hikey960_bl1_setup.c 8.57 KB
Newer Older
1
/*
Haojian Zhuang's avatar
Haojian Zhuang committed
2
 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch_helpers.h>
#include <arm_gic.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <delay_timer.h>
#include <dw_ufs.h>
#include <errno.h>
16
#include <generic_delay_timer.h>
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <gicv2.h>
#include <hi3660.h>
#include <mmio.h>
#include <platform.h>
#include <platform_def.h>
#include <string.h>
#include <tbbr/tbbr_img_desc.h>
#include <ufs.h>

#include "../../bl1/bl1_private.h"
#include "hikey960_def.h"
#include "hikey960_private.h"

enum {
	BOOT_MODE_RECOVERY = 0,
	BOOT_MODE_NORMAL,
	BOOT_MODE_MASK = 1,
};

/*
 * Declarations of linker defined symbols which will help us find the layout
 * of trusted RAM
 */
extern unsigned long __COHERENT_RAM_START__;
extern unsigned long __COHERENT_RAM_END__;

/*
 * The next 2 constants identify the extents of the coherent memory region.
 * These addresses are used by the MMU setup code and therefore they must be
 * page-aligned.  It is the responsibility of the linker script to ensure that
 * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
 * page-aligned addresses.
 */
#define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)

/* Data structure which holds the extents of the trusted RAM for BL1 */
static meminfo_t bl1_tzram_layout;

/******************************************************************************
 * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0
 * interrupts.
 *****************************************************************************/
const unsigned int g0_interrupt_array[] = {
	IRQ_SEC_PHY_TIMER,
	IRQ_SEC_SGI_0
};

const gicv2_driver_data_t hikey960_gic_data = {
	.gicd_base = GICD_REG_BASE,
	.gicc_base = GICC_REG_BASE,
	.g0_interrupt_num = ARRAY_SIZE(g0_interrupt_array),
	.g0_interrupt_array = g0_interrupt_array,
};

meminfo_t *bl1_plat_sec_mem_layout(void)
{
	return &bl1_tzram_layout;
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/*******************************************************************************
 * Function that takes a memory layout into which BL2 has been loaded and
 * populates a new memory layout for BL2 that ensures that BL1's data sections
 * resident in secure RAM are not visible to BL2.
 ******************************************************************************/
void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
			     meminfo_t *bl2_mem_layout)
{

	assert(bl1_mem_layout != NULL);
	assert(bl2_mem_layout != NULL);

	/*
	 * Cannot remove BL1 RW data from the scope of memory visible to BL2
	 * like arm platforms because they overlap in hikey960
	 */
	bl2_mem_layout->total_base = BL2_BASE;
	bl2_mem_layout->total_size = NS_BL1U_LIMIT - BL2_BASE;

	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
}

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
 * Perform any BL1 specific platform actions.
 */
void bl1_early_platform_setup(void)
{
	unsigned int id, uart_base;

	generic_delay_timer_init();
	hikey960_read_boardid(&id);
	if (id == 5300)
		uart_base = PL011_UART5_BASE;
	else
		uart_base = PL011_UART6_BASE;
	/* Initialize the console to provide early debug support */
	console_init(uart_base, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);

	/* Allow BL1 to see the whole Trusted RAM */
	bl1_tzram_layout.total_base = BL1_RW_BASE;
	bl1_tzram_layout.total_size = BL1_RW_SIZE;

	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
120
	     BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
}

/*
 * Perform the very early platform specific architecture setup here. At the
 * moment this only does basic initialization. Later architectural setup
 * (bl1_arch_setup()) does not do anything platform specific.
 */
void bl1_plat_arch_setup(void)
{
	hikey960_init_mmu_el3(bl1_tzram_layout.total_base,
			      bl1_tzram_layout.total_size,
			      BL1_RO_BASE,
			      BL1_RO_LIMIT,
			      BL1_COHERENT_RAM_BASE,
			      BL1_COHERENT_RAM_LIMIT);
}

static void hikey960_ufs_reset(void)
{
	unsigned int data, mask;

	mmio_write_32(CRG_PERDIS7_REG, 1 << 14);
	mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN);
	do {
		data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG);
	} while (data & BIT_SYSCTRL_REF_CLOCK_EN);
	/* use abb clk */
	mmio_clrbits_32(UFS_SYS_UFS_SYSCTRL_REG, BIT_UFS_REFCLK_SRC_SE1);
	mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_REFCLK_ISO_EN);
	mmio_write_32(PCTRL_PERI_CTRL3_REG, (1 << 0) | (1 << 16));
	mdelay(1);
	mmio_write_32(CRG_PEREN7_REG, 1 << 14);
	mmio_setbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN);

	mmio_write_32(CRG_PERRSTEN3_REG, PERI_UFS_BIT);
	do {
		data = mmio_read_32(CRG_PERRSTSTAT3_REG);
	} while ((data & PERI_UFS_BIT) == 0);
	mmio_setbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_MTCMOS_EN);
	mdelay(1);
	mmio_setbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_PWR_READY);
	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
		      MASK_UFS_DEVICE_RESET);
	/* clear SC_DIV_UFS_PERIBUS */
	mask = SC_DIV_UFS_PERIBUS << 16;
	mmio_write_32(CRG_CLKDIV17_REG, mask);
	/* set SC_DIV_UFSPHY_CFG(3) */
	mask = SC_DIV_UFSPHY_CFG_MASK << 16;
	data = SC_DIV_UFSPHY_CFG(3);
	mmio_write_32(CRG_CLKDIV16_REG, mask | data);
	data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG);
	data &= ~MASK_SYSCTRL_CFG_CLOCK_FREQ;
	data |= 0x39;
	mmio_write_32(UFS_SYS_PHY_CLK_CTRL_REG, data);
	mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, MASK_SYSCTRL_REF_CLOCK_SEL);
	mmio_setbits_32(UFS_SYS_CLOCK_GATE_BYPASS_REG,
			MASK_UFS_CLK_GATE_BYPASS);
	mmio_setbits_32(UFS_SYS_UFS_SYSCTRL_REG, MASK_UFS_SYSCTRL_BYPASS);

	mmio_setbits_32(UFS_SYS_PSW_CLK_CTRL_REG, BIT_SYSCTRL_PSW_CLK_EN);
	mmio_clrbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_ISO_CTRL);
	mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_PHY_ISO_CTRL);
	mmio_clrbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_LP_ISOL_EN);
	mmio_write_32(CRG_PERRSTDIS3_REG, PERI_ARST_UFS_BIT);
	mmio_setbits_32(UFS_SYS_RESET_CTRL_EN_REG, BIT_SYSCTRL_LP_RESET_N);
	mdelay(1);
	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
		      MASK_UFS_DEVICE_RESET | BIT_UFS_DEVICE_RESET);
	mdelay(20);
	mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG,
		      0x03300330);

	mmio_write_32(CRG_PERRSTDIS3_REG, PERI_UFS_BIT);
	do {
		data = mmio_read_32(CRG_PERRSTSTAT3_REG);
	} while (data & PERI_UFS_BIT);
}

static void hikey960_ufs_init(void)
{
	dw_ufs_params_t ufs_params;

	memset(&ufs_params, 0, sizeof(ufs_params));
	ufs_params.reg_base = UFS_REG_BASE;
	ufs_params.desc_base = HIKEY960_UFS_DESC_BASE;
	ufs_params.desc_size = HIKEY960_UFS_DESC_SIZE;

	if ((ufs_params.flags & UFS_FLAGS_SKIPINIT) == 0)
		hikey960_ufs_reset();
	dw_ufs_init(&ufs_params);
}

/*
 * Function which will perform any remaining platform-specific setup that can
 * occur after the MMU and data cache have been enabled.
 */
void bl1_platform_setup(void)
{
	hikey960_clk_init();
	hikey960_pmu_init();
	hikey960_regulator_enable();
	hikey960_tzc_init();
	hikey960_peri_init();
	hikey960_ufs_init();
	hikey960_pinmux_init();
	hikey960_io_setup();
}

/*
 * The following function checks if Firmware update is needed,
 * by checking if TOC in FIP image is valid or not.
 */
unsigned int bl1_plat_get_next_image_id(void)
{
	unsigned int mode, ret;

	mode = mmio_read_32(SCTRL_BAK_DATA0_REG);
	switch (mode & BOOT_MODE_MASK) {
	case BOOT_MODE_RECOVERY:
		ret = NS_BL1U_IMAGE_ID;
		break;
	default:
		WARN("Invalid boot mode is found:%d\n", mode);
		panic();
	}
	return ret;
}

image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
{
	unsigned int index = 0;

	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
		if (bl1_tbbr_image_descs[index].image_id == image_id)
			return &bl1_tbbr_image_descs[index];
		index++;
	}

	return NULL;
}

void bl1_plat_set_ep_info(unsigned int image_id,
		entry_point_info_t *ep_info)
{
	unsigned int data = 0;
	uintptr_t tmp = HIKEY960_NS_TMP_OFFSET;

Haojian Zhuang's avatar
Haojian Zhuang committed
268
269
	if (image_id != NS_BL1U_IMAGE_ID)
		panic();
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
	/* Copy NS BL1U from 0x1AC1_8000 to 0x1AC9_8000 */
	memcpy((void *)tmp, (void *)HIKEY960_NS_IMAGE_OFFSET,
		NS_BL1U_SIZE);
	memcpy((void *)NS_BL1U_BASE, (void *)tmp, NS_BL1U_SIZE);
	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
	/* Initialize the GIC driver, cpu and distributor interfaces */
	gicv2_driver_init(&hikey960_gic_data);
	gicv2_distif_init();
	gicv2_pcpu_distif_init();
	gicv2_cpuif_enable();
	/* CNTFRQ is read-only in EL1 */
	write_cntfrq_el0(plat_get_syscnt_freq2());
	data = read_cpacr_el1();
	do {
		data |= 3 << 20;
		write_cpacr_el1(data);
		data = read_cpacr_el1();
	} while ((data & (3 << 20)) != (3 << 20));
	INFO("cpacr_el1:0x%x\n", data);

	ep_info->args.arg0 = 0xffff & read_mpidr();
	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
				DISABLE_ALL_EXCEPTIONS);
}