cpu-specific-build-macros.rst 12.2 KB
Newer Older
Dan Handley's avatar
Dan Handley committed
1
Arm CPU Specific Build Macros
2
3
4
5
6
7
8
9
10
11
12
13
=============================


.. section-numbering::
    :suffix: .

.. contents::

This document describes the various build options present in the CPU specific
operations framework to enable errata workarounds and to enable optimizations
for a specific CPU on a platform.

14
15
16
Security Vulnerability Workarounds
----------------------------------

Dan Handley's avatar
Dan Handley committed
17
18
TF-A exports a series of build flags which control which security
vulnerability workarounds should be applied at runtime.
19
20

-  ``WORKAROUND_CVE_2017_5715``: Enables the security workaround for
21
22
23
24
25
   `CVE-2017-5715`_. This flag can be set to 0 by the platform if none
   of the PEs in the system need the workaround. Setting this flag to 0 provides
   no performance benefit for non-affected platforms, it just helps to comply
   with the recommendation in the spec regarding workaround discovery.
   Defaults to 1.
26

27
28
29
30
31
32
-  ``WORKAROUND_CVE_2018_3639``: Enables the security workaround for
   `CVE-2018-3639`_. Defaults to 1. The TF-A project recommends to keep
   the default value of 1 even on platforms that are unaffected by
   CVE-2018-3639, in order to comply with the recommendation in the spec
   regarding workaround discovery.

33
34
35
36
37
-  ``DYNAMIC_WORKAROUND_CVE_2018_3639``: Enables dynamic mitigation for
   `CVE-2018-3639`_. This build option should be set to 1 if the target
   platform contains at least 1 CPU that requires dynamic mitigation.
   Defaults to 0.

38
39
40
CPU Errata Workarounds
----------------------

Dan Handley's avatar
Dan Handley committed
41
42
43
TF-A exports a series of build flags which control the errata workarounds that
are applied to each CPU by the reset handler. The errata details can be found
in the CPU specific errata documents published by Arm:
44
45
46

-  `Cortex-A53 MPCore Software Developers Errata Notice`_
-  `Cortex-A57 MPCore Software Developers Errata Notice`_
47
-  `Cortex-A72 MPCore Software Developers Errata Notice`_
48
49
50
51
52
53
54
55
56

The errata workarounds are implemented for a particular revision or a set of
processor revisions. This is checked by the reset handler at runtime. Each
errata workaround is identified by its ``ID`` as specified in the processor's
errata notice document. The format of the define used to enable/disable the
errata workaround is ``ERRATA_<Processor name>_<ID>``, where the ``Processor name``
is for example ``A57`` for the ``Cortex_A57`` CPU.

Refer to the section *CPU errata status reporting* in
57
58
`Firmware Design guide`_ for information on how to write errata workaround
functions.
59
60
61
62
63
64
65
66
67
68
69
70

All workarounds are disabled by default. The platform is responsible for
enabling these workarounds according to its requirement by defining the
errata workaround build flags in the platform specific makefile. In case
these workarounds are enabled for the wrong CPU revision then the errata
workaround is not applied. In the DEBUG build, this is indicated by
printing a warning to the crash console.

In the current implementation, a platform which has more than 1 variant
with different revisions of a processor has no runtime mechanism available
for it to specify which errata workarounds should be enabled or not.

71
72
The value of the build flags is 0 by default, that is, disabled. A value of 1
will enable it.
73

74
For Cortex-A53, the following errata build flags are defined :
75

76
77
78
79
80
81
-  ``ERRATA_A53_819472``: This applies errata 819472 workaround to all
   CPUs. This needs to be enabled only for revision <= r0p1 of Cortex-A53.

-  ``ERRATA_A53_824069``: This applies errata 824069 workaround to all
   CPUs. This needs to be enabled only for revision <= r0p2 of Cortex-A53.

82
83
84
-  ``ERRATA_A53_826319``: This applies errata 826319 workaround to Cortex-A53
   CPU. This needs to be enabled only for revision <= r0p2 of the CPU.

85
86
87
-  ``ERRATA_A53_827319``: This applies errata 827319 workaround to all
   CPUs. This needs to be enabled only for revision <= r0p2 of Cortex-A53.

88
89
90
91
92
-  ``ERRATA_A53_835769``: This applies erratum 835769 workaround at compile and
   link time to Cortex-A53 CPU. This needs to be enabled for some variants of
   revision <= r0p4. This workaround can lead the linker to create ``*.stub``
   sections.

93
94
95
96
-  ``ERRATA_A53_836870``: This applies errata 836870 workaround to Cortex-A53
   CPU. This needs to be enabled only for revision <= r0p3 of the CPU. From
   r0p4 and onwards, this errata is enabled by default in hardware.

97
98
99
100
101
-  ``ERRATA_A53_843419``: This applies erratum 843419 workaround at link time
   to Cortex-A53 CPU.  This needs to be enabled for some variants of revision
   <= r0p4. This workaround can lead the linker to emit ``*.stub`` sections
   which are 4kB aligned.

102
103
104
-  ``ERRATA_A53_855873``: This applies errata 855873 workaround to Cortex-A53
   CPUs. Though the erratum is present in every revision of the CPU,
   this workaround is only applied to CPUs from r0p3 onwards, which feature
105
   a chicken bit in CPUACTLR_EL1 to enable a hardware workaround.
106
107
108
   Earlier revisions of the CPU have other errata which require the same
   workaround in software, so they should be covered anyway.

109
110
111
112
113
For Cortex-A55, the following errata build flags are defined :

-  ``ERRATA_A55_768277``: This applies errata 768277 workaround to Cortex-A55
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

114
115
116
-  ``ERRATA_A55_778703``: This applies errata 778703 workaround to Cortex-A55
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

117
118
119
-  ``ERRATA_A55_798797``: This applies errata 798797 workaround to Cortex-A55
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

120
121
122
-  ``ERRATA_A55_846532``: This applies errata 846532 workaround to Cortex-A55
   CPU. This needs to be enabled only for revision <= r0p1 of the CPU.

123
124
125
-  ``ERRATA_A55_903758``: This applies errata 903758 workaround to Cortex-A55
   CPU. This needs to be enabled only for revision <= r0p1 of the CPU.

126
For Cortex-A57, the following errata build flags are defined :
127
128
129
130
131
132
133
134
135
136

-  ``ERRATA_A57_806969``: This applies errata 806969 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

-  ``ERRATA_A57_813419``: This applies errata 813419 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

-  ``ERRATA_A57_813420``: This applies errata 813420 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

137
138
139
-  ``ERRATA_A57_814670``: This applies errata 814670 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

140
141
142
-  ``ERRATA_A57_817169``: This applies errata 817169 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision <= r0p1 of the CPU.

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
-  ``ERRATA_A57_826974``: This applies errata 826974 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision <= r1p1 of the CPU.

-  ``ERRATA_A57_826977``: This applies errata 826977 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision <= r1p1 of the CPU.

-  ``ERRATA_A57_828024``: This applies errata 828024 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision <= r1p1 of the CPU.

-  ``ERRATA_A57_829520``: This applies errata 829520 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision <= r1p2 of the CPU.

-  ``ERRATA_A57_833471``: This applies errata 833471 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision <= r1p2 of the CPU.

158
159
160
-  ``ERRATA_A57_859972``: This applies errata 859972 workaround to Cortex-A57
   CPU. This needs to be enabled only for revision <= r1p3 of the CPU.

161

162
For Cortex-A72, the following errata build flags are defined :
163
164
165
166

-  ``ERRATA_A72_859971``: This applies errata 859971 workaround to Cortex-A72
   CPU. This needs to be enabled only for revision <= r0p3 of the CPU.

167
168
For Cortex-A73, the following errata build flags are defined :

169
170
171
-  ``ERRATA_A73_852427``: This applies errata 852427 workaround to Cortex-A73
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

172
173
174
-  ``ERRATA_A73_855423``: This applies errata 855423 workaround to Cortex-A73
   CPU. This needs to be enabled only for revision <= r0p1 of the CPU.

175
176
177
178
179
For Cortex-A75, the following errata build flags are defined :

-  ``ERRATA_A75_764081``: This applies errata 764081 workaround to Cortex-A75
   CPU. This needs to be enabled only for revision r0p0 of the CPU.

180
181
182
-  ``ERRATA_A75_790748``: This applies errata 790748 workaround to Cortex-A75
    CPU. This needs to be enabled only for revision r0p0 of the CPU.

183
184
For Cortex-A76, the following errata build flags are defined :

185
186
187
-  ``ERRATA_A76_1073348``: This applies errata 1073348 workaround to Cortex-A76
   CPU. This needs to be enabled only for revision <= r1p0 of the CPU.

188
189
190
-  ``ERRATA_A76_1130799``: This applies errata 1130799 workaround to Cortex-A76
   CPU. This needs to be enabled only for revision <= r2p0 of the CPU.

191
192
193
-  ``ERRATA_A76_1220197``: This applies errata 1220197 workaround to Cortex-A76
   CPU. This needs to be enabled only for revision <= r2p0 of the CPU.

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
DSU Errata Workarounds
----------------------

Similar to CPU errata, TF-A also implements workarounds for DSU (DynamIQ
Shared Unit) errata. The DSU errata details can be found in the respective Arm
documentation:

- `Arm DSU Software Developers Errata Notice`_.

Each erratum is identified by an ``ID``, as defined in the DSU errata notice
document. Thus, the build flags which enable/disable the errata workarounds
have the format ``ERRATA_DSU_<ID>``. The implementation and application logic
of DSU errata workarounds are similar to `CPU errata workarounds`_.

For DSU errata, the following build flags are defined:

-  ``ERRATA_DSU_936184``: This applies errata 936184 workaround for the
   affected DSU configurations. This errata applies only for those DSUs that
   contain the ACP interface **and** the DSU revision is older than r2p0 (on
   r2p0 it is fixed). However, please note that this workaround results in
   increased DSU power consumption on idle.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
CPU Specific optimizations
--------------------------

This section describes some of the optimizations allowed by the CPU micro
architecture that can be enabled by the platform as desired.

-  ``SKIP_A57_L1_FLUSH_PWR_DWN``: This flag enables an optimization in the
   Cortex-A57 cluster power down sequence by not flushing the Level 1 data
   cache. The L1 data cache and the L2 unified cache are inclusive. A flush
   of the L2 by set/way flushes any dirty lines from the L1 as well. This
   is a known safe deviation from the Cortex-A57 TRM defined power down
   sequence. Each Cortex-A57 based platform must make its own decision on
   whether to use the optimization.

-  ``A53_DISABLE_NON_TEMPORAL_HINT``: This flag disables the cache non-temporal
   hint. The LDNP/STNP instructions as implemented on Cortex-A53 do not behave
   in a way most programmers expect, and will most probably result in a
Dan Handley's avatar
Dan Handley committed
233
234
   significant speed degradation to any code that employs them. The Armv8-A
   architecture (see Arm DDI 0487A.h, section D3.4.3) allows cores to ignore
235
236
237
238
239
240
241
242
243
244
245
246
   the non-temporal hint and treat LDNP/STNP as LDP/STP instead. Enabling this
   flag enforces this behaviour. This needs to be enabled only for revisions
   <= r0p3 of the CPU and is enabled by default.

-  ``A57_DISABLE_NON_TEMPORAL_HINT``: This flag has the same behaviour as
   ``A53_DISABLE_NON_TEMPORAL_HINT`` but for Cortex-A57. This needs to be
   enabled only for revisions <= r1p2 of the CPU and is enabled by default,
   as recommended in section "4.7 Non-Temporal Loads/Stores" of the
   `Cortex-A57 Software Optimization Guide`_.

--------------

Dan Handley's avatar
Dan Handley committed
247
*Copyright (c) 2014-2018, Arm Limited and Contributors. All rights reserved.*
248

249
250
.. _CVE-2017-5715: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
.. _CVE-2018-3639: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
Paul Beesley's avatar
Paul Beesley committed
251
252
.. _Cortex-A53 MPCore Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm048406/index.html
.. _Cortex-A57 MPCore Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm049219/index.html
253
.. _Cortex-A72 MPCore Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm012079/index.html
254
255
.. _Firmware Design guide: firmware-design.rst
.. _Cortex-A57 Software Optimization Guide: http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
256
.. _Arm DSU Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm138168/index.html