plat_psci_handlers.c 13.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
3
4
5
6
7
8
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch.h>
#include <assert.h>
9
10
11
12
#include <stdbool.h>
#include <string.h>

#include <arch_helpers.h>
13
14
#include <common/bl_common.h>
#include <common/debug.h>
15
#include <context.h>
16
#include <denver.h>
17
18
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/psci/psci.h>
19
#include <mce.h>
20
#include <mce_private.h>
21
#include <plat/common/platform.h>
22
#include <se.h>
23
#include <smmu.h>
Tejal Kudav's avatar
Tejal Kudav committed
24
#include <t194_nvg.h>
25
#include <tegra194_private.h>
26
27
#include <tegra_platform.h>
#include <tegra_private.h>
28

29
30
extern uint32_t __tegra194_cpu_reset_handler_data,
		__tegra194_cpu_reset_handler_end;
31
32

/* TZDRAM offset for saving SMMU context */
33
#define TEGRA194_SMMU_CTX_OFFSET	16U
34
35

/* state id mask */
36
#define TEGRA194_STATE_ID_MASK		0xFU
37
/* constants to get power state's wake time */
38
39
#define TEGRA194_WAKE_TIME_MASK		0x0FFFFFF0U
#define TEGRA194_WAKE_TIME_SHIFT	4U
40
/* default core wake mask for CPU_SUSPEND */
41
#define TEGRA194_CORE_WAKE_MASK		0x180cU
42

43
44
45
static struct t19x_psci_percpu_data {
	uint32_t wake_time;
} __aligned(CACHE_WRITEBACK_GRANULE) t19x_percpu_data[PLATFORM_CORE_COUNT];
46

47
48
49
50
51
52
53
54
/*
 * tegra_fake_system_suspend acts as a boolean var controlling whether
 * we are going to take fake system suspend code or normal system suspend code
 * path. This variable is set inside the sip call handlers, when the kernel
 * requests an SIP call to set the suspend debug flags.
 */
bool tegra_fake_system_suspend;

55
int32_t tegra_soc_validate_power_state(uint32_t power_state,
56
57
					psci_power_state_t *req_state)
{
58
	uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) &
59
			   TEGRA194_STATE_ID_MASK;
60
61
	uint32_t cpu = plat_my_core_pos();
	int32_t ret = PSCI_E_SUCCESS;
62
63

	/* save the core wake time (in TSC ticks)*/
64
65
	t19x_percpu_data[cpu].wake_time = (power_state & TEGRA194_WAKE_TIME_MASK)
			<< TEGRA194_WAKE_TIME_SHIFT;
66
67

	/*
68
69
70
71
	 * Clean t19x_percpu_data[cpu] to DRAM. This needs to be done to ensure
	 * that the correct value is read in tegra_soc_pwr_domain_suspend(),
	 * which is called with caches disabled. It is possible to read a stale
	 * value from DRAM in that function, because the L2 cache is not flushed
72
73
	 * unless the cluster is entering CC6/CC7.
	 */
74
75
	clean_dcache_range((uint64_t)&t19x_percpu_data[cpu],
			sizeof(t19x_percpu_data[cpu]));
76
77
78
79

	/* Sanity check the requested state id */
	switch (state_id) {
	case PSTATE_ID_CORE_IDLE:
80
81
82
83
84
85

		/* Core idle request */
		req_state->pwr_domain_state[MPIDR_AFFLVL0] = PLAT_MAX_RET_STATE;
		req_state->pwr_domain_state[MPIDR_AFFLVL1] = PSCI_LOCAL_STATE_RUN;
		break;

86
87
88
89
90
91
92
93
94
95
	case PSTATE_ID_CORE_POWERDN:

		/* Core powerdown request */
		req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id;
		req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;

		break;

	default:
		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
96
97
		ret = PSCI_E_INVALID_PARAMS;
		break;
98
99
	}

100
	return ret;
101
102
}

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state)
{
	uint32_t cpu = plat_my_core_pos();
	mce_cstate_info_t cstate_info = { 0 };

	/* Program default wake mask */
	cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK;
	cstate_info.update_wake_mask = 1;
	mce_update_cstate_info(&cstate_info);

	/* Enter CPU idle */
	(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
				  (uint64_t)TEGRA_NVG_CORE_C6,
				  t19x_percpu_data[cpu].wake_time,
				  0U);

	return PSCI_E_SUCCESS;
}

122
int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
123
124
{
	const plat_local_state_t *pwr_domain_state;
125
	uint8_t stateid_afflvl0, stateid_afflvl2;
126
127
128
	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
	uint64_t smmu_ctx_base;
	uint32_t val;
129
	mce_cstate_info_t sc7_cstate_info = {
130
		.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6,
131
		.ccplex = (uint32_t)TEGRA_NVG_CG_CG7,
132
133
134
		.system = (uint32_t)TEGRA_NVG_SYSTEM_SC7,
		.system_state_force = 1U,
		.update_wake_mask = 1U,
135
	};
136
	uint32_t cpu = plat_my_core_pos();
137
	int32_t ret = 0;
138
139
140
141

	/* get the state ID */
	pwr_domain_state = target_state->pwr_domain_state;
	stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] &
142
		TEGRA194_STATE_ID_MASK;
143
	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
144
		TEGRA194_STATE_ID_MASK;
145

146
	if ((stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) {
147

148
149
150
151
152
		/* Enter CPU powerdown */
		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
					  (uint64_t)TEGRA_NVG_CORE_C7,
					  t19x_percpu_data[cpu].wake_time,
					  0U);
153
154
155
156
157

	} else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {

		/* save 'Secure Boot' Processor Feature Config Register */
		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
158
		mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val);
159
160
161

		/* save SMMU context */
		smmu_ctx_base = params_from_bl2->tzdram_base +
162
				tegra194_get_smmu_ctx_offset();
163
164
		tegra_smmu_save_context((uintptr_t)smmu_ctx_base);

165
166
167
168
169
170
171
172
173
		/*
		 * Suspend SE, RNG1 and PKA1 only on silcon and fpga,
		 * since VDK does not support atomic se ctx save
		 */
		if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) {
			ret = tegra_se_suspend();
			assert(ret == 0);
		}

174
		if (!tegra_fake_system_suspend) {
175
176

			/* Prepare for system suspend */
177
			mce_update_cstate_info(&sc7_cstate_info);
178
179

			do {
180
181
182
				val = (uint32_t)mce_command_handler(
						(uint32_t)MCE_CMD_IS_SC7_ALLOWED,
						(uint32_t)TEGRA_NVG_CORE_C7,
183
						MCE_CORE_SLEEP_TIME_INFINITE,
184
185
186
187
188
189
190
191
192
193
						0U);
			} while (val == 0U);

			/* Instruct the MCE to enter system suspend state */
			ret = mce_command_handler(
					(uint64_t)MCE_CMD_ENTER_CSTATE,
					(uint64_t)TEGRA_NVG_CORE_C7,
					MCE_CORE_SLEEP_TIME_INFINITE,
					0U);
			assert(ret == 0);
194
195
196

			/* set system suspend state for house-keeping */
			tegra194_set_system_suspend_entry();
197
		}
198
199
	} else {
		; /* do nothing */
200
201
202
203
204
205
	}

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
206
 * Helper function to check if this is the last ON CPU in the cluster
207
 ******************************************************************************/
208
209
static bool tegra_last_on_cpu_in_cluster(const plat_local_state_t *states,
			uint32_t ncpu)
210
{
211
212
	plat_local_state_t target;
	bool last_on_cpu = true;
213
	uint32_t num_cpus = ncpu, pos = 0;
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
	do {
		target = states[pos];
		if (target != PLAT_MAX_OFF_STATE) {
			last_on_cpu = false;
		}
		--num_cpus;
		pos++;
	} while (num_cpus != 0U);

	return last_on_cpu;
}

/*******************************************************************************
 * Helper function to get target power state for the cluster
 ******************************************************************************/
static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
			uint32_t ncpu)
{
	uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
	plat_local_state_t target = states[core_pos];
	mce_cstate_info_t cstate_info = { 0 };
236
237

	/* CPU suspend */
238
	if (target == PSTATE_ID_CORE_POWERDN) {
239
240

		/* Program default wake mask */
241
242
243
		cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);
244
245
246
	}

	/* CPU off */
247
	if (target == PLAT_MAX_OFF_STATE) {
248
249

		/* Enable cluster powerdn from last CPU in the cluster */
250
		if (tegra_last_on_cpu_in_cluster(states, ncpu)) {
251

252
253
			/* Enable CC6 state and turn off wake mask */
			cstate_info.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6;
254
255
			cstate_info.update_wake_mask = 1U;
			mce_update_cstate_info(&cstate_info);
256

257
		} else {
258

259
			/* Turn off wake_mask */
260
261
			cstate_info.update_wake_mask = 1U;
			mce_update_cstate_info(&cstate_info);
262
			target = PSCI_LOCAL_STATE_RUN;
263
264
265
		}
	}

266
267
268
269
270
271
272
273
274
275
276
277
278
279
	return target;
}

/*******************************************************************************
 * Platform handler to calculate the proper target power level at the
 * specified affinity level
 ******************************************************************************/
plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
					     const plat_local_state_t *states,
					     uint32_t ncpu)
{
	plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
	uint32_t cpu = plat_my_core_pos();

280
	/* System Suspend */
281
282
283
284
285
286
287
	if ((lvl == (uint32_t)MPIDR_AFFLVL2) && (states[cpu] == PSTATE_ID_SOC_POWERDN)) {
		target = PSTATE_ID_SOC_POWERDN;
	}

	/* CPU off, CPU suspend */
	if (lvl == (uint32_t)MPIDR_AFFLVL1) {
		target = tegra_get_afflvl1_pwr_state(states, ncpu);
288
	}
289

290
291
	/* target cluster/system state */
	return target;
292
293
}

294
int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
295
296
297
298
{
	const plat_local_state_t *pwr_domain_state =
		target_state->pwr_domain_state;
	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
299
	uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
300
		TEGRA194_STATE_ID_MASK;
301
	uint64_t val;
302
	u_register_t ns_sctlr_el1;
303
304
305
306
307
308
309
310

	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
		/*
		 * The TZRAM loses power when we enter system suspend. To
		 * allow graceful exit from system suspend, we need to copy
		 * BL3-1 over to TZDRAM.
		 */
		val = params_from_bl2->tzdram_base +
311
		      tegra194_get_cpu_reset_handler_size();
312
313
		memcpy((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
		       (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE);
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

		/*
		 * In fake suspend mode, ensure that the loopback procedure
		 * towards system suspend exit is started, instead of calling
		 * WFI. This is done by disabling both MMU's of EL1 & El3
		 * and calling tegra_secure_entrypoint().
		 */
		if (tegra_fake_system_suspend) {

			/*
			 * Disable EL1's MMU.
			 */
			ns_sctlr_el1 = read_sctlr_el1();
			ns_sctlr_el1 &= (~((u_register_t)SCTLR_M_BIT));
			write_sctlr_el1(ns_sctlr_el1);

			/*
			 * Disable MMU to power up the CPU in a "clean"
			 * state
			 */
			disable_mmu_el3();
			tegra_secure_entrypoint();
			panic();
		}
338
339
340
341
342
	}

	return PSCI_E_SUCCESS;
}

343
int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
344
{
345
346
	uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
	uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
347
			MPIDR_AFFINITY_BITS;
348
	int32_t ret = 0;
349

350
	if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) {
351
352
353
354
355
		ERROR("%s: unsupported CPU (0x%lx)\n", __func__ , mpidr);
		return PSCI_E_NOT_PRESENT;
	}

	/* construct the target CPU # */
356
	target_cpu += (target_cluster << 1U);
357

358
359
360
361
	ret = mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
	if (ret < 0) {
		return PSCI_E_DENIED;
	}
362
363
364
365

	return PSCI_E_SUCCESS;
}

366
int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
367
{
368
	uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
369
370
371
372
373
374
375
376
377
378
379
380
381
382

	/*
	 * Reset power state info for CPUs when onlining, we set
	 * deepest power when offlining a core but that may not be
	 * requested by non-secure sw which controls idle states. It
	 * will re-init this info from non-secure software when the
	 * core come online.
	 */

	/*
	 * Check if we are exiting from deep sleep and restore SE
	 * context if we are.
	 */
	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
383

384
#if ENABLE_STRICT_CHECKING_MODE
385
386
387
388
389
		/*
		 * Enable strict checking after programming the GSC for
		 * enabling TZSRAM and TZDRAM
		 */
		mce_enable_strict_checking();
390
#endif
391

392
		/* Init SMMU */
393
394
		tegra_smmu_init();

395
396
397
		/* Resume SE, RNG1 and PKA1 */
		tegra_se_resume();

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
		/*
		 * Program XUSB STREAMIDs
		 * ======================
		 * T19x XUSB has support for XUSB virtualization. It will
		 * have one physical function (PF) and four Virtual functions
		 * (VF)
		 *
		 * There were below two SIDs for XUSB until T186.
		 * 1) #define TEGRA_SID_XUSB_HOST    0x1bU
		 * 2) #define TEGRA_SID_XUSB_DEV    0x1cU
		 *
		 * We have below four new SIDs added for VF(s)
		 * 3) #define TEGRA_SID_XUSB_VF0    0x5dU
		 * 4) #define TEGRA_SID_XUSB_VF1    0x5eU
		 * 5) #define TEGRA_SID_XUSB_VF2    0x5fU
		 * 6) #define TEGRA_SID_XUSB_VF3    0x60U
		 *
		 * When virtualization is enabled then we have to disable SID
		 * override and program above SIDs in below newly added SID
		 * registers in XUSB PADCTL MMIO space. These registers are
		 * TZ protected and so need to be done in ATF.
		 *
		 * a) #define XUSB_PADCTL_HOST_AXI_STREAMID_PF_0 (0x136cU)
		 * b) #define XUSB_PADCTL_DEV_AXI_STREAMID_PF_0  (0x139cU)
		 * c) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_0 (0x1370U)
		 * d) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_1 (0x1374U)
		 * e) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_2 (0x1378U)
		 * f) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_3 (0x137cU)
		 *
		 * This change disables SID override and programs XUSB SIDs
		 * in above registers to support both virtualization and
		 * non-virtualization platforms
		 */
		mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
			XUSB_PADCTL_HOST_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_HOST);
		mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
			XUSB_PADCTL_HOST_AXI_STREAMID_VF_0, TEGRA_SID_XUSB_VF0);
		mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
			XUSB_PADCTL_HOST_AXI_STREAMID_VF_1, TEGRA_SID_XUSB_VF1);
		mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
			XUSB_PADCTL_HOST_AXI_STREAMID_VF_2, TEGRA_SID_XUSB_VF2);
		mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
			XUSB_PADCTL_HOST_AXI_STREAMID_VF_3, TEGRA_SID_XUSB_VF3);
		mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
			XUSB_PADCTL_DEV_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_DEV);

444
445
446
447
448
449
450
451
452
453
454
		/*
		 * Reset power state info for the last core doing SC7
		 * entry and exit, we set deepest power state as CC7
		 * and SC7 for SC7 entry which may not be requested by
		 * non-secure SW which controls idle states.
		 */
	}

	return PSCI_E_SUCCESS;
}

455
int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
456
{
457
	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
458
	int32_t ret = 0;
459

460
461
	(void)target_state;

462
	/* Disable Denver's DCO operations */
463
	if (impl == DENVER_IMPL) {
464
		denver_disable_dco();
465
	}
466
467

	/* Turn off CPU */
468
469
	ret = mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
			(uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
470
	assert(ret == 0);
471
472
473
474
475
476
477

	return PSCI_E_SUCCESS;
}

__dead2 void tegra_soc_prepare_system_off(void)
{
	/* System power off */
478
	mce_system_shutdown();
479
480
481
482
483
484
485
486
487

	wfi();

	/* wait for the system to power down */
	for (;;) {
		;
	}
}

488
int32_t tegra_soc_prepare_system_reset(void)
489
{
490
491
492
	/* System reboot */
	mce_system_reboot();

493
494
	return PSCI_E_SUCCESS;
}