameterised ; each parameter allows to enable/disable
 * some actions.
 *
134
135
136
 *  _init_sctlr:
 *	Whether the macro needs to initialise the SCTLR register including
 *	configuring the endianness of data accesses.
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
 *
 *  _warm_boot_mailbox:
 *	Whether the macro needs to detect the type of boot (cold/warm). The
 *	detection is based on the platform entrypoint address : if it is zero
 *	then it is a cold boot, otherwise it is a warm boot. In the latter case,
 *	this macro jumps on the platform entrypoint address.
 *
 *  _secondary_cold_boot:
 *	Whether the macro needs to identify the CPU that is calling it: primary
 *	CPU or secondary CPU. The primary CPU will be allowed to carry on with
 *	the platform initialisations, while the secondaries will be put in a
 *	platform-specific state in the meantime.
 *
 *	If the caller knows this macro will only be called by the primary CPU
 *	then this parameter can be defined to 0 to skip this step.
 *
 * _init_memory:
 *	Whether the macro needs to initialise the memory.
 *
 * _init_c_runtime:
 *	Whether the macro needs to initialise the C runtime environment.
 *
 * _exception_vectors:
 *	Address of the exception vectors to program in the VBAR_EL3 register.
 * -----------------------------------------------------------------------------
 */
	.macro el3_entrypoint_common					\
164
		_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot,	\
165
166
167
		_init_memory, _init_c_runtime, _exception_vectors

	/* Make sure we are in Secure Mode */
168
#if ENABLE_ASSERTIONS
169
170
171
172
173
	ldcopr	r0, SCR
	tst	r0, #SCR_NS_BIT
	ASM_ASSERT(eq)
#endif

174
	.if \_init_sctlr
175
		/* -------------------------------------------------------------
176
177
178
179
180
181
182
183
184
185
186
187
188
		 * This is the initialisation of SCTLR and so must ensure that
		 * all fields are explicitly set rather than relying on hw. Some
		 * fields reset to an IMPLEMENTATION DEFINED value.
		 *
		 * SCTLR.TE: Set to zero so that exceptions to an Exception
		 *  Level executing at PL1 are taken to A32 state.
		 *
		 * SCTLR.EE: Set the CPU endianness before doing anything that
		 *  might involve memory reads or writes. Set to zero to select
		 *  Little Endian.
		 *
		 * SCTLR.V: Set to zero to select the normal exception vectors
		 *  with base address held in VBAR.
189
190
		 * -------------------------------------------------------------
		 */
191
		ldr     r0, =(SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_EE_BIT | SCTLR_V_BIT))
192
193
		stcopr	r0, SCTLR
		isb
194
	.endif /* _init_sctlr */
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

	/* Switch to monitor mode */
	cps	#MODE32_mon
	isb

	.if \_warm_boot_mailbox
		/* -------------------------------------------------------------
		 * This code will be executed for both warm and cold resets.
		 * Now is the time to distinguish between the two.
		 * Query the platform entrypoint address and if it is not zero
		 * then it means it is a warm boot so jump to this address.
		 * -------------------------------------------------------------
		 */
		bl	plat_get_my_entrypoint
		cmp	r0, #0
		bxne	r0
	.endif /* _warm_boot_mailbox */

	/* ---------------------------------------------------------------------
	 * It is a cold boot.
	 * Perform any processor specific actions upon reset e.g. cache, TLB
	 * invalidations etc.
	 * ---------------------------------------------------------------------
	 */
	bl	reset_handler

	el3_arch_init_common \_exception_vectors

	.if \_secondary_cold_boot
		/* -------------------------------------------------------------
		 * Check if this is a primary or secondary CPU cold boot.
		 * The primary CPU will set up the platform while the
		 * secondaries are placed in a platform-specific state until the
		 * primary CPU performs the necessary actions to bring them out
		 * of that state and allows entry into the OS.
		 * -------------------------------------------------------------
		 */
		bl	plat_is_my_cpu_primary
		cmp	r0, #0
		bne	do_primary_cold_boot

		/* This is a cold boot on a secondary CPU */
		bl	plat_secondary_cold_boot_setup
		/* plat_secondary_cold_boot_setup() is not supposed to return */
239
		no_ret	plat_panic_handler
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

	do_primary_cold_boot:
	.endif /* _secondary_cold_boot */

	/* ---------------------------------------------------------------------
	 * Initialize memory now. Secondary CPU initialization won't get to this
	 * point.
	 * ---------------------------------------------------------------------
	 */

	.if \_init_memory
		bl	platform_mem_init
	.endif /* _init_memory */

	/* ---------------------------------------------------------------------
	 * Init C runtime environment:
	 *   - Zero-initialise the NOBITS sections. There are 2 of them:
	 *       - the .bss section;
	 *       - the coherent memory section (if any).
	 *   - Relocate the data section from ROM to RAM, if required.
	 * ---------------------------------------------------------------------
	 */
	.if \_init_c_runtime
Roberto Vargas's avatar
Roberto Vargas committed
263
#if defined(IMAGE_BL32) || (defined(IMAGE_BL2) && BL2_AT_EL3)
264
		/* -----------------------------------------------------------------
Roberto Vargas's avatar
Roberto Vargas committed
265
		 * Invalidate the RW memory used by the image. This
266
267
268
269
270
271
272
273
274
275
		 * includes the data and NOBITS sections. This is done to
		 * safeguard against possible corruption of this memory by
		 * dirty cache lines in a system cache as a result of use by
		 * an earlier boot loader stage.
		 * -----------------------------------------------------------------
		 */
		ldr	r0, =__RW_START__
		ldr	r1, =__RW_END__
		sub	r1, r1, r0
		bl	inv_dcache_range
Roberto Vargas's avatar
Roberto Vargas committed
276
#endif
277
278
279
280
281
282
283
284
285
286
287

		ldr	r0, =__BSS_START__
		ldr	r1, =__BSS_SIZE__
		bl	zeromem

#if USE_COHERENT_MEM
		ldr	r0, =__COHERENT_RAM_START__
		ldr	r1, =__COHERENT_RAM_UNALIGNED_SIZE__
		bl	zeromem
#endif

288
#ifdef IMAGE_BL1
289
290
291
292
293
294
295
		/* -----------------------------------------------------
		 * Copy data from ROM to RAM.
		 * -----------------------------------------------------
		 */
		ldr	r0, =__DATA_RAM_START__
		ldr	r1, =__DATA_ROM_START__
		ldr	r2, =__DATA_SIZE__
296
		bl	memcpy4
297
298
299
300
301
302
303
304
305
306
307
#endif
	.endif /* _init_c_runtime */

	/* ---------------------------------------------------------------------
	 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
	 * the MMU is enabled. There is no risk of reading stale stack memory
	 * after enabling the MMU as only the primary CPU is running at the
	 * moment.
	 * ---------------------------------------------------------------------
	 */
	bl	plat_set_my_stack
308
309
310
311
312
313

#if STACK_PROTECTOR_ENABLED
	.if \_init_c_runtime
	bl	update_stack_protector_canary
	.endif /* _init_c_runtime */
#endif
314
315
316
	.endm

#endif /* __EL3_COMMON_MACROS_S__ */