snvs.c 4.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * Copyright 2021 NXP
 *
 * SPDX-License-Identifier: BSD-3-Clause
 *
 */

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#include <snvs.h>

static uintptr_t g_nxp_snvs_addr;

void snvs_init(uintptr_t nxp_snvs_addr)
{
	g_nxp_snvs_addr = nxp_snvs_addr;
}

uint32_t get_snvs_state(void)
{
	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);

	return (snvs_read32(&snvs->hp_stat) & HPSTS_MASK_SSM_ST);
}

static uint32_t do_snvs_state_transition(uint32_t state_transtion_bit,
					 uint32_t target_state)
{
	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);
	uint32_t sts = get_snvs_state();
	uint32_t fetch_cnt = 16U;
	uint32_t val = snvs_read32(&snvs->hp_com) | state_transtion_bit;

	snvs_write32(&snvs->hp_com, val);

	/* polling loop till SNVS is in target state */
	do {
		sts = get_snvs_state();
	} while ((sts != target_state) && ((--fetch_cnt) != 0));

	return sts;
}
void transition_snvs_non_secure(void)
{
	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);
	uint32_t sts = get_snvs_state();

	switch (sts) {
		/* If initial state is check or Non-Secure, then
		 * set the Software Security Violation Bit and
		 * transition to Non-Secure State.
		 */
	case HPSTS_CHECK_SSM_ST:
		sts = do_snvs_state_transition(HPCOM_SW_SV, HPSTS_NON_SECURE_SSM_ST);
		break;

		/* If initial state is Trusted, Secure or Soft-Fail, then
		 * first set the Software Security Violation Bit and
		 * transition to Soft-Fail State.
		 */
	case HPSTS_TRUST_SSM_ST:
	case HPSTS_SECURE_SSM_ST:
	case HPSTS_SOFT_FAIL_SSM_ST:
		sts = do_snvs_state_transition(HPCOM_SW_SV, HPSTS_NON_SECURE_SSM_ST);

		/* If SSM Soft Fail to Non-Secure State Transition
		 * Disable is not set, then set SSM_ST bit and
		 * transition to Non-Secure State.
		 */
		if ((snvs_read32(&snvs->hp_com) & HPCOM_SSM_SFNS_DIS) == 0) {
			sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_NON_SECURE_SSM_ST);
		}
		break;
	default:
		break;
	}
}

void transition_snvs_soft_fail(void)
{
	do_snvs_state_transition(HPCOM_SW_FSV, HPSTS_SOFT_FAIL_SSM_ST);
}

uint32_t transition_snvs_trusted(void)
{
	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);
	uint32_t sts = get_snvs_state();

	switch (sts) {
		/* If initial state is check, set the SSM_ST bit to
		 * change the state to trusted.
		 */
	case HPSTS_CHECK_SSM_ST:
		sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_TRUST_SSM_ST);
		break;
		/* If SSM Secure to Trusted State Transition Disable
		 * is not set, then set SSM_ST bit and
		 * transition to Trusted State.
		 */
	case HPSTS_SECURE_SSM_ST:
		if ((snvs_read32(&snvs->hp_com) & HPCOM_SSM_ST_DIS) == 0) {
			sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_TRUST_SSM_ST);
		}
		break;
		/* If initial state is Soft-Fail or Non-Secure, then
		 * transition to Trusted is not Possible.
		 */
	default:
		break;
	}

	return sts;
}

uint32_t transition_snvs_secure(void)
{
	uint32_t sts = get_snvs_state();

	if (sts == HPSTS_SECURE_SSM_ST) {
		return sts;
	}

	if (sts != HPSTS_TRUST_SSM_ST) {
		sts = transition_snvs_trusted();
		if (sts != HPSTS_TRUST_SSM_ST) {
			return sts;
		}
	}

	sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_TRUST_SSM_ST);

	return sts;
}

void snvs_write_lp_gpr_bit(uint32_t offset, uint32_t bit_pos, bool flag_val)
{
	if (flag_val) {
		snvs_write32(g_nxp_snvs_addr + offset,
			     (snvs_read32(g_nxp_snvs_addr + offset))
			     | (1 << bit_pos));
	} else {
		snvs_write32(g_nxp_snvs_addr + offset,
			     (snvs_read32(g_nxp_snvs_addr + offset))
			     & ~(1 << bit_pos));
	}
}

uint32_t snvs_read_lp_gpr_bit(uint32_t offset, uint32_t bit_pos)
{
	return (snvs_read32(g_nxp_snvs_addr + offset) & (1 << bit_pos));
}

void snvs_disable_zeroize_lp_gpr(void)
{
	snvs_write_lp_gpr_bit(NXP_LPCR_OFFSET,
			  NXP_GPR_Z_DIS_BIT,
			  true);
}

#if defined(NXP_NV_SW_MAINT_LAST_EXEC_DATA) && defined(NXP_COINED_BB)
void snvs_write_app_data_bit(uint32_t bit_pos)
{
	snvs_write_lp_gpr_bit(NXP_APP_DATA_LP_GPR_OFFSET,
			      bit_pos,
			      true);
}

uint32_t snvs_read_app_data(void)
{
	return snvs_read32(g_nxp_snvs_addr + NXP_APP_DATA_LP_GPR_OFFSET);
}

uint32_t snvs_read_app_data_bit(uint32_t bit_pos)
{
	uint8_t ret = snvs_read_lp_gpr_bit(NXP_APP_DATA_LP_GPR_OFFSET, bit_pos);

	return ((ret != 0U) ? 1U : 0U);
}

void snvs_clear_app_data(void)
{
	snvs_write32(g_nxp_snvs_addr + NXP_APP_DATA_LP_GPR_OFFSET, 0x0);
}
#endif