psci_afflvl_suspend.c 19.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
34
#include <debug.h>
35
36
37
38
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
39
#include <context_mgmt.h>
40
#include <runtime_svc.h>
41
#include "psci_private.h"
42

43
44
typedef int (*afflvl_suspend_handler_t)(unsigned long,
				      aff_map_node_t *,
45
46
47
48
				      unsigned long,
				      unsigned long,
				      unsigned int);

49
/*******************************************************************************
50
51
 * This function sets the power state of the current cpu while
 * powering down during a cpu_suspend call
52
 ******************************************************************************/
53
void psci_set_suspend_power_state(aff_map_node_t *node, unsigned int power_state)
54
55
56
57
58
59
60
61
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

62
63
64
	/* Save PSCI power state parameter for the core in suspend context */
	psci_suspend_context[node->data].power_state = power_state;

65
	/*
66
67
	 * Flush the suspend data to PoC since it will be accessed while
	 * returning back from suspend with the caches turned off
68
	 */
69
70
	flush_dcache_range(
		(unsigned long)&psci_suspend_context[node->data],
71
		sizeof(suspend_context_t));
72
73
}

74
75
76
77
78
79
80
/*******************************************************************************
 * This function gets the affinity level till which a cpu is powered down
 * during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
int psci_get_suspend_afflvl(unsigned long mpidr)
{
81
	aff_map_node_t *node;
82
83
84
85
86
87
88
89
90

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);

	return psci_get_aff_map_node_suspend_afflvl(node);
}


91
92
/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
93
94
95
 * down during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
96
int psci_get_aff_map_node_suspend_afflvl(aff_map_node_t *node)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
{
	unsigned int power_state;

	assert(node->level == MPIDR_AFFLVL0);

	power_state = psci_suspend_context[node->data].power_state;
	return ((power_state == PSCI_INVALID_DATA) ?
				power_state : psci_get_pstate_afflvl(power_state));
}

/*******************************************************************************
 * This function gets the state id of a cpu stored in suspend context
 * while powering down during a cpu_suspend call. Returns 0xFFFFFFFF
 * if the power state saved for the node is invalid
111
 ******************************************************************************/
112
int psci_get_suspend_stateid(unsigned long mpidr)
113
{
114
	aff_map_node_t *node;
115
116
117
118
119
120
121
122
123
124
	unsigned int power_state;

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);
	assert(node->level == MPIDR_AFFLVL0);

	power_state = psci_suspend_context[node->data].power_state;
	return ((power_state == PSCI_INVALID_DATA) ?
					power_state : psci_get_pstate_id(power_state));
125
126
}

127
128
129
130
131
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
static int psci_afflvl0_suspend(unsigned long mpidr,
132
				aff_map_node_t *cpu_node,
133
134
135
136
137
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	unsigned int index, plat_state;
138
	unsigned long psci_entrypoint, sctlr;
139
	el3_state_t *saved_el3_state;
140
141
142
143
144
	int rc = PSCI_E_SUCCESS;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

145
146
147
	/* Save PSCI power state parameter for the core in suspend context */
	psci_set_suspend_power_state(cpu_node, power_state);

148
149
150
151
152
153
154
155
156
157
	/*
	 * Generic management: Store the re-entry information for the non-secure
	 * world and allow the secure world to suspend itself
	 */

	/*
	 * Call the cpu suspend handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
158
159
	if (psci_spd_pm && psci_spd_pm->svc_suspend)
		psci_spd_pm->svc_suspend(power_state);
160

161
162
163
	/* State management: mark this cpu as suspended */
	psci_set_state(cpu_node, PSCI_STATE_SUSPEND);

164
165
166
167
168
169
170
171
172
173
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
174
175
	 * Arch. management: Save the EL3 state in the 'cpu_context'
	 * structure that has been allocated for this cpu, flush the
176
177
	 * L1 caches and exit intra-cluster coherency et al
	 */
178
179
	cm_el3_sysregs_context_save(NON_SECURE);
	rc = PSCI_E_SUCCESS;
180

181
182
183
184
185
186
187
	/*
	 * The EL3 state to PoC since it will be accessed after a
	 * reset with the caches turned off
	 */
	saved_el3_state = get_el3state_ctx(cm_get_context(mpidr, NON_SECURE));
	flush_dcache_range((uint64_t) saved_el3_state, sizeof(*saved_el3_state));

188
189
190
191
192
193
194
195
196
197
198
199
	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
200
	sctlr = read_sctlr_el3();
201
	sctlr &= ~SCTLR_C_BIT;
202
	write_sctlr_el3(sctlr);
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {
219
		plat_state = psci_get_phys_state(cpu_node);
220
221
222
223
224
225
226
227
228
229
230
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

static int psci_afflvl1_suspend(unsigned long mpidr,
231
				aff_map_node_t *cluster_node,
232
233
234
235
236
237
238
239
240
241
242
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

243
244
245
	/* State management: Decrement the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_SUSPEND);

246
247
248
249
	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
250
	plat_state = psci_get_phys_state(cluster_node);
251
252
253
254
255
256
257
258
259

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
260
	 * Plat. Management. Allow the platform to do its cluster
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


static int psci_afflvl2_suspend(unsigned long mpidr,
285
				aff_map_node_t *system_node,
286
287
288
289
290
291
292
293
294
295
296
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

297
298
299
	/* State management: Decrement the system reference count */
	psci_set_state(system_node, PSCI_STATE_SUSPEND);

300
301
302
303
	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
304
	plat_state = psci_get_phys_state(system_node);
305
306

	/*
307
	 * Plat. Management : Allow the platform to do its bookeeping
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

329
static const afflvl_suspend_handler_t psci_afflvl_suspend_handlers[] = {
330
331
332
333
334
335
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
336
337
338
339
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
340
static int psci_call_suspend_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
341
342
343
344
345
346
347
348
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long mpidr,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
349
	aff_map_node_t *node;
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
		rc = psci_afflvl_suspend_handlers[level](mpidr,
							 node,
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency can
 * be turned off and caches can be flushed safely.
394
395
396
397
398
 ******************************************************************************/
int psci_afflvl_suspend(unsigned long mpidr,
			unsigned long entrypoint,
			unsigned long context_id,
			unsigned int power_state,
399
400
			int start_afflvl,
			int end_afflvl)
401
{
402
	int rc = PSCI_E_SUCCESS;
403
	mpidr_aff_map_nodes_t mpidr_nodes;
404
405
406
407

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
408
409
410
411
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
412
	 */
413
414
415
416
417
418
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
419
420

	/*
421
422
423
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
424
	 */
425
426
427
428
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
429

430
431
432
433
434
435
436
437
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					mpidr,
					entrypoint,
					context_id,
					power_state);
438
439

	/*
440
441
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
442
	 */
443
444
445
446
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
447
448
449
450
451
452
453
454
455

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
456
						aff_map_node_t *cpu_node)
457
{
458
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
459
	int32_t suspend_level;
460
461
462

	assert(cpu_node->level == MPIDR_AFFLVL0);

463
	/* Ensure we have been woken up from a suspended state */
464
	state = psci_get_state(cpu_node);
465
466
	assert(state == PSCI_STATE_SUSPEND);

467
468
469
470
471
472
473
474
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
475
476

		/* Get the physical state of this cpu */
477
		plat_state = get_phys_state(state);
478
479
480
481
482
483
484
485
486
487
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	index = cpu_node->data;

	/*
488
489
	 * Arch. management: Restore the stashed EL3 architectural
	 * context from the 'cpu_context' structure for this cpu.
490
	 */
491
492
	cm_el3_sysregs_context_restore(NON_SECURE);
	rc = PSCI_E_SUCCESS;
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
	/*
	 * Use the more complex exception vectors to enable SPD
	 * initialisation. SP_EL3 should point to a 'cpu_context'
	 * structure which has an exception stack allocated. The
	 * non-secure context should have been set on this cpu
	 * prior to suspension.
	 */
	assert(cm_get_context(mpidr, NON_SECURE));
	cm_set_next_eret_context(NON_SECURE);
	write_vbar_el3((uint64_t) runtime_exceptions);

	/*
	 * Call the cpu suspend finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
510
	if (psci_spd_pm && psci_spd_pm->svc_suspend) {
511
512
		suspend_level = psci_get_aff_map_node_suspend_afflvl(cpu_node);
		assert (suspend_level != PSCI_INVALID_DATA);
513
		psci_spd_pm->svc_suspend_finish(suspend_level);
514
515
	}

516
517
518
	/* Invalidate the suspend context for the node */
	psci_set_suspend_power_state(cpu_node, PSCI_INVALID_DATA);

519
520
521
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
522
	 * call to set this cpu on its way.
523
	 */
524
	psci_get_ns_entry_info(index);
525

526
527
528
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

529
530
531
532
533
534
535
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_suspend_finish(unsigned long mpidr,
536
						aff_map_node_t *cluster_node)
537
{
538
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
539
540
541
542
543
544
545
546
547
548
549
550

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
551
552

		/* Get the physical state of this cpu */
553
		plat_state = psci_get_phys_state(cluster_node);
554
555
556
557
558
559
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

560
561
562
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

563
564
565
566
567
	return rc;
}


static unsigned int psci_afflvl2_suspend_finish(unsigned long mpidr,
568
						aff_map_node_t *system_node)
569
{
570
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
589
590

		/* Get the physical state of the system */
591
		plat_state = psci_get_phys_state(system_node);
592
593
594
595
596
597
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

598
599
600
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

601
602
603
	return rc;
}

604
const afflvl_power_on_finisher_t psci_afflvl_suspend_finishers[] = {
605
606
607
608
609
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};