context_mgmt.c 18.8 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
2
 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
#include <amu.h>
8
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
9
#include <arch_helpers.h>
10
#include <assert.h>
Achin Gupta's avatar
Achin Gupta committed
11
#include <bl_common.h>
12
#include <context.h>
Achin Gupta's avatar
Achin Gupta committed
13
#include <context_mgmt.h>
14
#include <interrupt_mgmt.h>
15
#include <platform.h>
16
#include <platform_def.h>
17
#include <pubsub_events.h>
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
18
#include <smccc_helpers.h>
19
#include <spe.h>
20
#include <string.h>
David Cunado's avatar
David Cunado committed
21
#include <sve.h>
22
#include <utils.h>
Achin Gupta's avatar
Achin Gupta committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
38
void cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
39
40
41
42
43
44
45
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

46
/*******************************************************************************
47
 * The following function initializes the cpu_context 'ctx' for
48
49
50
51
52
53
54
55
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianess and secure
56
 * timer availability for the new execution context.
57
58
59
60
61
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
62
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
63
{
64
	unsigned int security_state;
65
	uint32_t scr_el3, pmcr_el0;
66
67
68
69
70
71
	el3_state_t *state;
	gp_regs_t *gp_regs;
	unsigned long sctlr_elx;

	assert(ctx);

72
73
	security_state = GET_SECURITY_STATE(ep->h.attr);

74
	/* Clear any residual register values from the context */
75
	zeromem(ctx, sizeof(*ctx));
76
77

	/*
78
79
80
81
82
83
84
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
85
86
87
88
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
89
90
91
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
92
93
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
94
95
96
97
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
98
99
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
100
101
102
103
104
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
105
106
107
	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

108
#ifndef HANDLE_EA_EL3_FIRST
109
110
111
112
113
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
114
115
116
	scr_el3 &= ~SCR_EA_BIT;
#endif

117
#ifdef IMAGE_BL31
118
	/*
119
120
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
	 *  indicated by the interrupt routing model for BL31.
121
	 */
122
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
123
#endif
124
125

	/*
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
142
	 *
143
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
144
	 *
145
146
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
147
148
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
149
150
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
151
152
	else {
		/*
153
154
155
156
157
158
159
160
161
162
163
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
164
		 */
165
166
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
167
168
	}

169
170
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
171
	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
172
173
	 * are not part of the stored cpu_context.
	 */
174
175
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
	if (security_state == SECURE) {
		/*
		 * Initialise PMCR_EL0 for secure context only, setting all
		 * fields rather than relying on hw. Some fields are
		 * architecturally UNKNOWN on reset.
		 *
		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
		 *
		 * PMCR_EL0.DP: Set to one so that the cycle counter,
		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
		 *
		 * PMCR_EL0.X: Set to zero to disable export of events.
		 *
		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
		 *  counts on every clock cycle.
		 */
		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
				| PMCR_EL0_DP_BIT)
				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
	}

200
201
202
203
204
205
206
207
208
209
210
211
212
213
	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

214
215
216
217
218
219
220
221
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
static void enable_extensions_nonsecure(int el2_unused)
{
#if IMAGE_BL31
222
223
224
#if ENABLE_SPE_FOR_LOWER_ELS
	spe_enable(el2_unused);
#endif
225
226
227
228

#if ENABLE_AMU
	amu_enable(el2_unused);
#endif
David Cunado's avatar
David Cunado committed
229
230
231
232

#if ENABLE_SVE_FOR_NS
	sve_enable(el2_unused);
#endif
233
234
235
#endif
}

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

261
262
263
264
265
266
267
268
269
270
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
271
	uint32_t sctlr_elx, scr_el3, mdcr_el2;
272
	cpu_context_t *ctx = cm_get_context(security_state);
273
	int el2_unused = 0;
274
275
276
277
278
279
280
281
282

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
Ken Kuang's avatar
Ken Kuang committed
283
			sctlr_elx &= SCTLR_EE_BIT;
284
285
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
286
		} else if (EL_IMPLEMENTED(2)) {
287
288
			el2_unused = 1;

289
290
291
292
293
294
295
296
297
298
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
			 * to zero so that Non-secure operations do not trap to
			 * EL2.
			 *
			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
			 */
299
300
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
			/*
			 * Initiliase CNTHCTL_EL2. All fields are
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
337

338
339
340
341
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
342
343
			write_cntvoff_el2(0);

344
345
346
347
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
348
349
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
350
351

			/*
352
353
354
355
356
357
358
359
360
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
361
			 */
362
363
364
365
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

366
			/*
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
398
			 */
399
			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
400
401
402
403
404
405
					((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT)) &
					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
					| MDCR_EL2_TPMCR_BIT));
406
407
408

			write_mdcr_el2(mdcr_el2);

409
			/*
410
411
412
413
414
415
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
416
			 */
417
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
418
			/*
419
420
421
422
423
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
424
			 */
425
426
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
427
		}
428
		enable_extensions_nonsecure(el2_unused);
429
430
	}

431
432
	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
433
434
}

Achin Gupta's avatar
Achin Gupta committed
435
/*******************************************************************************
436
437
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
438
439
440
441
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
442
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
443

444
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
445
446
447
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
448
449
450
451
452
453
454

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
455
456
457
458
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
459
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
460

461
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
462
463
464
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
465
466
467
468
469
470
471

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
472
473
474
}

/*******************************************************************************
475
476
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
477
 ******************************************************************************/
478
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
479
{
480
481
	cpu_context_t *ctx;
	el3_state_t *state;
482

483
	ctx = cm_get_context(security_state);
484
485
	assert(ctx);

486
	/* Populate EL3 state so that ERET jumps to the correct entry */
487
488
489
490
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

491
/*******************************************************************************
492
493
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
494
 ******************************************************************************/
495
void cm_set_elr_spsr_el3(uint32_t security_state,
496
			uintptr_t entrypoint, uint32_t spsr)
497
{
498
499
	cpu_context_t *ctx;
	el3_state_t *state;
500

501
	ctx = cm_get_context(security_state);
502
503
504
505
506
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
507
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
508
509
}

510
511
512
513
514
515
516
517
518
519
520
521
522
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

523
	ctx = cm_get_context(security_state);
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

552
	ctx = cm_get_context(security_state);
553
554
555
556
557
558
559
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

560
561
562
563
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
564
565
566
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
567
	cpu_context_t *ctx;
568

569
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
570
571
	assert(ctx);

572
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
573
}