psci_common.c 15.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include <arch.h>
32
#include <arch_helpers.h>
33
34
35
#include <assert.h>
#include <bl_common.h>
#include <context.h>
36
#include <context_mgmt.h>
37
#include <debug.h>
38
#include <platform.h>
39
#include <string.h>
40
#include "psci_private.h"
41

42
/*
43
44
 * SPD power management operations, expected to be supplied by the registered
 * SPD on successful SP initialization
45
 */
46
const spd_pm_ops_t *psci_spd_pm;
47

48
49
50
51
52
/*******************************************************************************
 * Grand array that holds the platform's topology information for state
 * management of affinity instances. Each node (aff_map_node) in the array
 * corresponds to an affinity instance e.g. cluster, cpu within an mpidr
 ******************************************************************************/
53
aff_map_node_t psci_aff_map[PSCI_NUM_AFFS]
54
55
56
57
58
__attribute__ ((section("tzfw_coherent_mem")));

/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
59
const plat_pm_ops_t *psci_plat_pm_ops;
60

61
62
63
64
65
66
67
68
69
70
/*******************************************************************************
 * Routine to return the maximum affinity level to traverse to after a cpu has
 * been physically powered up. It is expected to be called immediately after
 * reset from assembler code. It has to find its 'aff_map_node' instead of
 * getting it as an argument.
 * TODO: Calling psci_get_aff_map_node() with the MMU disabled is slow. Add
 * support to allow faster access to the target affinity level.
 ******************************************************************************/
int get_power_on_target_afflvl(unsigned long mpidr)
{
71
	aff_map_node_t *node;
72
	unsigned int state;
73
	int afflvl;
74
75

	/* Retrieve our node from the topology tree */
76
77
	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
78
79
80
81
82
83
84
	assert(node);

	/*
	 * Return the maximum supported affinity level if this cpu was off.
	 * Call the handler in the suspend code if this cpu had been suspended.
	 * Any other state is invalid.
	 */
85
	state = psci_get_state(node);
86
87
88
	if (state == PSCI_STATE_ON_PENDING)
		return get_max_afflvl();

89
90
91
92
93
	if (state == PSCI_STATE_SUSPEND) {
		afflvl = psci_get_aff_map_node_suspend_afflvl(node);
		assert(afflvl != PSCI_INVALID_DATA);
		return afflvl;
	}
94
95
96
	return PSCI_E_INVALID_PARAMS;
}

97
98
99
100
/*******************************************************************************
 * Simple routine to retrieve the maximum affinity level supported by the
 * platform and check that it makes sense.
 ******************************************************************************/
101
int get_max_afflvl(void)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
{
	int aff_lvl;

	aff_lvl = plat_get_max_afflvl();
	assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);

	return aff_lvl;
}

/*******************************************************************************
 * Simple routine to set the id of an affinity instance at a given level in the
 * mpidr.
 ******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
				 unsigned char aff_inst,
				 int aff_lvl)
{
	unsigned long aff_shift;

	assert(aff_lvl <= MPIDR_AFFLVL3);

	/*
	 * Decide the number of bits to shift by depending upon
	 * the affinity level
	 */
	aff_shift = get_afflvl_shift(aff_lvl);

	/* Clear the existing affinity instance & set the new one*/
	mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
	mpidr |= aff_inst << aff_shift;

	return mpidr;
}

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*******************************************************************************
 * This function sanity checks a range of affinity levels.
 ******************************************************************************/
int psci_check_afflvl_range(int start_afflvl, int end_afflvl)
{
	/* Sanity check the parameters passed */
	if (end_afflvl > MPIDR_MAX_AFFLVL)
		return PSCI_E_INVALID_PARAMS;

	if (start_afflvl < MPIDR_AFFLVL0)
		return PSCI_E_INVALID_PARAMS;

	if (end_afflvl < start_afflvl)
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * This function is passed an array of pointers to affinity level nodes in the
 * topology tree for an mpidr. It picks up locks for each affinity level bottom
 * up in the range specified.
 ******************************************************************************/
159
void psci_acquire_afflvl_locks(int start_afflvl,
160
			       int end_afflvl,
161
			       mpidr_aff_map_nodes_t mpidr_nodes)
162
163
164
165
166
167
{
	int level;

	for (level = start_afflvl; level <= end_afflvl; level++) {
		if (mpidr_nodes[level] == NULL)
			continue;
168
		bakery_lock_get(&mpidr_nodes[level]->lock);
169
170
171
172
173
174
175
176
	}
}

/*******************************************************************************
 * This function is passed an array of pointers to affinity level nodes in the
 * topology tree for an mpidr. It releases the lock for each affinity level top
 * down in the range specified.
 ******************************************************************************/
177
void psci_release_afflvl_locks(int start_afflvl,
178
			       int end_afflvl,
179
			       mpidr_aff_map_nodes_t mpidr_nodes)
180
181
182
183
184
185
{
	int level;

	for (level = end_afflvl; level >= start_afflvl; level--) {
		if (mpidr_nodes[level] == NULL)
			continue;
186
		bakery_lock_release(&mpidr_nodes[level]->lock);
187
188
189
	}
}

190
191
192
193
194
195
/*******************************************************************************
 * Simple routine to determine whether an affinity instance at a given level
 * in an mpidr exists or not.
 ******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
196
	aff_map_node_t *node;
197
198
199
200
201
202
203
204
205

	node = psci_get_aff_map_node(mpidr, level);
	if (node && (node->state & PSCI_AFF_PRESENT))
		return PSCI_E_SUCCESS;
	else
		return PSCI_E_INVALID_PARAMS;
}

/*******************************************************************************
206
207
208
 * This function determines the full entrypoint information for the requested
 * PSCI entrypoint on power on/resume and saves this in the non-secure CPU
 * cpu_context, ready for when the core boots.
209
 ******************************************************************************/
210
211
212
int psci_save_ns_entry(uint64_t mpidr,
		       uint64_t entrypoint, uint64_t context_id,
		       uint32_t ns_scr_el3, uint32_t ns_sctlr_el1)
213
{
214
215
	uint32_t ep_attr, mode, sctlr, daif, ee;
	entry_point_info_t ep;
216

217
218
	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
	ee = 0;
219

220
221
222
223
224
225
	ep_attr = NON_SECURE | EP_ST_DISABLE;
	if (sctlr & SCTLR_EE_BIT) {
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
	SET_PARAM_HEAD(&ep, PARAM_EP, VERSION_1, ep_attr);
226

227
228
229
	ep.pc = entrypoint;
	memset(&ep.args, 0, sizeof(ep.args));
	ep.args.arg0 = context_id;
230
231
232
233
234

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
235
	if (ns_scr_el3 & SCR_RW_BIT) {
236
237
238
239
240
241
242
243

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if (entrypoint & 0x1)
			return PSCI_E_INVALID_PARAMS;

244
		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
245

246
		ep.spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
247
248
	} else {

249
		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
250
251
252
253
254

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
255
256
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

257
		ep.spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
258
259
	}

260
261
	/* initialise an entrypoint to set up the CPU context */
	cm_init_context(mpidr, &ep);
262

263
	return PSCI_E_SUCCESS;
264
265
}

266
267
268
269
/*******************************************************************************
 * This function takes a pointer to an affinity node in the topology tree and
 * returns its state. State of a non-leaf node needs to be calculated.
 ******************************************************************************/
270
unsigned short psci_get_state(aff_map_node_t *node)
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
{
	assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);

	/* A cpu node just contains the state which can be directly returned */
	if (node->level == MPIDR_AFFLVL0)
		return (node->state >> PSCI_STATE_SHIFT) & PSCI_STATE_MASK;

	/*
	 * For an affinity level higher than a cpu, the state has to be
	 * calculated. It depends upon the value of the reference count
	 * which is managed by each node at the next lower affinity level
	 * e.g. for a cluster, each cpu increments/decrements the reference
	 * count. If the reference count is 0 then the affinity level is
	 * OFF else ON.
	 */
	if (node->ref_count)
		return PSCI_STATE_ON;
	else
		return PSCI_STATE_OFF;
}

/*******************************************************************************
 * This function takes a pointer to an affinity node in the topology tree and
 * a target state. State of a non-leaf node needs to be converted to a reference
 * count. State of a leaf node can be set directly.
 ******************************************************************************/
297
void psci_set_state(aff_map_node_t *node, unsigned short state)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
{
	assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);

	/*
	 * For an affinity level higher than a cpu, the state is used
	 * to decide whether the reference count is incremented or
	 * decremented. Entry into the ON_PENDING state does not have
	 * effect.
	 */
	if (node->level > MPIDR_AFFLVL0) {
		switch (state) {
		case PSCI_STATE_ON:
			node->ref_count++;
			break;
		case PSCI_STATE_OFF:
		case PSCI_STATE_SUSPEND:
			node->ref_count--;
			break;
		case PSCI_STATE_ON_PENDING:
			/*
			 * An affinity level higher than a cpu will not undergo
			 * a state change when it is about to be turned on
			 */
			return;
		default:
			assert(0);
		}
	} else {
		node->state &= ~(PSCI_STATE_MASK << PSCI_STATE_SHIFT);
		node->state |= (state & PSCI_STATE_MASK) << PSCI_STATE_SHIFT;
	}
}

331
332
/*******************************************************************************
 * An affinity level could be on, on_pending, suspended or off. These are the
333
334
 * logical states it can be in. Physically either it is off or on. When it is in
 * the state on_pending then it is about to be turned on. It is not possible to
335
336
337
 * tell whether that's actually happenned or not. So we err on the side of
 * caution & treat the affinity level as being turned off.
 ******************************************************************************/
338
unsigned short psci_get_phys_state(aff_map_node_t *node)
339
{
340
	unsigned int state;
341

342
343
	state = psci_get_state(node);
	return get_phys_state(state);
344
345
}

346
347
348
349
350
/*******************************************************************************
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the physical power on handler for the corresponding
 * affinity levels
 ******************************************************************************/
351
static int psci_call_power_on_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
352
353
				       int start_afflvl,
				       int end_afflvl,
354
				       afflvl_power_on_finisher_t *pon_handlers)
355
356
{
	int rc = PSCI_E_INVALID_PARAMS, level;
357
	aff_map_node_t *node;
358
359
360
361
362
363
364
365
366
367
368
369

	for (level = end_afflvl; level >= start_afflvl; level--) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * If we run into any trouble while powering up an
		 * affinity instance, then there is no recovery path
		 * so simply return an error and let the caller take
		 * care of the situation.
		 */
370
		rc = pon_handlers[level](node);
371
372
373
374
375
376
377
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

378
379
/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
380
 * traverses through all the affinity levels performing generic, architectural,
381
382
383
384
 * platform setup and state management e.g. for a cluster that's been powered
 * on, it will call the platform specific code which will enable coherency at
 * the interconnect level. For a cpu it could mean turning on the MMU etc.
 *
385
386
387
388
389
390
391
392
 * The state of all the relevant affinity levels is changed after calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is exiting from.
 *
 * The affinity level specific handlers are called in descending order i.e. from
 * the highest to the lowest affinity level implemented by the platform because
 * to turn on affinity level X it is neccesary to turn on affinity level X + 1
 * first.
393
 ******************************************************************************/
394
void psci_afflvl_power_on_finish(int start_afflvl,
395
				 int end_afflvl,
396
				 afflvl_power_on_finisher_t *pon_handlers)
397
{
398
	mpidr_aff_map_nodes_t mpidr_nodes;
399
	int rc;
400
401

	/*
402
403
404
405
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect. Either case is an irrecoverable error.
406
	 */
407
	rc = psci_get_aff_map_nodes(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
408
409
410
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
411
412
	if (rc != PSCI_E_SUCCESS)
		panic();
413
414

	/*
415
416
417
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
418
	 */
419
	psci_acquire_afflvl_locks(start_afflvl,
420
421
				  end_afflvl,
				  mpidr_nodes);
422
423

	/* Perform generic, architecture and platform specific handling */
424
425
426
	rc = psci_call_power_on_handlers(mpidr_nodes,
					 start_afflvl,
					 end_afflvl,
427
					 pon_handlers);
428
429
	if (rc != PSCI_E_SUCCESS)
		panic();
430

431
432
433
434
	/*
	 * This loop releases the lock corresponding to each affinity level
	 * in the reverse order to which they were acquired.
	 */
435
	psci_release_afflvl_locks(start_afflvl,
436
437
				  end_afflvl,
				  mpidr_nodes);
438
}
439
440
441
442
443
444

/*******************************************************************************
 * This function initializes the set of hooks that PSCI invokes as part of power
 * management operation. The power management hooks are expected to be provided
 * by the SPD, after it finishes all its initialization
 ******************************************************************************/
445
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
446
447
448
{
	psci_spd_pm = pm;
}