Commit 010d6ae3 authored by XiaoDong Huang's avatar XiaoDong Huang
Browse files

rockchip: px30: support px30



px30 is a Quad-core soc and Cortex-a53 inside.
This patch supports the following functions:
1. basic platform setup
2. power up/off cpus
3. suspend/resume cpus
4. suspend/resume system
5. reset system
6. power off system

Change-Id: I73d55aa978096c078242be921abe0ddca9e8f67e
Signed-off-by: default avatarXiaoDong Huang <derrick.huang@rock-chips.com>
parent 2cbeee4d
...@@ -5,6 +5,7 @@ Trusted Firmware-A supports a number of Rockchip ARM SoCs from both ...@@ -5,6 +5,7 @@ Trusted Firmware-A supports a number of Rockchip ARM SoCs from both
AARCH32 and AARCH64 fields. AARCH32 and AARCH64 fields.
This includes right now: This includes right now:
- px30: Quad-Core Cortex-A53
- rk3288: Quad-Core Cortex-A17 (past A12) - rk3288: Quad-Core Cortex-A17 (past A12)
- rk3328: Quad-Core Cortex-A53 - rk3328: Quad-Core Cortex-A53
- rk3368: Octa-Core Cortex-A53 - rk3368: Octa-Core Cortex-A53
......
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <platform_def.h>
#include <cpus_on_fixed_addr.h>
.globl sys_sleep_flag_sram
.globl pmu_cpuson_entrypoint
.macro pmusram_entry_func _name
.section .pmusram.entry, "ax"
.type \_name, %function
.cfi_startproc
\_name:
.endm
pmusram_entry_func pmu_cpuson_entrypoint
adr x5, sys_sleep_flag_sram
ldr w2, [x5, #PSRAM_DT_PM_FLAG]
tbz w2, #PM_WARM_BOOT_SHT, sys_resume_sp
ldr x1, =platform_cpu_warmboot
br x1
sys_resume_sp:
adr x5, sys_sleep_flag_sram
ldr x1, [x5, #PSRAM_DT_SP]
mov sp, x1
ddr_resume:
ldr x1, [x5, #PSRAM_DT_DDR_FUNC]
cmp x1, #0
b.eq sys_resume
blr x1
sys_resume:
ldr x1, =bl31_warm_entrypoint
br x1
endfunc pmu_cpuson_entrypoint
.section .pmusram.data, "a"
.align 3
sys_sleep_flag_sram:
.rept PSRAM_DT_SIZE_WORDS
.word 0
.endr
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __CPU_ON_FIXED_ADDR_H__
#define __CPU_ON_FIXED_ADDR_H__
/*****************************************************************************
* define data offset in struct psram_data
*****************************************************************************/
#define PSRAM_DT_SP 0x0
#define PSRAM_DT_DDR_FUNC 0x8
#define PSRAM_DT_DDR_DATA 0x10
#define PSRAM_DT_DDRFLAG 0x18
#define PSRAM_DT_MPIDR 0x1c
#define PSRAM_DT_PM_FLAG 0x20
#define PSRAM_DT_END 0x24
/* reserve 4 byte */
#define PSRAM_DT_END_RES4 (PSRAM_DT_END + 4)
#define PSRAM_DT_SIZE_WORDS (PSRAM_DT_END_RES4 / 4)
#define PM_WARM_BOOT_SHT 0
#define PM_WARM_BOOT_BIT (1 << PM_WARM_BOOT_SHT)
#ifndef __ASSEMBLY__
struct psram_data_t {
uint64_t sp;
uint64_t ddr_func;
uint64_t ddr_data;
uint32_t ddr_flag;
uint32_t boot_mpidr;
uint32_t pm_flag;
};
CASSERT(__builtin_offsetof(struct psram_data_t, sp) == PSRAM_DT_SP,
assert_psram_dt_sp_offset_mistmatch);
CASSERT(__builtin_offsetof(struct psram_data_t, ddr_func) == PSRAM_DT_DDR_FUNC,
assert_psram_dt_ddr_func_offset_mistmatch);
CASSERT(__builtin_offsetof(struct psram_data_t, ddr_data) == PSRAM_DT_DDR_DATA,
assert_psram_dt_ddr_data_offset_mistmatch);
CASSERT(__builtin_offsetof(struct psram_data_t, ddr_flag) == PSRAM_DT_DDRFLAG,
assert_psram_dt_ddr_flag_offset_mistmatch);
CASSERT(__builtin_offsetof(struct psram_data_t, boot_mpidr) == PSRAM_DT_MPIDR,
assert_psram_dt_mpidr_offset_mistmatch);
extern void *sys_sleep_flag_sram;
#endif /* __ASSEMBLY__ */
#endif
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <platform_def.h>
.globl clst_warmboot_data
.macro func_rockchip_clst_warmboot
.endm
.macro rockchip_clst_warmboot_data
clst_warmboot_data:
.rept PLATFORM_CLUSTER_COUNT
.word 0
.endr
.endm
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <common/debug.h>
#include <drivers/console.h>
#include <drivers/delay_timer.h>
#include <lib/bakery_lock.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>
#include <cpus_on_fixed_addr.h>
#include <plat_private.h>
#include <pmu.h>
#include <px30_def.h>
#include <soc.h>
DEFINE_BAKERY_LOCK(rockchip_pd_lock);
#define rockchip_pd_lock_init() bakery_lock_init(&rockchip_pd_lock)
#define rockchip_pd_lock_get() bakery_lock_get(&rockchip_pd_lock)
#define rockchip_pd_lock_rls() bakery_lock_release(&rockchip_pd_lock)
static struct psram_data_t *psram_boot_cfg =
(struct psram_data_t *)&sys_sleep_flag_sram;
/*
* There are two ways to powering on or off on core.
* 1) Control it power domain into on or off in PMU_PWRDN_CON reg,
* it is core_pwr_pd mode
* 2) Enable the core power manage in PMU_CORE_PM_CON reg,
* then, if the core enter into wfi, it power domain will be
* powered off automatically. it is core_pwr_wfi or core_pwr_wfi_int mode
* so we need core_pm_cfg_info to distinguish which method be used now.
*/
static uint32_t cores_pd_cfg_info[PLATFORM_CORE_COUNT]
#if USE_COHERENT_MEM
__attribute__ ((section("tzfw_coherent_mem")))
#endif
;
struct px30_sleep_ddr_data {
uint32_t clk_sel0;
uint32_t cru_mode_save;
uint32_t cru_pmu_mode_save;
uint32_t ddrc_hwlpctl;
uint32_t ddrc_pwrctrl;
uint32_t ddrgrf_con0;
uint32_t ddrgrf_con1;
uint32_t ddrstdby_con0;
uint32_t gpio0b_iomux;
uint32_t gpio0c_iomux;
uint32_t pmu_pwrmd_core_l;
uint32_t pmu_pwrmd_core_h;
uint32_t pmu_pwrmd_cmm_l;
uint32_t pmu_pwrmd_cmm_h;
uint32_t pmu_wkup_cfg2_l;
uint32_t pmu_cru_clksel_con0;
uint32_t pmugrf_soc_con0;
uint32_t pmusgrf_soc_con0;
uint32_t pmic_slp_iomux;
uint32_t pgrf_pvtm_con[2];
uint32_t cru_clk_gate[CRU_CLKGATES_CON_CNT];
uint32_t cru_pmu_clk_gate[CRU_PMU_CLKGATE_CON_CNT];
uint32_t cru_plls_con_save[END_PLL_ID][PLL_CON_CNT];
uint32_t cpu_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t gpu_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t isp_128m_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t isp_rd_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t isp_wr_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t isp_m1_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t vip_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t rga_rd_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t rga_wr_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t vop_m0_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t vop_m1_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t vpu_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t vpu_r128_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t dcf_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t dmac_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t crypto_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t gmac_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t emmc_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t nand_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t sdio_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t sfc_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t sdmmc_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t usb_host_qos[CPU_AXI_QOS_NUM_REGS];
uint32_t usb_otg_qos[CPU_AXI_QOS_NUM_REGS];
};
static struct px30_sleep_ddr_data ddr_data
#if USE_COHERENT_MEM
__attribute__ ((section("tzfw_coherent_mem")))
#endif
;
static inline uint32_t get_cpus_pwr_domain_cfg_info(uint32_t cpu_id)
{
assert(cpu_id < PLATFORM_CORE_COUNT);
return cores_pd_cfg_info[cpu_id];
}
static inline void set_cpus_pwr_domain_cfg_info(uint32_t cpu_id, uint32_t value)
{
assert(cpu_id < PLATFORM_CORE_COUNT);
cores_pd_cfg_info[cpu_id] = value;
#if !USE_COHERENT_MEM
flush_dcache_range((uintptr_t)&cores_pd_cfg_info[cpu_id],
sizeof(uint32_t));
#endif
}
static inline uint32_t pmu_power_domain_st(uint32_t pd)
{
return mmio_read_32(PMU_BASE + PMU_PWRDN_ST) & BIT(pd) ?
pmu_pd_off :
pmu_pd_on;
}
static int pmu_power_domain_ctr(uint32_t pd, uint32_t pd_state)
{
uint32_t loop = 0;
int ret = 0;
rockchip_pd_lock_get();
mmio_write_32(PMU_BASE + PMU_PWRDN_CON,
BITS_WITH_WMASK(pd_state, 0x1, pd));
dsb();
while ((pmu_power_domain_st(pd) != pd_state) && (loop < PD_CTR_LOOP)) {
udelay(1);
loop++;
}
if (pmu_power_domain_st(pd) != pd_state) {
WARN("%s: %d, %d, error!\n", __func__, pd, pd_state);
ret = -EINVAL;
}
rockchip_pd_lock_rls();
return ret;
}
static inline uint32_t pmu_bus_idle_st(uint32_t bus)
{
return !!((mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & BIT(bus)) &&
(mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & BIT(bus + 16)));
}
static void pmu_bus_idle_req(uint32_t bus, uint32_t state)
{
uint32_t wait_cnt = 0;
mmio_write_32(PMU_BASE + PMU_BUS_IDLE_REQ,
BITS_WITH_WMASK(state, 0x1, bus));
while (pmu_bus_idle_st(bus) != state &&
wait_cnt < BUS_IDLE_LOOP) {
udelay(1);
wait_cnt++;
}
if (pmu_bus_idle_st(bus) != state)
WARN("%s:idle_st=0x%x, bus_id=%d\n",
__func__, mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST), bus);
}
static void qos_save(void)
{
/* scu powerdomain will power off, so cpu qos should be saved */
SAVE_QOS(ddr_data.cpu_qos, CPU);
if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
SAVE_QOS(ddr_data.gpu_qos, GPU);
if (pmu_power_domain_st(PD_VI) == pmu_pd_on) {
SAVE_QOS(ddr_data.isp_128m_qos, ISP_128M);
SAVE_QOS(ddr_data.isp_rd_qos, ISP_RD);
SAVE_QOS(ddr_data.isp_wr_qos, ISP_WR);
SAVE_QOS(ddr_data.isp_m1_qos, ISP_M1);
SAVE_QOS(ddr_data.vip_qos, VIP);
}
if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
SAVE_QOS(ddr_data.rga_rd_qos, RGA_RD);
SAVE_QOS(ddr_data.rga_wr_qos, RGA_WR);
SAVE_QOS(ddr_data.vop_m0_qos, VOP_M0);
SAVE_QOS(ddr_data.vop_m1_qos, VOP_M1);
}
if (pmu_power_domain_st(PD_VPU) == pmu_pd_on) {
SAVE_QOS(ddr_data.vpu_qos, VPU);
SAVE_QOS(ddr_data.vpu_r128_qos, VPU_R128);
}
if (pmu_power_domain_st(PD_MMC_NAND) == pmu_pd_on) {
SAVE_QOS(ddr_data.emmc_qos, EMMC);
SAVE_QOS(ddr_data.nand_qos, NAND);
SAVE_QOS(ddr_data.sdio_qos, SDIO);
SAVE_QOS(ddr_data.sfc_qos, SFC);
}
if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
SAVE_QOS(ddr_data.gmac_qos, GMAC);
if (pmu_power_domain_st(PD_CRYPTO) == pmu_pd_on)
SAVE_QOS(ddr_data.crypto_qos, CRYPTO);
if (pmu_power_domain_st(PD_SDCARD) == pmu_pd_on)
SAVE_QOS(ddr_data.sdmmc_qos, SDMMC);
if (pmu_power_domain_st(PD_USB) == pmu_pd_on) {
SAVE_QOS(ddr_data.usb_host_qos, USB_HOST);
SAVE_QOS(ddr_data.usb_otg_qos, USB_OTG);
}
}
static void qos_restore(void)
{
RESTORE_QOS(ddr_data.cpu_qos, CPU);
if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
RESTORE_QOS(ddr_data.gpu_qos, GPU);
if (pmu_power_domain_st(PD_VI) == pmu_pd_on) {
RESTORE_QOS(ddr_data.isp_128m_qos, ISP_128M);
RESTORE_QOS(ddr_data.isp_rd_qos, ISP_RD);
RESTORE_QOS(ddr_data.isp_wr_qos, ISP_WR);
RESTORE_QOS(ddr_data.isp_m1_qos, ISP_M1);
RESTORE_QOS(ddr_data.vip_qos, VIP);
}
if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
RESTORE_QOS(ddr_data.rga_rd_qos, RGA_RD);
RESTORE_QOS(ddr_data.rga_wr_qos, RGA_WR);
RESTORE_QOS(ddr_data.vop_m0_qos, VOP_M0);
RESTORE_QOS(ddr_data.vop_m1_qos, VOP_M1);
}
if (pmu_power_domain_st(PD_VPU) == pmu_pd_on) {
RESTORE_QOS(ddr_data.vpu_qos, VPU);
RESTORE_QOS(ddr_data.vpu_r128_qos, VPU_R128);
}
if (pmu_power_domain_st(PD_MMC_NAND) == pmu_pd_on) {
RESTORE_QOS(ddr_data.emmc_qos, EMMC);
RESTORE_QOS(ddr_data.nand_qos, NAND);
RESTORE_QOS(ddr_data.sdio_qos, SDIO);
RESTORE_QOS(ddr_data.sfc_qos, SFC);
}
if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
RESTORE_QOS(ddr_data.gmac_qos, GMAC);
if (pmu_power_domain_st(PD_CRYPTO) == pmu_pd_on)
RESTORE_QOS(ddr_data.crypto_qos, CRYPTO);
if (pmu_power_domain_st(PD_SDCARD) == pmu_pd_on)
RESTORE_QOS(ddr_data.sdmmc_qos, SDMMC);
if (pmu_power_domain_st(PD_USB) == pmu_pd_on) {
RESTORE_QOS(ddr_data.usb_host_qos, USB_HOST);
RESTORE_QOS(ddr_data.usb_otg_qos, USB_OTG);
}
}
static int pmu_set_power_domain(uint32_t pd_id, uint32_t pd_state)
{
uint32_t state;
if (pmu_power_domain_st(pd_id) == pd_state)
goto out;
if (pd_state == pmu_pd_on)
pmu_power_domain_ctr(pd_id, pd_state);
state = (pd_state == pmu_pd_off) ? bus_idle : bus_active;
switch (pd_id) {
case PD_GPU:
pmu_bus_idle_req(BUS_ID_GPU, state);
break;
case PD_VI:
pmu_bus_idle_req(BUS_ID_VI, state);
break;
case PD_VO:
pmu_bus_idle_req(BUS_ID_VO, state);
break;
case PD_VPU:
pmu_bus_idle_req(BUS_ID_VPU, state);
break;
case PD_MMC_NAND:
pmu_bus_idle_req(BUS_ID_MMC, state);
break;
case PD_GMAC:
pmu_bus_idle_req(BUS_ID_GMAC, state);
break;
case PD_CRYPTO:
pmu_bus_idle_req(BUS_ID_CRYPTO, state);
break;
case PD_SDCARD:
pmu_bus_idle_req(BUS_ID_SDCARD, state);
break;
case PD_USB:
pmu_bus_idle_req(BUS_ID_USB, state);
break;
default:
break;
}
if (pd_state == pmu_pd_off)
pmu_power_domain_ctr(pd_id, pd_state);
out:
return 0;
}
static uint32_t pmu_powerdomain_state;
static void pmu_power_domains_suspend(void)
{
uint32_t clkgt_save[CRU_CLKGATES_CON_CNT + CRU_PMU_CLKGATE_CON_CNT];
clk_gate_con_save(clkgt_save);
clk_gate_con_disable();
qos_save();
pmu_powerdomain_state = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
pmu_set_power_domain(PD_GPU, pmu_pd_off);
pmu_set_power_domain(PD_VI, pmu_pd_off);
pmu_set_power_domain(PD_VO, pmu_pd_off);
pmu_set_power_domain(PD_VPU, pmu_pd_off);
pmu_set_power_domain(PD_MMC_NAND, pmu_pd_off);
pmu_set_power_domain(PD_GMAC, pmu_pd_off);
pmu_set_power_domain(PD_CRYPTO, pmu_pd_off);
pmu_set_power_domain(PD_SDCARD, pmu_pd_off);
pmu_set_power_domain(PD_USB, pmu_pd_off);
clk_gate_con_restore(clkgt_save);
}
static void pmu_power_domains_resume(void)
{
uint32_t clkgt_save[CRU_CLKGATES_CON_CNT + CRU_PMU_CLKGATE_CON_CNT];
clk_gate_con_save(clkgt_save);
clk_gate_con_disable();
if (!(pmu_powerdomain_state & BIT(PD_USB)))
pmu_set_power_domain(PD_USB, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_SDCARD)))
pmu_set_power_domain(PD_SDCARD, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_CRYPTO)))
pmu_set_power_domain(PD_CRYPTO, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_GMAC)))
pmu_set_power_domain(PD_GMAC, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_MMC_NAND)))
pmu_set_power_domain(PD_MMC_NAND, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_VPU)))
pmu_set_power_domain(PD_VPU, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_VO)))
pmu_set_power_domain(PD_VO, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_VI)))
pmu_set_power_domain(PD_VI, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_GPU)))
pmu_set_power_domain(PD_GPU, pmu_pd_on);
qos_restore();
clk_gate_con_restore(clkgt_save);
}
static int check_cpu_wfie(uint32_t cpu)
{
uint32_t loop = 0, wfie_msk = CKECK_WFEI_MSK << cpu;
while (!(mmio_read_32(GRF_BASE + GRF_CPU_STATUS1) & wfie_msk) &&
(loop < WFEI_CHECK_LOOP)) {
udelay(1);
loop++;
}
if ((mmio_read_32(GRF_BASE + GRF_CPU_STATUS1) & wfie_msk) == 0) {
WARN("%s: %d, %d, error!\n", __func__, cpu, wfie_msk);
return -EINVAL;
}
return 0;
}
static int cpus_power_domain_on(uint32_t cpu_id)
{
uint32_t cpu_pd, apm_value, cfg_info, loop = 0;
cpu_pd = PD_CPU0 + cpu_id;
cfg_info = get_cpus_pwr_domain_cfg_info(cpu_id);
if (cfg_info == core_pwr_pd) {
/* disable apm cfg */
mmio_write_32(PMU_BASE + PMU_CPUAPM_CON(cpu_id),
WITH_16BITS_WMSK(CORES_PM_DISABLE));
if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
mmio_write_32(PMU_BASE + PMU_CPUAPM_CON(cpu_id),
WITH_16BITS_WMSK(CORES_PM_DISABLE));
pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
}
pmu_power_domain_ctr(cpu_pd, pmu_pd_on);
} else {
/* wait cpu down */
while (pmu_power_domain_st(cpu_pd) == pmu_pd_on && loop < 100) {
udelay(2);
loop++;
}
/* return error if can't wait cpu down */
if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
WARN("%s:can't wait cpu down\n", __func__);
return -EINVAL;
}
/* power up cpu in power down state */
apm_value = BIT(core_pm_sft_wakeup_en);
mmio_write_32(PMU_BASE + PMU_CPUAPM_CON(cpu_id),
WITH_16BITS_WMSK(apm_value));
}
return 0;
}
static int cpus_power_domain_off(uint32_t cpu_id, uint32_t pd_cfg)
{
uint32_t cpu_pd, apm_value;
cpu_pd = PD_CPU0 + cpu_id;
if (pmu_power_domain_st(cpu_pd) == pmu_pd_off)
return 0;
if (pd_cfg == core_pwr_pd) {
if (check_cpu_wfie(cpu_id))
return -EINVAL;
/* disable apm cfg */
mmio_write_32(PMU_BASE + PMU_CPUAPM_CON(cpu_id),
WITH_16BITS_WMSK(CORES_PM_DISABLE));
set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
} else {
set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
apm_value = BIT(core_pm_en) | BIT(core_pm_dis_int);
if (pd_cfg == core_pwr_wfi_int)
apm_value |= BIT(core_pm_int_wakeup_en);
mmio_write_32(PMU_BASE + PMU_CPUAPM_CON(cpu_id),
WITH_16BITS_WMSK(apm_value));
}
return 0;
}
static void nonboot_cpus_off(void)
{
uint32_t boot_cpu, cpu;
boot_cpu = plat_my_core_pos();
for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) {
if (cpu == boot_cpu)
continue;
cpus_power_domain_off(cpu, core_pwr_pd);
}
}
int rockchip_soc_cores_pwr_dm_on(unsigned long mpidr,
uint64_t entrypoint)
{
uint32_t cpu_id = plat_core_pos_by_mpidr(mpidr);
assert(cpu_id < PLATFORM_CORE_COUNT);
assert(cpuson_flags[cpu_id] == 0);
cpuson_flags[cpu_id] = PMU_CPU_HOTPLUG;
cpuson_entry_point[cpu_id] = entrypoint;
dsb();
cpus_power_domain_on(cpu_id);
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_on_finish(void)
{
uint32_t cpu_id = plat_my_core_pos();
mmio_write_32(PMU_BASE + PMU_CPUAPM_CON(cpu_id),
WITH_16BITS_WMSK(CORES_PM_DISABLE));
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_off(void)
{
uint32_t cpu_id = plat_my_core_pos();
cpus_power_domain_off(cpu_id, core_pwr_wfi);
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_suspend(void)
{
uint32_t cpu_id = plat_my_core_pos();
assert(cpu_id < PLATFORM_CORE_COUNT);
assert(cpuson_flags[cpu_id] == 0);
cpuson_flags[cpu_id] = PMU_CPU_AUTO_PWRDN;
cpuson_entry_point[cpu_id] = plat_get_sec_entrypoint();
dsb();
cpus_power_domain_off(cpu_id, core_pwr_wfi_int);
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_resume(void)
{
uint32_t cpu_id = plat_my_core_pos();
/* Disable core_pm */
mmio_write_32(PMU_BASE + PMU_CPUAPM_CON(cpu_id),
WITH_16BITS_WMSK(CORES_PM_DISABLE));
return PSCI_E_SUCCESS;
}
#define CLK_MSK_GATING(msk, con) \
mmio_write_32(CRU_BASE + (con), ((msk) << 16) | 0xffff)
#define CLK_MSK_UNGATING(msk, con) \
mmio_write_32(CRU_BASE + (con), ((~(msk)) << 16) | 0xffff)
static uint32_t clk_ungt_msk[CRU_CLKGATES_CON_CNT] = {
0xe0ff, 0xffff, 0x0000, 0x0000,
0x0000, 0x0380, 0x0000, 0x0000,
0x07c0, 0x0000, 0x0000, 0x000f,
0x0061, 0x1f02, 0x0440, 0x1801,
0x004b, 0x0000
};
static uint32_t clk_pmu_ungt_msk[CRU_PMU_CLKGATE_CON_CNT] = {
0xf1ff, 0x0310
};
void clk_gate_suspend(void)
{
int i;
for (i = 0; i < CRU_CLKGATES_CON_CNT; i++) {
ddr_data.cru_clk_gate[i] =
mmio_read_32(CRU_BASE + CRU_CLKGATES_CON(i));
mmio_write_32(CRU_BASE + CRU_CLKGATES_CON(i),
WITH_16BITS_WMSK(~clk_ungt_msk[i]));
}
for (i = 0; i < CRU_PMU_CLKGATE_CON_CNT; i++) {
ddr_data.cru_pmu_clk_gate[i] =
mmio_read_32(PMUCRU_BASE + CRU_PMU_CLKGATES_CON(i));
mmio_write_32(PMUCRU_BASE + CRU_PMU_CLKGATES_CON(i),
WITH_16BITS_WMSK(~clk_pmu_ungt_msk[i]));
}
}
void clk_gate_resume(void)
{
int i;
for (i = 0; i < CRU_PMU_CLKGATE_CON_CNT; i++)
mmio_write_32(PMUCRU_BASE + CRU_PMU_CLKGATES_CON(i),
WITH_16BITS_WMSK(ddr_data.cru_pmu_clk_gate[i]));
for (i = 0; i < CRU_CLKGATES_CON_CNT; i++)
mmio_write_32(CRU_BASE + CRU_CLKGATES_CON(i),
WITH_16BITS_WMSK(ddr_data.cru_clk_gate[i]));
}
static void pvtm_32k_config(void)
{
uint32_t pvtm_freq_khz, pvtm_div;
ddr_data.pmu_cru_clksel_con0 =
mmio_read_32(PMUCRU_BASE + CRU_PMU_CLKSELS_CON(0));
ddr_data.pgrf_pvtm_con[0] =
mmio_read_32(PMUGRF_BASE + PMUGRF_PVTM_CON0);
ddr_data.pgrf_pvtm_con[1] =
mmio_read_32(PMUGRF_BASE + PMUGRF_PVTM_CON1);
mmio_write_32(PMUGRF_BASE + PMUGRF_PVTM_CON0,
BITS_WITH_WMASK(0, 0x3, pgrf_pvtm_st));
dsb();
mmio_write_32(PMUGRF_BASE + PMUGRF_PVTM_CON0,
BITS_WITH_WMASK(1, 0x1, pgrf_pvtm_en));
dsb();
mmio_write_32(PMUGRF_BASE + PMUGRF_PVTM_CON1, PVTM_CALC_CNT);
dsb();
mmio_write_32(PMUGRF_BASE + PMUGRF_PVTM_CON0,
BITS_WITH_WMASK(1, 0x1, pgrf_pvtm_st));
/* pmugrf_pvtm_st0 will be clear after PVTM start,
* which will cost about 6 cycles of pvtm at least.
* So we wait 30 cycles of pvtm for security.
*/
while (mmio_read_32(PMUGRF_BASE + PMUGRF_PVTM_ST1) < 30)
;
dsb();
while (!(mmio_read_32(PMUGRF_BASE + PMUGRF_PVTM_ST0) & 0x1))
;
pvtm_freq_khz =
(mmio_read_32(PMUGRF_BASE + PMUGRF_PVTM_ST1) * 24000 +
PVTM_CALC_CNT / 2) / PVTM_CALC_CNT;
pvtm_div = (pvtm_freq_khz + 16) / 32;
/* pvtm_div = div_factor << 2 + 1,
* so div_factor = (pvtm_div - 1) >> 2.
* But the operation ">> 2" will clear the low bit of pvtm_div,
* so we don't have to do "- 1" for compasation
*/
pvtm_div = pvtm_div >> 2;
if (pvtm_div > 0x3f)
pvtm_div = 0x3f;
mmio_write_32(PMUGRF_BASE + PMUGRF_PVTM_CON0,
BITS_WITH_WMASK(pvtm_div, 0x3f, pgrf_pvtm_div));
/* select pvtm as 32k source */
mmio_write_32(PMUCRU_BASE + CRU_PMU_CLKSELS_CON(0),
BITS_WITH_WMASK(1, 0x3, 14));
}
static void pvtm_32k_config_restore(void)
{
mmio_write_32(PMUCRU_BASE + CRU_PMU_CLKSELS_CON(0),
ddr_data.pmu_cru_clksel_con0 | BITS_WMSK(0x3, 14));
mmio_write_32(PMUGRF_BASE + PMUGRF_PVTM_CON0,
WITH_16BITS_WMSK(ddr_data.pgrf_pvtm_con[0]));
mmio_write_32(PMUGRF_BASE + PMUGRF_PVTM_CON1,
ddr_data.pgrf_pvtm_con[1]);
}
static void ddr_sleep_config(void)
{
/* disable ddr pd, sr */
ddr_data.ddrc_pwrctrl = mmio_read_32(DDR_UPCTL_BASE + 0x30);
mmio_write_32(DDR_UPCTL_BASE + 0x30, BITS_WITH_WMASK(0x0, 0x3, 0));
/* disable ddr auto gt */
ddr_data.ddrgrf_con1 = mmio_read_32(DDRGRF_BASE + 0x4);
mmio_write_32(DDRGRF_BASE + 0x4, BITS_WITH_WMASK(0x0, 0x1f, 0));
/* disable ddr standby */
ddr_data.ddrstdby_con0 = mmio_read_32(DDR_STDBY_BASE + 0x0);
mmio_write_32(DDR_STDBY_BASE + 0x0, BITS_WITH_WMASK(0x0, 0x1, 0));
while ((mmio_read_32(DDR_UPCTL_BASE + 0x4) & 0x7) != 1)
;
/* ddr pmu ctrl */
ddr_data.ddrgrf_con0 = mmio_read_32(DDRGRF_BASE + 0x0);
mmio_write_32(DDRGRF_BASE + 0x0, BITS_WITH_WMASK(0x0, 0x1, 5));
dsb();
mmio_write_32(DDRGRF_BASE + 0x0, BITS_WITH_WMASK(0x1, 0x1, 4));
/* ddr ret sel */
ddr_data.pmugrf_soc_con0 =
mmio_read_32(PMUGRF_BASE + PMUGRF_SOC_CON(0));
mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON(0),
BITS_WITH_WMASK(0x0, 0x1, 12));
}
static void ddr_sleep_config_restore(void)
{
/* restore ddr ret sel */
mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON(0),
ddr_data.pmugrf_soc_con0 | BITS_WMSK(0x1, 12));
/* restore ddr pmu ctrl */
mmio_write_32(DDRGRF_BASE + 0x0,
ddr_data.ddrgrf_con0 | BITS_WMSK(0x1, 4));
dsb();
mmio_write_32(DDRGRF_BASE + 0x0,
ddr_data.ddrgrf_con0 | BITS_WMSK(0x1, 5));
/* restore ddr standby */
mmio_write_32(DDR_STDBY_BASE + 0x0,
ddr_data.ddrstdby_con0 | BITS_WMSK(0x1, 0));
/* restore ddr auto gt */
mmio_write_32(DDRGRF_BASE + 0x4,
ddr_data.ddrgrf_con1 | BITS_WMSK(0x1f, 0));
/* restore ddr pd, sr */
mmio_write_32(DDR_UPCTL_BASE + 0x30,
ddr_data.ddrc_pwrctrl | BITS_WMSK(0x3, 0));
}
static void pmu_sleep_config(void)
{
uint32_t pwrmd_core_lo, pwrmd_core_hi, pwrmd_com_lo, pwrmd_com_hi;
uint32_t pmu_wkup_cfg2_lo;
uint32_t clk_freq_khz;
/* save pmic_sleep iomux gpio0_a4 */
ddr_data.pmic_slp_iomux = mmio_read_32(PMUGRF_BASE + GPIO0A_IOMUX);
ddr_data.pmu_pwrmd_core_l =
mmio_read_32(PMU_BASE + PMU_PWRMODE_CORE_LO);
ddr_data.pmu_pwrmd_core_h =
mmio_read_32(PMU_BASE + PMU_PWRMODE_CORE_HI);
ddr_data.pmu_pwrmd_cmm_l =
mmio_read_32(PMU_BASE + PMU_PWRMODE_COMMON_CON_LO);
ddr_data.pmu_pwrmd_cmm_h =
mmio_read_32(PMU_BASE + PMU_PWRMODE_COMMON_CON_HI);
ddr_data.pmu_wkup_cfg2_l = mmio_read_32(PMU_BASE + PMU_WKUP_CFG2_LO);
pwrmd_core_lo = BIT(pmu_global_int_dis) |
BIT(pmu_core_src_gt) |
BIT(pmu_cpu0_pd) |
BIT(pmu_clr_core) |
BIT(pmu_scu_pd) |
BIT(pmu_l2_idle) |
BIT(pmu_l2_flush) |
BIT(pmu_clr_bus2main) |
BIT(pmu_clr_peri2msch);
pwrmd_core_hi = BIT(pmu_dpll_pd_en) |
BIT(pmu_apll_pd_en) |
BIT(pmu_cpll_pd_en) |
BIT(pmu_gpll_pd_en) |
BIT(pmu_npll_pd_en);
pwrmd_com_lo = BIT(pmu_mode_en) |
BIT(pmu_pll_pd) |
BIT(pmu_pmu_use_if) |
BIT(pmu_alive_use_if) |
BIT(pmu_osc_dis) |
BIT(pmu_sref_enter) |
BIT(pmu_ddrc_gt) |
BIT(pmu_clr_pmu) |
BIT(pmu_clr_peri_pmu);
pwrmd_com_hi = BIT(pmu_clr_bus) |
BIT(pmu_clr_msch) |
BIT(pmu_wakeup_begin_cfg);
pmu_wkup_cfg2_lo = BIT(pmu_cluster_wkup_en) |
BIT(pmu_gpio_wkup_en) |
BIT(pmu_timer_wkup_en);
/* set pmic_sleep iomux gpio0_a4 */
mmio_write_32(PMUGRF_BASE + GPIO0A_IOMUX,
BITS_WITH_WMASK(1, 0x3, 8));
clk_freq_khz = 32;
mmio_write_32(PMU_BASE + PMU_OSC_CNT_LO,
WITH_16BITS_WMSK(clk_freq_khz * 32 & 0xffff));
mmio_write_32(PMU_BASE + PMU_OSC_CNT_HI,
WITH_16BITS_WMSK(clk_freq_khz * 32 >> 16));
mmio_write_32(PMU_BASE + PMU_STABLE_CNT_LO,
WITH_16BITS_WMSK(clk_freq_khz * 32 & 0xffff));
mmio_write_32(PMU_BASE + PMU_STABLE_CNT_HI,
WITH_16BITS_WMSK(clk_freq_khz * 32 >> 16));
mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_LO,
WITH_16BITS_WMSK(clk_freq_khz * 2 & 0xffff));
mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_HI,
WITH_16BITS_WMSK(clk_freq_khz * 2 >> 16));
/* Pmu's clk has switched to 24M back When pmu FSM counts
* the follow counters, so we should use 24M to calculate
* these counters.
*/
mmio_write_32(PMU_BASE + PMU_SCU_PWRDN_CNT_LO,
WITH_16BITS_WMSK(24000 * 2 & 0xffff));
mmio_write_32(PMU_BASE + PMU_SCU_PWRDN_CNT_HI,
WITH_16BITS_WMSK(24000 * 2 >> 16));
mmio_write_32(PMU_BASE + PMU_SCU_PWRUP_CNT_LO,
WITH_16BITS_WMSK(24000 * 2 & 0xffff));
mmio_write_32(PMU_BASE + PMU_SCU_PWRUP_CNT_HI,
WITH_16BITS_WMSK(24000 * 2 >> 16));
mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT_LO,
WITH_16BITS_WMSK(24000 * 5 & 0xffff));
mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT_HI,
WITH_16BITS_WMSK(24000 * 5 >> 16));
mmio_write_32(PMU_BASE + PMU_PLLRST_CNT_LO,
WITH_16BITS_WMSK(24000 * 2 & 0xffff));
mmio_write_32(PMU_BASE + PMU_PLLRST_CNT_HI,
WITH_16BITS_WMSK(24000 * 2 >> 16));
/* Config pmu power mode and pmu wakeup source */
mmio_write_32(PMU_BASE + PMU_PWRMODE_CORE_LO,
WITH_16BITS_WMSK(pwrmd_core_lo));
mmio_write_32(PMU_BASE + PMU_PWRMODE_CORE_HI,
WITH_16BITS_WMSK(pwrmd_core_hi));
mmio_write_32(PMU_BASE + PMU_PWRMODE_COMMON_CON_LO,
WITH_16BITS_WMSK(pwrmd_com_lo));
mmio_write_32(PMU_BASE + PMU_PWRMODE_COMMON_CON_HI,
WITH_16BITS_WMSK(pwrmd_com_hi));
mmio_write_32(PMU_BASE + PMU_WKUP_CFG2_LO,
WITH_16BITS_WMSK(pmu_wkup_cfg2_lo));
}
static void pmu_sleep_restore(void)
{
mmio_write_32(PMU_BASE + PMU_PWRMODE_CORE_LO,
WITH_16BITS_WMSK(ddr_data.pmu_pwrmd_core_l));
mmio_write_32(PMU_BASE + PMU_PWRMODE_CORE_HI,
WITH_16BITS_WMSK(ddr_data.pmu_pwrmd_core_h));
mmio_write_32(PMU_BASE + PMU_PWRMODE_COMMON_CON_LO,
WITH_16BITS_WMSK(ddr_data.pmu_pwrmd_cmm_l));
mmio_write_32(PMU_BASE + PMU_PWRMODE_COMMON_CON_HI,
WITH_16BITS_WMSK(ddr_data.pmu_pwrmd_cmm_h));
mmio_write_32(PMU_BASE + PMU_WKUP_CFG2_LO,
WITH_16BITS_WMSK(ddr_data.pmu_wkup_cfg2_l));
/* restore pmic_sleep iomux */
mmio_write_32(PMUGRF_BASE + GPIO0A_IOMUX,
WITH_16BITS_WMSK(ddr_data.pmic_slp_iomux));
}
static void soc_sleep_config(void)
{
ddr_data.gpio0c_iomux = mmio_read_32(PMUGRF_BASE + GPIO0C_IOMUX);
pmu_sleep_config();
ddr_sleep_config();
pvtm_32k_config();
}
static void soc_sleep_restore(void)
{
secure_timer_init();
pvtm_32k_config_restore();
ddr_sleep_config_restore();
pmu_sleep_restore();
mmio_write_32(PMUGRF_BASE + GPIO0C_IOMUX,
WITH_16BITS_WMSK(ddr_data.gpio0c_iomux));
}
static inline void pm_pll_wait_lock(uint32_t pll_base, uint32_t pll_id)
{
uint32_t delay = PLL_LOCKED_TIMEOUT;
while (delay > 0) {
if (mmio_read_32(pll_base + PLL_CON(1)) &
PLL_LOCK_MSK)
break;
delay--;
}
if (delay == 0)
ERROR("Can't wait pll:%d lock\n", pll_id);
}
static inline void pll_pwr_ctr(uint32_t pll_base, uint32_t pll_id, uint32_t pd)
{
mmio_write_32(pll_base + PLL_CON(1),
BITS_WITH_WMASK(1, 1, 15));
if (pd)
mmio_write_32(pll_base + PLL_CON(1),
BITS_WITH_WMASK(1, 1, 14));
else
mmio_write_32(pll_base + PLL_CON(1),
BITS_WITH_WMASK(0, 1, 14));
}
static inline void pll_set_mode(uint32_t pll_id, uint32_t mode)
{
uint32_t val = BITS_WITH_WMASK(mode, 0x3, PLL_MODE_SHIFT(pll_id));
if (pll_id != GPLL_ID)
mmio_write_32(CRU_BASE + CRU_MODE, val);
else
mmio_write_32(PMUCRU_BASE + CRU_PMU_MODE,
BITS_WITH_WMASK(mode, 0x3, 0));
}
static inline void pll_suspend(uint32_t pll_id)
{
int i;
uint32_t pll_base;
if (pll_id != GPLL_ID)
pll_base = CRU_BASE + CRU_PLL_CONS(pll_id, 0);
else
pll_base = PMUCRU_BASE + CRU_PLL_CONS(0, 0);
/* save pll con */
for (i = 0; i < PLL_CON_CNT; i++)
ddr_data.cru_plls_con_save[pll_id][i] =
mmio_read_32(pll_base + PLL_CON(i));
/* slow mode */
pll_set_mode(pll_id, SLOW_MODE);
}
static inline void pll_resume(uint32_t pll_id)
{
uint32_t mode, pll_base;
if (pll_id != GPLL_ID) {
pll_base = CRU_BASE + CRU_PLL_CONS(pll_id, 0);
mode = (ddr_data.cru_mode_save >> PLL_MODE_SHIFT(pll_id)) & 0x3;
} else {
pll_base = PMUCRU_BASE + CRU_PLL_CONS(0, 0);
mode = ddr_data.cru_pmu_mode_save & 0x3;
}
/* if pll locked before suspend, we should wait atfer resume */
if (ddr_data.cru_plls_con_save[pll_id][1] & PLL_LOCK_MSK)
pm_pll_wait_lock(pll_base, pll_id);
pll_set_mode(pll_id, mode);
}
static void pm_plls_suspend(void)
{
ddr_data.cru_mode_save = mmio_read_32(CRU_BASE + CRU_MODE);
ddr_data.cru_pmu_mode_save = mmio_read_32(PMUCRU_BASE + CRU_PMU_MODE);
ddr_data.clk_sel0 = mmio_read_32(CRU_BASE + CRU_CLKSELS_CON(0));
pll_suspend(GPLL_ID);
pll_suspend(NPLL_ID);
pll_suspend(CPLL_ID);
pll_suspend(APLL_ID);
/* core */
mmio_write_32(CRU_BASE + CRU_CLKSELS_CON(0),
BITS_WITH_WMASK(0, 0xf, 0));
/* pclk_dbg */
mmio_write_32(CRU_BASE + CRU_CLKSELS_CON(0),
BITS_WITH_WMASK(0, 0xf, 8));
}
static void pm_plls_resume(void)
{
/* pclk_dbg */
mmio_write_32(CRU_BASE + CRU_CLKSELS_CON(0),
ddr_data.clk_sel0 | BITS_WMSK(0xf, 8));
/* core */
mmio_write_32(CRU_BASE + CRU_CLKSELS_CON(0),
ddr_data.clk_sel0 | BITS_WMSK(0xf, 0));
pll_resume(APLL_ID);
pll_resume(CPLL_ID);
pll_resume(NPLL_ID);
pll_resume(GPLL_ID);
}
int rockchip_soc_sys_pwr_dm_suspend(void)
{
pmu_power_domains_suspend();
clk_gate_suspend();
soc_sleep_config();
pm_plls_suspend();
psram_boot_cfg->pm_flag &= ~PM_WARM_BOOT_BIT;
return 0;
}
int rockchip_soc_sys_pwr_dm_resume(void)
{
psram_boot_cfg->pm_flag |= PM_WARM_BOOT_BIT;
pm_plls_resume();
soc_sleep_restore();
clk_gate_resume();
pmu_power_domains_resume();
plat_rockchip_gic_cpuif_enable();
return 0;
}
void __dead2 rockchip_soc_soft_reset(void)
{
pll_set_mode(GPLL_ID, SLOW_MODE);
pll_set_mode(CPLL_ID, SLOW_MODE);
pll_set_mode(NPLL_ID, SLOW_MODE);
pll_set_mode(APLL_ID, SLOW_MODE);
dsb();
mmio_write_32(CRU_BASE + CRU_GLB_SRST_FST, CRU_GLB_SRST_FST_VALUE);
dsb();
/*
* Maybe the HW needs some times to reset the system,
* so we do not hope the core to execute valid codes.
*/
psci_power_down_wfi();
}
void __dead2 rockchip_soc_system_off(void)
{
uint32_t val;
/* set pmic_sleep pin(gpio0_a4) to gpio mode */
mmio_write_32(PMUGRF_BASE + GPIO0A_IOMUX, BITS_WITH_WMASK(0, 0x3, 8));
/* config output */
val = mmio_read_32(GPIO0_BASE + SWPORTA_DDR);
val |= BIT(4);
mmio_write_32(GPIO0_BASE + SWPORTA_DDR, val);
/* config output high level */
val = mmio_read_32(GPIO0_BASE);
val |= BIT(4);
mmio_write_32(GPIO0_BASE, val);
dsb();
/*
* Maybe the HW needs some times to reset the system,
* so we do not hope the core to execute valid codes.
*/
psci_power_down_wfi();
}
void rockchip_plat_mmu_el3(void)
{
/* TODO: support the el3 for px30 SoCs */
}
void plat_rockchip_pmu_init(void)
{
uint32_t cpu;
rockchip_pd_lock_init();
for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++)
cpuson_flags[cpu] = 0;
psram_boot_cfg->ddr_func = (uint64_t)0;
psram_boot_cfg->ddr_data = (uint64_t)0;
psram_boot_cfg->sp = PSRAM_SP_TOP;
psram_boot_cfg->ddr_flag = 0x0;
psram_boot_cfg->boot_mpidr = read_mpidr_el1() & 0xffff;
psram_boot_cfg->pm_flag = PM_WARM_BOOT_BIT;
nonboot_cpus_off();
/* Remap pmu_sram's base address to boot address */
mmio_write_32(PMUSGRF_BASE + PMUSGRF_SOC_CON(0),
BITS_WITH_WMASK(1, 0x1, 13));
INFO("%s: pd status %x\n",
__func__, mmio_read_32(PMU_BASE + PMU_PWRDN_ST));
}
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PMU_H__
#define __PMU_H__
/* Needed aligned 16 bytes for sp stack top */
#define PSRAM_SP_TOP ((PMUSRAM_BASE + PMUSRAM_RSIZE) & ~0xf)
/*****************************************************************************
* pmu con,reg
*****************************************************************************/
#define PMU_WKUP_CFG0_LO 0x00
#define PMU_WKUP_CFG0_HI 0x04
#define PMU_WKUP_CFG1_LO 0x08
#define PMU_WKUP_CFG1_HI 0x0c
#define PMU_WKUP_CFG2_LO 0x10
#define PMU_PWRDN_CON 0x18
#define PMU_PWRDN_ST 0x20
#define PMU_PWRMODE_CORE_LO 0x24
#define PMU_PWRMODE_CORE_HI 0x28
#define PMU_PWRMODE_COMMON_CON_LO 0x2c
#define PMU_PWRMODE_COMMON_CON_HI 0x30
#define PMU_SFT_CON 0x34
#define PMU_INT_ST 0x44
#define PMU_BUS_IDLE_REQ 0x64
#define PMU_BUS_IDLE_ST 0x6c
#define PMU_OSC_CNT_LO 0x74
#define PMU_OSC_CNT_HI 0x78
#define PMU_PLLLOCK_CNT_LO 0x7c
#define PMU_PLLLOCK_CNT_HI 0x80
#define PMU_PLLRST_CNT_LO 0x84
#define PMU_PLLRST_CNT_HI 0x88
#define PMU_STABLE_CNT_LO 0x8c
#define PMU_STABLE_CNT_HI 0x90
#define PMU_WAKEUP_RST_CLR_LO 0x9c
#define PMU_WAKEUP_RST_CLR_HI 0xa0
#define PMU_DDR_SREF_ST 0xa4
#define PMU_SYS_REG0_LO 0xa8
#define PMU_SYS_REG0_HI 0xac
#define PMU_SYS_REG1_LO 0xb0
#define PMU_SYS_REG1_HI 0xb4
#define PMU_SYS_REG2_LO 0xb8
#define PMU_SYS_REG2_HI 0xbc
#define PMU_SYS_REG3_LO 0xc0
#define PMU_SYS_REG3_HI 0xc4
#define PMU_SCU_PWRDN_CNT_LO 0xc8
#define PMU_SCU_PWRDN_CNT_HI 0xcc
#define PMU_SCU_PWRUP_CNT_LO 0xd0
#define PMU_SCU_PWRUP_CNT_HI 0xd4
#define PMU_TIMEOUT_CNT_LO 0xd8
#define PMU_TIMEOUT_CNT_HI 0xdc
#define PMU_CPUAPM_CON(cpu) (0xe0 + (cpu) * 0x4)
#define CORES_PM_DISABLE 0x0
#define CLST_CPUS_MSK 0xf
#define PD_CTR_LOOP 500
#define PD_CHECK_LOOP 500
#define WFEI_CHECK_LOOP 500
#define BUS_IDLE_LOOP 1000
enum pmu_wkup_cfg2 {
pmu_cluster_wkup_en = 0,
pmu_gpio_wkup_en = 2,
pmu_sdio_wkup_en = 3,
pmu_sdmmc_wkup_en = 4,
pmu_uart0_wkup_en = 5,
pmu_timer_wkup_en = 6,
pmu_usbdev_wkup_en = 7,
pmu_sft_wkup_en = 8,
pmu_timeout_wkup_en = 10,
};
enum pmu_powermode_core_lo {
pmu_global_int_dis = 0,
pmu_core_src_gt = 1,
pmu_cpu0_pd = 3,
pmu_clr_core = 5,
pmu_scu_pd = 6,
pmu_l2_idle = 8,
pmu_l2_flush = 9,
pmu_clr_bus2main = 10,
pmu_clr_peri2msch = 11,
};
enum pmu_powermode_core_hi {
pmu_apll_pd_en = 3,
pmu_dpll_pd_en = 4,
pmu_cpll_pd_en = 5,
pmu_gpll_pd_en = 6,
pmu_npll_pd_en = 7,
};
enum pmu_powermode_common_lo {
pmu_mode_en = 0,
pmu_ddr_pd_en = 1,
pmu_wkup_rst = 3,
pmu_pll_pd = 4,
pmu_pmu_use_if = 6,
pmu_alive_use_if = 7,
pmu_osc_dis = 8,
pmu_input_clamp = 9,
pmu_sref_enter = 10,
pmu_ddrc_gt = 11,
pmu_ddrio_ret = 12,
pmu_ddrio_ret_deq = 13,
pmu_clr_pmu = 14,
pmu_clr_peri_pmu = 15,
};
enum pmu_powermode_common_hi {
pmu_clr_bus = 0,
pmu_clr_mmc = 1,
pmu_clr_msch = 2,
pmu_clr_nandc = 3,
pmu_clr_gmac = 4,
pmu_clr_vo = 5,
pmu_clr_vi = 6,
pmu_clr_gpu = 7,
pmu_clr_usb = 8,
pmu_clr_vpu = 9,
pmu_clr_crypto = 10,
pmu_wakeup_begin_cfg = 11,
pmu_peri_clk_src_gt = 12,
pmu_bus_clk_src_gt = 13,
};
enum pmu_pd_id {
PD_CPU0 = 0,
PD_CPU1 = 1,
PD_CPU2 = 2,
PD_CPU3 = 3,
PD_SCU = 4,
PD_USB = 5,
PD_DDR = 6,
PD_SDCARD = 8,
PD_CRYPTO = 9,
PD_GMAC = 10,
PD_MMC_NAND = 11,
PD_VPU = 12,
PD_VO = 13,
PD_VI = 14,
PD_GPU = 15,
PD_END = 16,
};
enum pmu_bus_id {
BUS_ID_BUS = 0,
BUS_ID_BUS2MAIN = 1,
BUS_ID_GPU = 2,
BUS_ID_CORE = 3,
BUS_ID_CRYPTO = 4,
BUS_ID_MMC = 5,
BUS_ID_GMAC = 6,
BUS_ID_VO = 7,
BUS_ID_VI = 8,
BUS_ID_SDCARD = 9,
BUS_ID_USB = 10,
BUS_ID_MSCH = 11,
BUS_ID_PERI = 12,
BUS_ID_PMU = 13,
BUS_ID_VPU = 14,
BUS_ID_PERI2MSCH = 15,
};
enum pmu_pd_state {
pmu_pd_on = 0,
pmu_pd_off = 1
};
enum pmu_bus_state {
bus_active = 0,
bus_idle = 1,
};
enum cores_pm_ctr_mode {
core_pwr_pd = 0,
core_pwr_wfi = 1,
core_pwr_wfi_int = 2
};
enum pmu_cores_pm_by_wfi {
core_pm_en = 0,
core_pm_int_wakeup_en,
core_pm_dis_int,
core_pm_sft_wakeup_en
};
/*****************************************************************************
* pmu_sgrf
*****************************************************************************/
#define PMUSGRF_SOC_CON(i) ((i) * 0x4)
/*****************************************************************************
* pmu_grf
*****************************************************************************/
#define GPIO0A_IOMUX 0x0
#define GPIO0B_IOMUX 0x4
#define GPIO0C_IOMUX 0x8
#define GPIO0A_PULL 0x10
#define GPIO0L_SMT 0x38
#define GPIO0H_SMT 0x3c
#define PMUGRF_SOC_CON(i) (0x100 + (i) * 4)
#define PMUGRF_PVTM_CON0 0x180
#define PMUGRF_PVTM_CON1 0x184
#define PMUGRF_PVTM_ST0 0x190
#define PMUGRF_PVTM_ST1 0x194
#define PVTM_CALC_CNT 0x200
#define PMUGRF_OS_REG(n) (0x200 + (n) * 4)
#define GPIO0A6_IOMUX_MSK (0x3 << 12)
#define GPIO0A6_IOMUX_GPIO (0x0 << 12)
#define GPIO0A6_IOMUX_RSTOUT (0x1 << 12)
#define GPIO0A6_IOMUX_SHTDN (0x2 << 12)
enum px30_pmugrf_pvtm_con0 {
pgrf_pvtm_st = 0,
pgrf_pvtm_en = 1,
pgrf_pvtm_div = 2,
};
/*****************************************************************************
* pmu_cru
*****************************************************************************/
#define CRU_PMU_MODE 0x20
#define CRU_PMU_CLKSEL_CON 0x40
#define CRU_PMU_CLKSELS_CON(i) (CRU_PMU_CLKSEL_CON + (i) * 4)
#define CRU_PMU_CLKSEL_CON_CNT 5
#define CRU_PMU_CLKGATE_CON 0x80
#define CRU_PMU_CLKGATES_CON(i) (CRU_PMU_CLKGATE_CON + (i) * 4)
#define CRU_PMU_CLKGATE_CON_CNT 2
#define CRU_PMU_ATCS_CON 0xc0
#define CRU_PMU_ATCSS_CON(i) (CRU_PMU_ATCS_CON + (i) * 4)
#define CRU_PMU_ATCS_CON_CNT 2
/*****************************************************************************
* pmusgrf
*****************************************************************************/
#define PMUSGRF_RSTOUT_EN (0x7 << 10)
#define PMUSGRF_RSTOUT_FST 10
#define PMUSGRF_RSTOUT_TSADC 11
#define PMUSGRF_RSTOUT_WDT 12
#define PMUGRF_SOC_CON2_US_WMSK (0x1fff << 16)
#define PMUGRF_SOC_CON2_MAX_341US 0x1fff
#define PMUGRF_SOC_CON2_200US 0x12c0
#define PMUGRF_FAILSAFE_SHTDN_TSADC BIT(0)
#define PMUGRF_FAILSAFE_SHTDN_WDT BIT(1)
/*****************************************************************************
* QOS
*****************************************************************************/
#define CPU_AXI_QOS_ID_COREID 0x00
#define CPU_AXI_QOS_REVISIONID 0x04
#define CPU_AXI_QOS_PRIORITY 0x08
#define CPU_AXI_QOS_MODE 0x0c
#define CPU_AXI_QOS_BANDWIDTH 0x10
#define CPU_AXI_QOS_SATURATION 0x14
#define CPU_AXI_QOS_EXTCONTROL 0x18
#define CPU_AXI_QOS_NUM_REGS 0x07
#define CPU_AXI_CPU_QOS_BASE 0xff508000
#define CPU_AXI_GPU_QOS_BASE 0xff520000
#define CPU_AXI_ISP_128M_QOS_BASE 0xff548000
#define CPU_AXI_ISP_RD_QOS_BASE 0xff548080
#define CPU_AXI_ISP_WR_QOS_BASE 0xff548100
#define CPU_AXI_ISP_M1_QOS_BASE 0xff548180
#define CPU_AXI_VIP_QOS_BASE 0xff548200
#define CPU_AXI_RGA_RD_QOS_BASE 0xff550000
#define CPU_AXI_RGA_WR_QOS_BASE 0xff550080
#define CPU_AXI_VOP_M0_QOS_BASE 0xff550100
#define CPU_AXI_VOP_M1_QOS_BASE 0xff550180
#define CPU_AXI_VPU_QOS_BASE 0xff558000
#define CPU_AXI_VPU_R128_QOS_BASE 0xff558080
#define CPU_AXI_DCF_QOS_BASE 0xff500000
#define CPU_AXI_DMAC_QOS_BASE 0xff500080
#define CPU_AXI_CRYPTO_QOS_BASE 0xff510000
#define CPU_AXI_GMAC_QOS_BASE 0xff518000
#define CPU_AXI_EMMC_QOS_BASE 0xff538000
#define CPU_AXI_NAND_QOS_BASE 0xff538080
#define CPU_AXI_SDIO_QOS_BASE 0xff538100
#define CPU_AXI_SFC_QOS_BASE 0xff538180
#define CPU_AXI_SDMMC_QOS_BASE 0xff52c000
#define CPU_AXI_USB_HOST_QOS_BASE 0xff540000
#define CPU_AXI_USB_OTG_QOS_BASE 0xff540080
#define PX30_CPU_AXI_SAVE_QOS(array, base) do { \
array[0] = mmio_read_32(base + CPU_AXI_QOS_ID_COREID); \
array[1] = mmio_read_32(base + CPU_AXI_QOS_REVISIONID); \
array[2] = mmio_read_32(base + CPU_AXI_QOS_PRIORITY); \
array[3] = mmio_read_32(base + CPU_AXI_QOS_MODE); \
array[4] = mmio_read_32(base + CPU_AXI_QOS_BANDWIDTH); \
array[5] = mmio_read_32(base + CPU_AXI_QOS_SATURATION); \
array[6] = mmio_read_32(base + CPU_AXI_QOS_EXTCONTROL); \
} while (0)
#define PX30_CPU_AXI_RESTORE_QOS(array, base) do { \
mmio_write_32(base + CPU_AXI_QOS_ID_COREID, array[0]); \
mmio_write_32(base + CPU_AXI_QOS_REVISIONID, array[1]); \
mmio_write_32(base + CPU_AXI_QOS_PRIORITY, array[2]); \
mmio_write_32(base + CPU_AXI_QOS_MODE, array[3]); \
mmio_write_32(base + CPU_AXI_QOS_BANDWIDTH, array[4]); \
mmio_write_32(base + CPU_AXI_QOS_SATURATION, array[5]); \
mmio_write_32(base + CPU_AXI_QOS_EXTCONTROL, array[6]); \
} while (0)
#define SAVE_QOS(array, NAME) \
PX30_CPU_AXI_SAVE_QOS(array, CPU_AXI_##NAME##_QOS_BASE)
#define RESTORE_QOS(array, NAME) \
PX30_CPU_AXI_RESTORE_QOS(array, CPU_AXI_##NAME##_QOS_BASE)
#endif /* __PMU_H__ */
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <platform_def.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/console.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <ddr_parameter.h>
#include <platform_def.h>
#include <pmu.h>
#include <px30_def.h>
#include <soc.h>
#include <rockchip_sip_svc.h>
/* Aggregate of all devices in the first GB */
#define PX30_DEV_RNG0_BASE 0xff000000
#define PX30_DEV_RNG0_SIZE 0x00ff0000
const mmap_region_t plat_rk_mmap[] = {
MAP_REGION_FLAT(PX30_DEV_RNG0_BASE, PX30_DEV_RNG0_SIZE,
MT_DEVICE | MT_RW | MT_SECURE),
MAP_REGION_FLAT(SHARE_MEM_BASE, SHARE_MEM_SIZE,
MT_DEVICE | MT_RW | MT_SECURE),
MAP_REGION_FLAT(DDR_PARAM_BASE, DDR_PARAM_SIZE,
MT_DEVICE | MT_RW | MT_SECURE),
{ 0 }
};
/* The RockChip power domain tree descriptor */
const unsigned char rockchip_power_domain_tree_desc[] = {
/* No of root nodes */
PLATFORM_SYSTEM_COUNT,
/* No of children for the root node */
PLATFORM_CLUSTER_COUNT,
/* No of children for the first cluster node */
PLATFORM_CLUSTER0_CORE_COUNT,
};
void clk_gate_con_save(uint32_t *clkgt_save)
{
uint32_t i, j;
for (i = 0; i < CRU_CLKGATES_CON_CNT; i++)
clkgt_save[i] =
mmio_read_32(CRU_BASE + CRU_CLKGATES_CON(i));
j = i;
for (i = 0; i < CRU_PMU_CLKGATE_CON_CNT; i++, j++)
clkgt_save[j] =
mmio_read_32(PMUCRU_BASE + CRU_PMU_CLKGATES_CON(i));
}
void clk_gate_con_restore(uint32_t *clkgt_save)
{
uint32_t i, j;
for (i = 0; i < CRU_CLKGATES_CON_CNT; i++)
mmio_write_32(CRU_BASE + CRU_CLKGATES_CON(i),
WITH_16BITS_WMSK(clkgt_save[i]));
j = i;
for (i = 0; i < CRU_PMU_CLKGATE_CON_CNT; i++, j++)
mmio_write_32(PMUCRU_BASE + CRU_PMU_CLKGATES_CON(i),
WITH_16BITS_WMSK(clkgt_save[j]));
}
void clk_gate_con_disable(void)
{
uint32_t i;
for (i = 0; i < CRU_CLKGATES_CON_CNT; i++)
mmio_write_32(CRU_BASE + CRU_CLKGATES_CON(i),
0xffff0000);
for (i = 0; i < CRU_PMU_CLKGATE_CON_CNT; i++)
mmio_write_32(PMUCRU_BASE + CRU_PMU_CLKGATES_CON(i),
0xffff0000);
}
void secure_timer_init(void)
{
mmio_write_32(STIMER_CHN_BASE(1) + TIMER_CONTROL_REG,
TIMER_DIS);
mmio_write_32(STIMER_CHN_BASE(1) + TIMER_LOAD_COUNT0, 0xffffffff);
mmio_write_32(STIMER_CHN_BASE(1) + TIMER_LOAD_COUNT1, 0xffffffff);
/* auto reload & enable the timer */
mmio_write_32(STIMER_CHN_BASE(1) + TIMER_CONTROL_REG,
TIMER_EN | TIMER_FMODE);
}
static void sgrf_init(void)
{
uint32_t i, val;
struct param_ddr_usage usg;
/* general secure regions */
usg = ddr_region_usage_parse(DDR_PARAM_BASE,
PLAT_MAX_DDR_CAPACITY_MB);
for (i = 0; i < usg.s_nr; i++) {
/* enable secure */
val = mmio_read_32(FIREWALL_DDR_BASE +
FIREWALL_DDR_FW_DDR_CON_REG);
val |= BIT(7 - i);
mmio_write_32(FIREWALL_DDR_BASE +
FIREWALL_DDR_FW_DDR_CON_REG, val);
/* map top and base */
mmio_write_32(FIREWALL_DDR_BASE +
FIREWALL_DDR_FW_DDR_RGN(7 - i),
RG_MAP_SECURE(usg.s_top[i], usg.s_base[i]));
}
/* set ddr rgn0_top and rga0_top as 0 */
mmio_write_32(FIREWALL_DDR_BASE + FIREWALL_DDR_FW_DDR_RGN(0), 0x0);
/* set all slave ip into no-secure, except stimer */
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(4), SGRF_SLV_S_ALL_NS);
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(5), SGRF_SLV_S_ALL_NS);
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(6), SGRF_SLV_S_ALL_NS);
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(7), SGRF_SLV_S_ALL_NS);
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(8), 0x00030000);
/* set master crypto to no-secure, dcf to secure */
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(3), 0x000f0003);
/* set DMAC into no-secure */
mmio_write_32(SGRF_BASE + SGRF_DMAC_CON(0), DMA_IRQ_BOOT_NS);
mmio_write_32(SGRF_BASE + SGRF_DMAC_CON(1), DMA_PERI_CH_NS_15_0);
mmio_write_32(SGRF_BASE + SGRF_DMAC_CON(2), DMA_PERI_CH_NS_19_16);
mmio_write_32(SGRF_BASE + SGRF_DMAC_CON(3), DMA_MANAGER_BOOT_NS);
/* soft reset dma before use */
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), DMA_SOFTRST_REQ);
udelay(5);
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), DMA_SOFTRST_RLS);
}
static void soc_reset_config_all(void)
{
uint32_t tmp;
/* tsadc and wdt can trigger a first rst */
tmp = mmio_read_32(CRU_BASE + CRU_GLB_RST_CON);
tmp |= CRU_GLB_RST_TSADC_FST | CRU_GLB_RST_WDT_FST;
mmio_write_32(CRU_BASE + CRU_GLB_RST_CON, tmp);
return;
tmp = mmio_read_32(PMUGRF_BASE + PMUGRF_SOC_CON(3));
tmp &= ~(PMUGRF_FAILSAFE_SHTDN_TSADC | PMUGRF_FAILSAFE_SHTDN_WDT);
mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON(3), tmp);
/* wdt pin rst eable */
mmio_write_32(GRF_BASE + GRF_SOC_CON(2),
BIT_WITH_WMSK(GRF_SOC_CON2_NSWDT_RST_EN));
}
void px30_soc_reset_config(void)
{
uint32_t tmp;
/* enable soc ip rst hold time cfg */
tmp = mmio_read_32(CRU_BASE + CRU_GLB_RST_CON);
tmp |= BIT(CRU_GLB_RST_TSADC_EXT) | BIT(CRU_GLB_RST_WDT_EXT);
mmio_write_32(CRU_BASE + CRU_GLB_RST_CON, tmp);
/* soc ip rst hold time, 24m */
tmp = mmio_read_32(CRU_BASE + CRU_GLB_CNT_TH);
tmp &= ~CRU_GLB_CNT_RST_MSK;
tmp |= (CRU_GLB_CNT_RST_1MS / 2);
mmio_write_32(CRU_BASE + CRU_GLB_CNT_TH, tmp);
mmio_write_32(PMUSGRF_BASE + PMUSGRF_SOC_CON(0),
BIT_WITH_WMSK(PMUSGRF_RSTOUT_FST) |
BIT_WITH_WMSK(PMUSGRF_RSTOUT_TSADC) |
BIT_WITH_WMSK(PMUSGRF_RSTOUT_WDT));
/* rst_out pulse time */
mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON(2),
PMUGRF_SOC_CON2_MAX_341US | PMUGRF_SOC_CON2_US_WMSK);
soc_reset_config_all();
}
void plat_rockchip_soc_init(void)
{
secure_timer_init();
sgrf_init();
}
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __SOC_H__
#define __SOC_H__
#include <plat_private.h>
#ifndef BITS_WMSK
#define BITS_WMSK(msk, shift) ((msk) << (shift + REG_MSK_SHIFT))
#endif
enum plls_id {
APLL_ID = 0,
DPLL_ID,
CPLL_ID,
NPLL_ID,
GPLL_ID,
END_PLL_ID,
};
enum pll_mode {
SLOW_MODE,
NORM_MODE,
DEEP_SLOW_MODE,
};
/***************************************************************************
* SGRF
***************************************************************************/
#define SGRF_SOC_CON(i) ((i) * 0x4)
#define SGRF_DMAC_CON(i) (0x30 + (i) * 0x4)
#define SGRF_MST_S_ALL_NS 0xffffffff
#define SGRF_SLV_S_ALL_NS 0xffff0000
#define DMA_IRQ_BOOT_NS 0xffffffff
#define DMA_PERI_CH_NS_15_0 0xffffffff
#define DMA_PERI_CH_NS_19_16 0x000f000f
#define DMA_MANAGER_BOOT_NS 0x00010001
#define DMA_SOFTRST_REQ BITS_WITH_WMASK(1, 0x1, 12)
#define DMA_SOFTRST_RLS BITS_WITH_WMASK(0, 0x1, 12)
/***************************************************************************
* GRF
***************************************************************************/
#define GRF_SOC_CON(i) (0x0400 + (i) * 4)
#define GRF_PD_VO_CON0 0x0434
#define GRF_SOC_STATUS0 0x0480
#define GRF_CPU_STATUS0 0x0520
#define GRF_CPU_STATUS1 0x0524
#define GRF_SOC_NOC_CON0 0x0530
#define GRF_SOC_NOC_CON1 0x0534
#define CKECK_WFE_MSK 0x1
#define CKECK_WFI_MSK 0x10
#define CKECK_WFEI_MSK 0x11
#define GRF_SOC_CON2_NSWDT_RST_EN 12
/***************************************************************************
* DDR FIREWALL
***************************************************************************/
#define FIREWALL_DDR_FW_DDR_RGN(i) ((i) * 0x4)
#define FIREWALL_DDR_FW_DDR_MST(i) (0x20 + (i) * 0x4)
#define FIREWALL_DDR_FW_DDR_CON_REG 0x40
#define FIREWALL_DDR_FW_DDR_RGN_NUM 8
#define FIREWALL_DDR_FW_DDR_MST_NUM 6
#define PLAT_MAX_DDR_CAPACITY_MB 4096
#define RG_MAP_SECURE(top, base) ((((top) - 1) << 16) | (base))
/***************************************************************************
* cru
***************************************************************************/
#define CRU_MODE 0xa0
#define CRU_MISC 0xa4
#define CRU_GLB_CNT_TH 0xb0
#define CRU_GLB_RST_ST 0xb4
#define CRU_GLB_SRST_FST 0xb8
#define CRU_GLB_SRST_SND 0xbc
#define CRU_GLB_RST_CON 0xc0
#define CRU_CLKSEL_CON 0x100
#define CRU_CLKSELS_CON(i) (CRU_CLKSEL_CON + (i) * 4)
#define CRU_CLKSEL_CON_CNT 60
#define CRU_CLKGATE_CON 0x200
#define CRU_CLKGATES_CON(i) (CRU_CLKGATE_CON + (i) * 4)
#define CRU_CLKGATES_CON_CNT 18
#define CRU_SOFTRST_CON 0x300
#define CRU_SOFTRSTS_CON(n) (CRU_SOFTRST_CON + ((n) * 4))
#define CRU_SOFTRSTS_CON_CNT 12
#define CRU_AUTOCS_CON0(id) (0x400 + (id) * 8)
#define CRU_AUTOCS_CON1(id) (0x404 + (id) * 8)
#define CRU_CONS_GATEID(i) (16 * (i))
#define GATE_ID(reg, bit) ((reg) * 16 + (bit))
#define CRU_GLB_SRST_FST_VALUE 0xfdb9
#define CRU_GLB_SRST_SND_VALUE 0xeca8
#define CRU_GLB_RST_TSADC_EXT 6
#define CRU_GLB_RST_WDT_EXT 7
#define CRU_GLB_CNT_RST_MSK 0xffff
#define CRU_GLB_CNT_RST_1MS 0x5DC0
#define CRU_GLB_RST_TSADC_FST BIT(0)
#define CRU_GLB_RST_WDT_FST BIT(1)
/***************************************************************************
* pll
***************************************************************************/
#define CRU_PLL_CONS(id, i) ((id) * 0x20 + (i) * 4)
#define PLL_CON(i) ((i) * 4)
#define PLL_CON_CNT 5
#define PLL_LOCK_MSK BIT(10)
#define PLL_MODE_SHIFT(id) ((id) == CPLL_ID ? \
2 : \
((id) == DPLL_ID ? 4 : 2 * (id)))
#define PLL_MODE_MSK(id) (0x3 << PLL_MODE_SHIFT(id))
#define PLL_LOCKED_TIMEOUT 600000U
/***************************************************************************
* GPIO
***************************************************************************/
#define SWPORTA_DR 0x00
#define SWPORTA_DDR 0x04
#define GPIO_INTEN 0x30
#define GPIO_INT_STATUS 0x40
#define GPIO_NUMS 4
/**************************************************
* secure timer
**************************************************/
/* chanal0~5 */
#define STIMER_CHN_BASE(n) (STIME_BASE + 0x20 * (n))
#define TIMER_LOAD_COUNT0 0x0
#define TIMER_LOAD_COUNT1 0x4
#define TIMER_CUR_VALUE0 0x8
#define TIMER_CUR_VALUE1 0xc
#define TIMER_CONTROL_REG 0x10
#define TIMER_INTSTATUS 0x18
#define TIMER_DIS 0x0
#define TIMER_EN 0x1
#define TIMER_FMODE (0x0 << 1)
#define TIMER_RMODE (0x1 << 1)
#define TIMER_LOAD_COUNT0_MSK (0xffffffff)
#define TIMER_LOAD_COUNT1_MSK (0xffffffff00000000)
void clk_gate_con_save(uint32_t *clkgt_save);
void clk_gate_con_restore(uint32_t *clkgt_save);
void clk_gate_con_disable(void);
void secure_timer_init(void);
void secure_timer_disable(void);
void px30_soc_reset_config(void);
#endif /* __SOC_H__ */
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __ROCKCHIP_PLAT_LD_S__
#define __ROCKCHIP_PLAT_LD_S__
MEMORY {
PMUSRAM (rwx): ORIGIN = PMUSRAM_BASE, LENGTH = PMUSRAM_RSIZE
}
SECTIONS
{
. = PMUSRAM_BASE;
/*
* pmu_cpuson_entrypoint request address
* align 64K when resume, so put it in the
* start of pmusram
*/
.pmusram : {
ASSERT(. == ALIGN(64 * 1024),
".pmusram.entry request 64K aligned.");
KEEP(*(.pmusram.entry))
__bl31_pmusram_text_start = .;
*(.pmusram.text)
*(.pmusram.rodata)
__bl31_pmusram_text_end = .;
__bl31_pmusram_data_start = .;
*(.pmusram.data)
__bl31_pmusram_data_end = .;
} >PMUSRAM
}
#endif /* __ROCKCHIP_PLAT_LD_S__ */
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PLAT_SIP_CALLS_H__
#define __PLAT_SIP_CALLS_H__
#define RK_PLAT_SIP_NUM_CALLS 0
#endif /* __PLAT_SIP_CALLS_H__ */
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PLATFORM_DEF_H__
#define __PLATFORM_DEF_H__
#include <arch.h>
#include <common_def.h>
#include <px30_def.h>
#define DEBUG_XLAT_TABLE 0
/*******************************************************************************
* Platform binary types for linking
******************************************************************************/
#define PLATFORM_LINKER_FORMAT "elf64-littleaarch64"
#define PLATFORM_LINKER_ARCH aarch64
/*******************************************************************************
* Generic platform constants
******************************************************************************/
/* Size of cacheable stacks */
#if DEBUG_XLAT_TABLE
#define PLATFORM_STACK_SIZE 0x800
#elif IMAGE_BL1
#define PLATFORM_STACK_SIZE 0x440
#elif IMAGE_BL2
#define PLATFORM_STACK_SIZE 0x400
#elif IMAGE_BL31
#define PLATFORM_STACK_SIZE 0x800
#elif IMAGE_BL32
#define PLATFORM_STACK_SIZE 0x440
#endif
#define FIRMWARE_WELCOME_STR "Booting Trusted Firmware\n"
#define PLATFORM_MAX_AFFLVL MPIDR_AFFLVL2
#define PLATFORM_SYSTEM_COUNT 1
#define PLATFORM_CLUSTER_COUNT 1
#define PLATFORM_CLUSTER0_CORE_COUNT 4
#define PLATFORM_CLUSTER1_CORE_COUNT 0
#define PLATFORM_CORE_COUNT (PLATFORM_CLUSTER1_CORE_COUNT + \
PLATFORM_CLUSTER0_CORE_COUNT)
#define PLATFORM_NUM_AFFS (PLATFORM_SYSTEM_COUNT + \
PLATFORM_CLUSTER_COUNT + \
PLATFORM_CORE_COUNT)
#define PLAT_MAX_PWR_LVL MPIDR_AFFLVL2
#define PLAT_RK_CLST_TO_CPUID_SHIFT 8
/*
* This macro defines the deepest retention state possible. A higher state
* id will represent an invalid or a power down state.
*/
#define PLAT_MAX_RET_STATE 1
/*
* This macro defines the deepest power down states possible. Any state ID
* higher than this is invalid.
*/
#define PLAT_MAX_OFF_STATE 2
/*******************************************************************************
* Platform memory map related constants
******************************************************************************/
/* TF txet, ro, rw, Size: 512KB */
#define TZRAM_BASE (0x0)
#define TZRAM_SIZE (0x80000)
/*******************************************************************************
* BL31 specific defines.
******************************************************************************/
/*
* Put BL3-1 at the top of the Trusted RAM
*/
#define BL31_BASE (TZRAM_BASE + 0x10000)
#define BL31_LIMIT (TZRAM_BASE + TZRAM_SIZE)
/*******************************************************************************
* Platform specific page table and MMU setup constants
******************************************************************************/
#define PLAT_VIRT_ADDR_SPACE_SIZE (1ull << 32)
#define PLAT_PHY_ADDR_SPACE_SIZE (1ull << 32)
#define ADDR_SPACE_SIZE (1ull << 32)
#define MAX_XLAT_TABLES 8
#define MAX_MMAP_REGIONS 27
/*******************************************************************************
* Declarations and constants to access the mailboxes safely. Each mailbox is
* aligned on the biggest cache line size in the platform. This is known only
* to the platform as it might have a combination of integrated and external
* caches. Such alignment ensures that two maiboxes do not sit on the same cache
* line at any cache level. They could belong to different cpus/clusters &
* get written while being protected by different locks causing corruption of
* a valid mailbox address.
******************************************************************************/
#define CACHE_WRITEBACK_SHIFT 6
#define CACHE_WRITEBACK_GRANULE (1 << CACHE_WRITEBACK_SHIFT)
/*
* Define GICD and GICC and GICR base
*/
#define PLAT_RK_GICD_BASE PX30_GICD_BASE
#define PLAT_RK_GICC_BASE PX30_GICC_BASE
#define PLAT_RK_UART_BASE PX30_UART_BASE
#define PLAT_RK_UART_CLOCK PX30_UART_CLOCK
#define PLAT_RK_UART_BAUDRATE PX30_BAUDRATE
#define PLAT_RK_PRIMARY_CPU 0x0
#endif /* __PLATFORM_DEF_H__ */
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <lib/mmio.h>
#include <plat_sip_calls.h>
#include <rockchip_sip_svc.h>
uintptr_t rockchip_plat_sip_handler(uint32_t smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags)
{
ERROR("%s: unhandled SMC (0x%x)\n", __func__, smc_fid);
SMC_RET1(handle, SMC_UNK);
}
#
#Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
#
#SPDX-License-Identifier: BSD-3-Clause
#
RK_PLAT := plat/rockchip
RK_PLAT_SOC := ${RK_PLAT}/${PLAT}
RK_PLAT_COMMON := ${RK_PLAT}/common
DISABLE_BIN_GENERATION := 1
PLAT_INCLUDES := -Idrivers/arm/gic/common/ \
-Idrivers/arm/gic/v2/ \
-Iinclude/plat/common/ \
-I${RK_PLAT_COMMON}/ \
-I${RK_PLAT_COMMON}/include/ \
-I${RK_PLAT_COMMON}/drivers/parameter/ \
-I${RK_PLAT_COMMON}/pmusram \
-I${RK_PLAT_SOC}/ \
-I${RK_PLAT_SOC}/drivers/pmu/ \
-I${RK_PLAT_SOC}/drivers/soc/ \
-I${RK_PLAT_SOC}/include/
RK_GIC_SOURCES := drivers/arm/gic/common/gic_common.c \
drivers/arm/gic/v2/gicv2_main.c \
drivers/arm/gic/v2/gicv2_helpers.c \
plat/common/plat_gicv2.c \
plat/common/aarch64/crash_console_helpers.S \
${RK_PLAT}/common/rockchip_gicv2.c
PLAT_BL_COMMON_SOURCES := lib/xlat_tables/xlat_tables_common.c \
lib/xlat_tables/aarch64/xlat_tables.c \
plat/common/plat_psci_common.c
BL31_SOURCES += ${RK_GIC_SOURCES} \
drivers/arm/cci/cci.c \
drivers/delay_timer/delay_timer.c \
drivers/delay_timer/generic_delay_timer.c \
drivers/ti/uart/aarch64/16550_console.S \
lib/cpus/aarch64/cortex_a35.S \
${RK_PLAT_COMMON}/aarch64/plat_helpers.S \
${RK_PLAT_COMMON}/aarch64/platform_common.c \
${RK_PLAT_COMMON}/bl31_plat_setup.c \
${RK_PLAT_COMMON}/drivers/parameter/ddr_parameter.c \
${RK_PLAT_COMMON}/params_setup.c \
${RK_PLAT_COMMON}/pmusram/cpus_on_fixed_addr.S \
${RK_PLAT_COMMON}/plat_pm.c \
${RK_PLAT_COMMON}/plat_topology.c \
${RK_PLAT_COMMON}/rockchip_sip_svc.c \
${RK_PLAT_SOC}/drivers/pmu/pmu.c \
${RK_PLAT_SOC}/drivers/soc/soc.c \
${RK_PLAT_SOC}/plat_sip_calls.c
ENABLE_PLAT_COMPAT := 0
MULTI_CONSOLE_API := 1
include lib/libfdt/libfdt.mk
$(eval $(call add_define,PLAT_EXTRA_LD_SCRIPT))
$(eval $(call add_define,PLAT_SKIP_OPTEE_S_EL1_INT_REGISTER))
$(eval $(call add_define,PLAT_WARMBOOT_ADDR_NOT_ALIGN))
/*
* Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PX30_DEF_H__
#define __PX30_DEF_H__
#define MAJOR_VERSION (1)
#define MINOR_VERSION (0)
#define SIZE_K(n) ((n) * 1024)
#define WITH_16BITS_WMSK(bits) (0xffff0000 | (bits))
/* Special value used to verify platform parameters from BL2 to BL3-1 */
#define RK_BL31_PLAT_PARAM_VAL 0x0f1e2d3c4b5a6978ULL
#define PMU_BASE 0xff000000
#define PMU_SIZE SIZE_K(64)
#define PMUGRF_BASE 0xff010000
#define PMUGRF_SIZE SIZE_K(64)
#define PMUSRAM_BASE 0xff020000
#define PMUSRAM_SIZE SIZE_K(64)
#define PMUSRAM_RSIZE SIZE_K(8)
#define UART0_BASE 0xff030000
#define UART0_SIZE SIZE_K(64)
#define GPIO0_BASE 0xff040000
#define GPIO0_SIZE SIZE_K(64)
#define PMUSGRF_BASE 0xff050000
#define PMUSGRF_SIZE SIZE_K(64)
#define INTSRAM_BASE 0xff0e0000
#define INTSRAM_SIZE SIZE_K(64)
#define SGRF_BASE 0xff11c000
#define SGRF_SIZE SIZE_K(16)
#define GIC400_BASE 0xff130000
#define GIC400_SIZE SIZE_K(64)
#define GRF_BASE 0xff140000
#define GRF_SIZE SIZE_K(64)
#define UART1_BASE 0xff158000
#define UART1_SIZE SIZE_K(64)
#define UART2_BASE 0xff160000
#define UART2_SIZE SIZE_K(64)
#define I2C0_BASE 0xff180000
#define I2C0_SIZE SIZE_K(64)
#define PWM0_BASE 0xff200000
#define PWM0_SIZE SIZE_K(32)
#define PWM1_BASE 0xff208000
#define PWM1_SIZE SIZE_K(32)
#define NTIME_BASE 0xff210000
#define NTIME_SIZE SIZE_K(64)
#define STIME_BASE 0xff220000
#define STIME_SIZE SIZE_K(64)
#define DCF_BASE 0xff230000
#define DCF_SIZE SIZE_K(64)
#define GPIO1_BASE 0xff250000
#define GPIO1_SIZE SIZE_K(64)
#define GPIO2_BASE 0xff260000
#define GPIO2_SIZE SIZE_K(64)
#define GPIO3_BASE 0xff270000
#define GPIO3_SIZE SIZE_K(64)
#define DDR_PHY_BASE 0xff2a0000
#define DDR_PHY_SIZE SIZE_K(64)
#define CRU_BASE 0xff2b0000
#define CRU_SIZE SIZE_K(32)
#define CRU_BOOST_BASE 0xff2b8000
#define CRU_BOOST_SIZE SIZE_K(16)
#define PMUCRU_BASE 0xff2bc000
#define PMUCRU_SIZE SIZE_K(16)
#define VOP_BASE 0xff460000
#define VOP_SIZE SIZE_K(16)
#define SERVER_MSCH_BASE 0xff530000
#define SERVER_MSCH_SIZE SIZE_K(64)
#define FIREWALL_DDR_BASE 0xff534000
#define FIREWALL_DDR_SIZE SIZE_K(16)
#define DDR_UPCTL_BASE 0xff600000
#define DDR_UPCTL_SIZE SIZE_K(64)
#define DDR_MNTR_BASE 0xff610000
#define DDR_MNTR_SIZE SIZE_K(64)
#define DDR_STDBY_BASE 0xff620000
#define DDR_STDBY_SIZE SIZE_K(64)
#define DDRGRF_BASE 0xff630000
#define DDRGRF_SIZE SIZE_K(32)
/**************************************************************************
* UART related constants
**************************************************************************/
#define PX30_UART_BASE UART2_BASE
#define PX30_BAUDRATE 1500000
#define PX30_UART_CLOCK 24000000
/******************************************************************************
* System counter frequency related constants
******************************************************************************/
#define SYS_COUNTER_FREQ_IN_TICKS 24000000
#define SYS_COUNTER_FREQ_IN_MHZ 24
/******************************************************************************
* GIC-400 & interrupt handling related constants
******************************************************************************/
/* Base rk_platform compatible GIC memory map */
#define PX30_GICD_BASE (GIC400_BASE + 0x1000)
#define PX30_GICC_BASE (GIC400_BASE + 0x2000)
#define PX30_GICR_BASE 0 /* no GICR in GIC-400 */
/******************************************************************************
* sgi, ppi
******************************************************************************/
#define RK_IRQ_SEC_PHY_TIMER 29
#define RK_IRQ_SEC_SGI_0 8
#define RK_IRQ_SEC_SGI_1 9
#define RK_IRQ_SEC_SGI_2 10
#define RK_IRQ_SEC_SGI_3 11
#define RK_IRQ_SEC_SGI_4 12
#define RK_IRQ_SEC_SGI_5 13
#define RK_IRQ_SEC_SGI_6 14
#define RK_IRQ_SEC_SGI_7 15
/*
* Define a list of Group 0 interrupts.
*/
#define PLAT_RK_GICV2_G0_IRQS \
INTR_PROP_DESC(RK_IRQ_SEC_PHY_TIMER, GIC_HIGHEST_SEC_PRIORITY, \
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL), \
INTR_PROP_DESC(RK_IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY, \
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL)
#define SHARE_MEM_BASE 0x100000/* [1MB, 1MB+60K]*/
#define SHARE_MEM_PAGE_NUM 15
#define SHARE_MEM_SIZE SIZE_K(SHARE_MEM_PAGE_NUM * 4)
#define DDR_PARAM_BASE 0x02000000
#define DDR_PARAM_SIZE SIZE_K(4)
#endif /* __PLAT_DEF_H__ */
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment