runtime_exceptions.S 11.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
8
#include <platform_def.h>

9
#include <arch.h>
10
#include <asm_macros.S>
11
12
13
#include <bl31/ea_handle.h>
#include <bl31/interrupt_mgmt.h>
#include <common/runtime_svc.h>
14
#include <context.h>
15
16
#include <lib/el3_runtime/cpu_data.h>
#include <lib/smccc.h>
17
18
19

	.globl	runtime_exceptions

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
	.globl	sync_exception_sp_el0
	.globl	irq_sp_el0
	.globl	fiq_sp_el0
	.globl	serror_sp_el0

	.globl	sync_exception_sp_elx
	.globl	irq_sp_elx
	.globl	fiq_sp_elx
	.globl	serror_sp_elx

	.globl	sync_exception_aarch64
	.globl	irq_aarch64
	.globl	fiq_aarch64
	.globl	serror_aarch64

	.globl	sync_exception_aarch32
	.globl	irq_aarch32
	.globl	fiq_aarch32
	.globl	serror_aarch32

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
	/*
	 * Macro that prepares entry to EL3 upon taking an exception.
	 *
	 * With RAS_EXTENSION, this macro synchronizes pending errors with an ESB
	 * instruction. When an error is thus synchronized, the handling is
	 * delegated to platform EA handler.
	 *
	 * Without RAS_EXTENSION, this macro just saves x30, and unmasks
	 * Asynchronous External Aborts.
	 */
	.macro check_and_unmask_ea
#if RAS_EXTENSION
	/* Synchronize pending External Aborts */
	esb

	/* Unmask the SError interrupt */
	msr	daifclr, #DAIF_ABT_BIT

	/*
	 * Explicitly save x30 so as to free up a register and to enable
	 * branching
	 */
	str	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]

	/* Check for SErrors synchronized by the ESB instruction */
	mrs	x30, DISR_EL1
	tbz	x30, #DISR_A_BIT, 1f

	/* Save GP registers and restore them afterwards */
	bl	save_gp_registers
70
	bl	handle_lower_el_ea_esb
71
72
73
74
75
76
77
78
79
80
81
	bl	restore_gp_registers

1:
#else
	/* Unmask the SError interrupt */
	msr	daifclr, #DAIF_ABT_BIT

	str	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
#endif
	.endm

82
83
84
85
	/* ---------------------------------------------------------------------
	 * This macro handles Synchronous exceptions.
	 * Only SMC exceptions are supported.
	 * ---------------------------------------------------------------------
86
87
	 */
	.macro	handle_sync_exception
dp-arm's avatar
dp-arm committed
88
89
#if ENABLE_RUNTIME_INSTRUMENTATION
	/*
90
91
92
	 * Read the timestamp value and store it in per-cpu data. The value
	 * will be extracted from per-cpu data by the C level SMC handler and
	 * saved to the PMF timestamp region.
dp-arm's avatar
dp-arm committed
93
94
95
96
97
98
99
100
	 */
	mrs	x30, cntpct_el0
	str	x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
	mrs	x29, tpidr_el3
	str	x30, [x29, #CPU_DATA_PMF_TS0_OFFSET]
	ldr	x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
#endif

101
102
103
	mrs	x30, esr_el3
	ubfx	x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH

104
	/* Handle SMC exceptions separately from other synchronous exceptions */
105
106
107
108
109
110
	cmp	x30, #EC_AARCH32_SMC
	b.eq	smc_handler32

	cmp	x30, #EC_AARCH64_SMC
	b.eq	smc_handler64

111
	/* Synchronous exceptions other than the above are assumed to be EA */
112
	ldr	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
113
	b	enter_lower_el_sync_ea
114
115
116
	.endm


117
118
119
120
	/* ---------------------------------------------------------------------
	 * This macro handles FIQ or IRQ interrupts i.e. EL3, S-EL1 and NS
	 * interrupts.
	 * ---------------------------------------------------------------------
121
122
	 */
	.macro	handle_interrupt_exception label
123

124
	bl	save_gp_registers
125

126
	/* Save ARMv8.3-PAuth registers and load firmware key */
127
128
129
#if CTX_INCLUDE_PAUTH_REGS
	bl	pauth_context_save
#endif
130
131
132
#if ENABLE_PAUTH
	bl	pauth_load_bl_apiakey
#endif
133

134
	/* Save the EL3 system registers needed to return from this exception */
135
136
137
138
	mrs	x0, spsr_el3
	mrs	x1, elr_el3
	stp	x0, x1, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]

139
140
141
142
143
144
145
	/* Switch to the runtime stack i.e. SP_EL0 */
	ldr	x2, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]
	mov	x20, sp
	msr	spsel, #0
	mov	sp, x2

	/*
146
147
148
	 * Find out whether this is a valid interrupt type.
	 * If the interrupt controller reports a spurious interrupt then return
	 * to where we came from.
149
	 */
150
	bl	plat_ic_get_pending_interrupt_type
151
152
153
154
	cmp	x0, #INTR_TYPE_INVAL
	b.eq	interrupt_exit_\label

	/*
155
156
	 * Get the registered handler for this interrupt type.
	 * A NULL return value could be 'cause of the following conditions:
157
	 *
158
159
	 * a. An interrupt of a type was routed correctly but a handler for its
	 *    type was not registered.
160
	 *
161
162
	 * b. An interrupt of a type was not routed correctly so a handler for
	 *    its type was not registered.
163
	 *
164
165
166
167
168
	 * c. An interrupt of a type was routed correctly to EL3, but was
	 *    deasserted before its pending state could be read. Another
	 *    interrupt of a different type pended at the same time and its
	 *    type was reported as pending instead. However, a handler for this
	 *    type was not registered.
169
	 *
170
171
172
173
	 * a. and b. can only happen due to a programming error. The
	 * occurrence of c. could be beyond the control of Trusted Firmware.
	 * It makes sense to return from this exception instead of reporting an
	 * error.
174
175
	 */
	bl	get_interrupt_type_handler
176
	cbz	x0, interrupt_exit_\label
177
178
179
180
181
182
183
184
185
186
187
	mov	x21, x0

	mov	x0, #INTR_ID_UNAVAILABLE

	/* Set the current security state in the 'flags' parameter */
	mrs	x2, scr_el3
	ubfx	x1, x2, #0, #1

	/* Restore the reference to the 'handle' i.e. SP_EL3 */
	mov	x2, x20

188
	/* x3 will point to a cookie (not used now) */
189
190
	mov	x3, xzr

191
192
193
194
195
196
197
198
199
200
	/* Call the interrupt type handler */
	blr	x21

interrupt_exit_\label:
	/* Return from exception, possibly in a different security state */
	b	el3_exit

	.endm


201
202
vector_base runtime_exceptions

203
204
205
	/* ---------------------------------------------------------------------
	 * Current EL with SP_EL0 : 0x0 - 0x200
	 * ---------------------------------------------------------------------
206
	 */
207
vector_entry sync_exception_sp_el0
208
	/* We don't expect any synchronous exceptions from EL3 */
209
	b	report_unhandled_exception
210
end_vector_entry sync_exception_sp_el0
211

212
vector_entry irq_sp_el0
213
214
215
216
	/*
	 * EL3 code is non-reentrant. Any asynchronous exception is a serious
	 * error. Loop infinitely.
	 */
217
	b	report_unhandled_interrupt
218
end_vector_entry irq_sp_el0
219

220
221

vector_entry fiq_sp_el0
222
	b	report_unhandled_interrupt
223
end_vector_entry fiq_sp_el0
224

225
226

vector_entry serror_sp_el0
227
	no_ret	plat_handle_el3_ea
228
end_vector_entry serror_sp_el0
229

230
231
232
	/* ---------------------------------------------------------------------
	 * Current EL with SP_ELx: 0x200 - 0x400
	 * ---------------------------------------------------------------------
233
	 */
234
vector_entry sync_exception_sp_elx
235
236
237
238
239
	/*
	 * This exception will trigger if anything went wrong during a previous
	 * exception entry or exit or while handling an earlier unexpected
	 * synchronous exception. There is a high probability that SP_EL3 is
	 * corrupted.
240
	 */
241
	b	report_unhandled_exception
242
end_vector_entry sync_exception_sp_elx
243

244
vector_entry irq_sp_elx
245
	b	report_unhandled_interrupt
246
end_vector_entry irq_sp_elx
247

248
vector_entry fiq_sp_elx
249
	b	report_unhandled_interrupt
250
end_vector_entry fiq_sp_elx
251

252
vector_entry serror_sp_elx
253
	no_ret	plat_handle_el3_ea
254
end_vector_entry serror_sp_elx
255

256
	/* ---------------------------------------------------------------------
257
	 * Lower EL using AArch64 : 0x400 - 0x600
258
	 * ---------------------------------------------------------------------
259
	 */
260
vector_entry sync_exception_aarch64
261
262
263
264
265
	/*
	 * This exception vector will be the entry point for SMCs and traps
	 * that are unhandled at lower ELs most commonly. SP_EL3 should point
	 * to a valid cpu context where the general purpose and system register
	 * state can be saved.
266
	 */
267
	check_and_unmask_ea
268
	handle_sync_exception
269
end_vector_entry sync_exception_aarch64
270

271
vector_entry irq_aarch64
272
	check_and_unmask_ea
273
	handle_interrupt_exception irq_aarch64
274
end_vector_entry irq_aarch64
275

276
vector_entry fiq_aarch64
277
	check_and_unmask_ea
278
	handle_interrupt_exception fiq_aarch64
279
end_vector_entry fiq_aarch64
280

281
vector_entry serror_aarch64
282
	msr	daifclr, #DAIF_ABT_BIT
283
	b	enter_lower_el_async_ea
284
end_vector_entry serror_aarch64
285

286
	/* ---------------------------------------------------------------------
287
	 * Lower EL using AArch32 : 0x600 - 0x800
288
	 * ---------------------------------------------------------------------
289
	 */
290
vector_entry sync_exception_aarch32
291
292
293
294
295
	/*
	 * This exception vector will be the entry point for SMCs and traps
	 * that are unhandled at lower ELs most commonly. SP_EL3 should point
	 * to a valid cpu context where the general purpose and system register
	 * state can be saved.
296
	 */
297
	check_and_unmask_ea
298
	handle_sync_exception
299
end_vector_entry sync_exception_aarch32
300

301
vector_entry irq_aarch32
302
	check_and_unmask_ea
303
	handle_interrupt_exception irq_aarch32
304
end_vector_entry irq_aarch32
305

306
vector_entry fiq_aarch32
307
	check_and_unmask_ea
308
	handle_interrupt_exception fiq_aarch32
309
end_vector_entry fiq_aarch32
310

311
vector_entry serror_aarch32
312
	msr	daifclr, #DAIF_ABT_BIT
313
	b	enter_lower_el_async_ea
314
end_vector_entry serror_aarch32
315

316
	/* ---------------------------------------------------------------------
317
	 * The following code handles secure monitor calls.
318
319
320
321
322
	 * Depending upon the execution state from where the SMC has been
	 * invoked, it frees some general purpose registers to perform the
	 * remaining tasks. They involve finding the runtime service handler
	 * that is the target of the SMC & switching to runtime stacks (SP_EL0)
	 * before calling the handler.
323
	 *
324
325
	 * Note that x30 has been explicitly saved and can be used here
	 * ---------------------------------------------------------------------
326
	 */
327
func smc_handler
328
329
330
331
332
smc_handler32:
	/* Check whether aarch32 issued an SMC64 */
	tbnz	x0, #FUNCID_CC_SHIFT, smc_prohibited

smc_handler64:
333
334
335
336
337
	/* NOTE: The code below must preserve x0-x4 */

	/* Save general purpose registers */
	bl	save_gp_registers

338
	/* Save ARMv8.3-PAuth registers and load firmware key */
339
340
341
#if CTX_INCLUDE_PAUTH_REGS
	bl	pauth_context_save
#endif
342
343
344
#if ENABLE_PAUTH
	bl	pauth_load_bl_apiakey
#endif
345

346
347
348
349
	/*
	 * Populate the parameters for the SMC handler.
	 * We already have x0-x4 in place. x5 will point to a cookie (not used
	 * now). x6 will point to the context structure (SP_EL3) and x7 will
350
	 * contain flags we need to pass to the handler.
351
352
353
354
	 */
	mov	x5, xzr
	mov	x6, sp

355
	/*
356
357
358
	 * Restore the saved C runtime stack value which will become the new
	 * SP_EL0 i.e. EL3 runtime stack. It was saved in the 'cpu_context'
	 * structure prior to the last ERET from EL3.
359
	 */
360
361
362
363
	ldr	x12, [x6, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]

	/* Switch to SP_EL0 */
	msr	spsel, #0
364

365
366
367
368
	/*
	 * Save the SPSR_EL3, ELR_EL3, & SCR_EL3 in case there is a world
	 * switch during SMC handling.
	 * TODO: Revisit if all system registers can be saved later.
369
370
371
372
373
	 */
	mrs	x16, spsr_el3
	mrs	x17, elr_el3
	mrs	x18, scr_el3
	stp	x16, x17, [x6, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]
374
	str	x18, [x6, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]
375
376
377
378
379
380

	/* Copy SCR_EL3.NS bit to the flag to indicate caller's security */
	bfi	x7, x18, #0, #1

	mov	sp, x12

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
	/* Get the unique owning entity number */
	ubfx	x16, x0, #FUNCID_OEN_SHIFT, #FUNCID_OEN_WIDTH
	ubfx	x15, x0, #FUNCID_TYPE_SHIFT, #FUNCID_TYPE_WIDTH
	orr	x16, x16, x15, lsl #FUNCID_OEN_WIDTH

	/* Load descriptor index from array of indices */
	adr	x14, rt_svc_descs_indices
	ldrb	w15, [x14, x16]

	/* Any index greater than 127 is invalid. Check bit 7. */
	tbnz	w15, 7, smc_unknown

	/*
	 * Get the descriptor using the index
	 * x11 = (base + off), w15 = index
	 *
	 * handler = (base + off) + (index << log2(size))
	 */
	adr	x11, (__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE)
	lsl	w10, w15, #RT_SVC_SIZE_LOG2
	ldr	x15, [x11, w10, uxtw]

403
404
405
406
	/*
	 * Call the Secure Monitor Call handler and then drop directly into
	 * el3_exit() which will program any remaining architectural state
	 * prior to issuing the ERET to the desired lower EL.
407
408
409
410
411
412
	 */
#if DEBUG
	cbz	x15, rt_svc_fw_critical_error
#endif
	blr	x15

413
	b	el3_exit
414

415
416
smc_unknown:
	/*
417
418
419
420
	 * Unknown SMC call. Populate return value with SMC_UNK and call
	 * el3_exit() which will restore the remaining architectural state
	 * i.e., SYS, GP and PAuth registers(if any) prior to issuing the ERET
         * to the desired lower EL.
421
	 */
422
	mov	x0, #SMC_UNK
423
424
	str	x0, [x6, #CTX_GPREGS_OFFSET + CTX_GPREG_X0]
	b	el3_exit
425
426

smc_prohibited:
427
	ldr	x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
428
	mov	x0, #SMC_UNK
429
430
431
	eret

rt_svc_fw_critical_error:
432
433
	/* Switch to SP_ELx */
	msr	spsel, #1
434
	no_ret	report_unhandled_exception
435
endfunc smc_handler