Commit 05a91fb0 authored by danh-arm's avatar danh-arm
Browse files

Merge pull request #452 from vwadekar/tegra-new-platform-apis-v2

Tegra new platform apis v2
parents f3974ea5 71cb26ea
......@@ -36,9 +36,9 @@
#include <tegra_def.h>
/* Global functions */
.globl platform_is_primary_cpu
.globl platform_get_core_pos
.globl platform_get_entrypoint
.globl plat_is_my_cpu_primary
.globl plat_my_core_pos
.globl plat_get_my_entrypoint
.globl plat_secondary_cold_boot_setup
.globl platform_mem_init
.globl plat_crash_console_init
......@@ -47,7 +47,7 @@
.globl plat_reset_handler
/* Global variables */
.globl sec_entry_point
.globl tegra_sec_entry_point
.globl ns_image_entrypoint
.globl tegra_bl31_phys_base
......@@ -115,28 +115,47 @@
.endm
/* -----------------------------------------------------
* int platform_is_primary_cpu(int mpidr);
* unsigned int plat_is_my_cpu_primary(void);
*
* This function checks if this is the Primary CPU
* -----------------------------------------------------
*/
func platform_is_primary_cpu
func plat_is_my_cpu_primary
mrs x0, mpidr_el1
and x0, x0, #(MPIDR_CLUSTER_MASK | MPIDR_CPU_MASK)
cmp x0, #TEGRA_PRIMARY_CPU
cset x0, eq
ret
endfunc platform_is_primary_cpu
endfunc plat_is_my_cpu_primary
/* -----------------------------------------------------
* int platform_get_core_pos(int mpidr);
* unsigned int plat_my_core_pos(void);
*
* result: CorePos = CoreId + (ClusterId << 2)
* -----------------------------------------------------
*/
func plat_my_core_pos
mrs x0, mpidr_el1
and x1, x0, #MPIDR_CPU_MASK
and x0, x0, #MPIDR_CLUSTER_MASK
add x0, x1, x0, LSR #6
ret
endfunc plat_my_core_pos
/* -----------------------------------------------------
* unsigned long plat_get_my_entrypoint (void);
*
* Main job of this routine is to distinguish between
* a cold and warm boot. If the tegra_sec_entry_point for
* this CPU is present, then it's a warm boot.
*
* With this function: CorePos = CoreId
* -----------------------------------------------------
*/
func platform_get_core_pos
and x0, x0, #MPIDR_CPU_MASK
func plat_get_my_entrypoint
adr x1, tegra_sec_entry_point
ldr x0, [x1]
ret
endfunc platform_get_core_pos
endfunc plat_get_my_entrypoint
/* -----------------------------------------------------
* void plat_secondary_cold_boot_setup (void);
......@@ -151,22 +170,6 @@ func plat_secondary_cold_boot_setup
ret
endfunc plat_secondary_cold_boot_setup
/* -----------------------------------------------------
* void platform_get_entrypoint (unsigned int mpidr);
*
* Main job of this routine is to distinguish between
* a cold and warm boot. If the sec_entry_point for
* this CPU is present, then it's a warm boot.
*
* -----------------------------------------------------
*/
func platform_get_entrypoint
and x0, x0, #MPIDR_CPU_MASK
adr x1, sec_entry_point
ldr x0, [x1, x0, lsl #3]
ret
endfunc platform_get_entrypoint
/* --------------------------------------------------------
* void platform_mem_init (void);
*
......@@ -336,8 +339,7 @@ restore_oslock:
* Get secure world's entry point and jump to it
* --------------------------------------------------
*/
mrs x0, mpidr_el1
bl platform_get_entrypoint
bl plat_get_my_entrypoint
br x0
endfunc tegra_secure_entrypoint
......@@ -345,13 +347,11 @@ endfunc tegra_secure_entrypoint
.align 3
/* --------------------------------------------------
* Per-CPU Secure entry point - resume from suspend
* CPU Secure entry point - resume from suspend
* --------------------------------------------------
*/
sec_entry_point:
.rept PLATFORM_CORE_COUNT
tegra_sec_entry_point:
.quad 0
.endr
/* --------------------------------------------------
* NS world's cold boot entry point
......
......@@ -98,9 +98,9 @@ static void tegra_fc_prepare_suspend(int cpu_id, uint32_t csr)
}
/*******************************************************************************
* Suspend the current CPU
* Powerdn the current CPU
******************************************************************************/
void tegra_fc_cpu_idle(uint32_t mpidr)
void tegra_fc_cpu_powerdn(uint32_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
......
......@@ -51,6 +51,7 @@ BL31_SOURCES += drivers/arm/gic/gic_v2.c \
drivers/delay_timer/delay_timer.c \
drivers/ti/uart/16550_console.S \
plat/common/aarch64/platform_mp_stack.S \
plat/common/aarch64/plat_psci_common.c \
${COMMON_DIR}/aarch64/tegra_helpers.S \
${COMMON_DIR}/drivers/memctrl/memctrl.c \
${COMMON_DIR}/drivers/pmc/pmc.c \
......
......@@ -44,35 +44,34 @@
#include <tegra_private.h>
extern uint64_t tegra_bl31_phys_base;
extern uint64_t sec_entry_point[PLATFORM_CORE_COUNT];
static int system_suspended;
extern uint64_t tegra_sec_entry_point;
/*
* The following platform setup functions are weakly defined. They
* provide typical implementations that will be overridden by a SoC.
*/
#pragma weak tegra_soc_prepare_cpu_suspend
#pragma weak tegra_soc_prepare_cpu_on
#pragma weak tegra_soc_prepare_cpu_off
#pragma weak tegra_soc_prepare_cpu_on_finish
#pragma weak tegra_soc_pwr_domain_suspend
#pragma weak tegra_soc_pwr_domain_on
#pragma weak tegra_soc_pwr_domain_off
#pragma weak tegra_soc_pwr_domain_on_finish
#pragma weak tegra_soc_prepare_system_reset
int tegra_soc_prepare_cpu_suspend(unsigned int id, unsigned int afflvl)
int tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
{
return PSCI_E_NOT_SUPPORTED;
}
int tegra_soc_prepare_cpu_on(unsigned long mpidr)
int tegra_soc_pwr_domain_on(u_register_t mpidr)
{
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_off(unsigned long mpidr)
int tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
{
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_on_finish(unsigned long mpidr)
int tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
return PSCI_E_SUCCESS;
}
......@@ -83,33 +82,25 @@ int tegra_soc_prepare_system_reset(void)
}
/*******************************************************************************
* Track system suspend entry.
******************************************************************************/
void tegra_pm_system_suspend_entry(void)
{
system_suspended = 1;
}
/*******************************************************************************
* Track system suspend exit.
******************************************************************************/
void tegra_pm_system_suspend_exit(void)
* This handler is called by the PSCI implementation during the `SYSTEM_SUSPEND`
* call to get the `power_state` parameter. This allows the platform to encode
* the appropriate State-ID field within the `power_state` parameter which can
* be utilized in `pwr_domain_suspend()` to suspend to system affinity level.
******************************************************************************/
void tegra_get_sys_suspend_power_state(psci_power_state_t *req_state)
{
system_suspended = 0;
}
/* lower affinities use PLAT_MAX_OFF_STATE */
for (int i = MPIDR_AFFLVL0; i < PLAT_MAX_PWR_LVL; i++)
req_state->pwr_domain_state[i] = PLAT_MAX_OFF_STATE;
/*******************************************************************************
* Get the system suspend state.
******************************************************************************/
int tegra_system_suspended(void)
{
return system_suspended;
/* max affinity uses system suspend state id */
req_state->pwr_domain_state[PLAT_MAX_PWR_LVL] = PSTATE_ID_SOC_POWERDN;
}
/*******************************************************************************
* Handler called when an affinity instance is about to enter standby.
******************************************************************************/
void tegra_affinst_standby(unsigned int power_state)
void tegra_cpu_standby(plat_local_state_t cpu_state)
{
/*
* Enter standby state
......@@ -119,132 +110,45 @@ void tegra_affinst_standby(unsigned int power_state)
wfi();
}
/*******************************************************************************
* This handler is called by the PSCI implementation during the `SYSTEM_SUSPEND`
* call to get the `power_state` parameter. This allows the platform to encode
* the appropriate State-ID field within the `power_state` parameter which can
* be utilized in `affinst_suspend()` to suspend to system affinity level.
******************************************************************************/
unsigned int tegra_get_sys_suspend_power_state(void)
{
unsigned int power_state;
power_state = psci_make_powerstate(PLAT_SYS_SUSPEND_STATE_ID,
PSTATE_TYPE_POWERDOWN, MPIDR_AFFLVL2);
return power_state;
}
/*******************************************************************************
* Handler called to check the validity of the power state parameter.
******************************************************************************/
int32_t tegra_validate_power_state(unsigned int power_state)
{
return tegra_soc_validate_power_state(power_state);
}
/*******************************************************************************
* Handler called when an affinity instance is about to be turned on. The
* level and mpidr determine the affinity instance.
******************************************************************************/
int tegra_affinst_on(unsigned long mpidr,
unsigned long sec_entrypoint,
unsigned int afflvl,
unsigned int state)
int tegra_pwr_domain_on(u_register_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
/*
* Support individual CPU power on only.
*/
if (afflvl > MPIDR_AFFLVL0)
return PSCI_E_SUCCESS;
/*
* Flush entrypoint variable to PoC since it will be
* accessed after a reset with the caches turned off.
*/
sec_entry_point[cpu] = sec_entrypoint;
flush_dcache_range((uint64_t)&sec_entry_point[cpu], sizeof(uint64_t));
return tegra_soc_prepare_cpu_on(mpidr);
return tegra_soc_pwr_domain_on(mpidr);
}
/*******************************************************************************
* Handler called when an affinity instance is about to be turned off. The
* level determines the affinity instance. The 'state' arg. allows the
* platform to decide whether the cluster is being turned off and take apt
* actions.
*
* CAUTION: This function is called with coherent stacks so that caches can be
* turned off, flushed and coherency disabled. There is no guarantee that caches
* will remain turned on across calls to this function as each affinity level is
* dealt with. So do not write & read global variables across calls. It will be
* wise to do flush a write to the global to prevent unpredictable results.
* Handler called when a power domain is about to be turned off. The
* target_state encodes the power state that each level should transition to.
******************************************************************************/
void tegra_affinst_off(unsigned int afflvl, unsigned int state)
void tegra_pwr_domain_off(const psci_power_state_t *target_state)
{
/*
* Support individual CPU power off only.
*/
if (afflvl > MPIDR_AFFLVL0)
return;
tegra_soc_prepare_cpu_off(read_mpidr());
tegra_soc_pwr_domain_off(target_state);
}
/*******************************************************************************
* Handler called when an affinity instance is about to be suspended. The
* level and mpidr determine the affinity instance. The 'state' arg. allows the
* platform to decide whether the cluster is being turned off and take apt
* actions.
*
* CAUTION: This function is called with coherent stacks so that caches can be
* turned off, flushed and coherency disabled. There is no guarantee that caches
* will remain turned on across calls to this function as each affinity level is
* dealt with. So do not write & read global variables across calls. It will be
* wise to flush a write to the global variable, to prevent unpredictable
* results.
* Handler called when called when a power domain is about to be suspended. The
* target_state encodes the power state that each level should transition to.
******************************************************************************/
void tegra_affinst_suspend(unsigned long sec_entrypoint,
unsigned int afflvl,
unsigned int state)
void tegra_pwr_domain_suspend(const psci_power_state_t *target_state)
{
int id = psci_get_suspend_stateid();
int cpu = read_mpidr() & MPIDR_CPU_MASK;
if (afflvl > PLATFORM_MAX_AFFLVL)
return;
/*
* Flush entrypoint variable to PoC since it will be
* accessed after a reset with the caches turned off.
*/
sec_entry_point[cpu] = sec_entrypoint;
flush_dcache_range((uint64_t)&sec_entry_point[cpu], sizeof(uint64_t));
tegra_soc_prepare_cpu_suspend(id, afflvl);
tegra_soc_pwr_domain_suspend(target_state);
/* disable GICC */
tegra_gic_cpuif_deactivate();
}
/*******************************************************************************
* Handler called when an affinity instance has just been powered on after
* being turned off earlier. The level determines the affinity instance.
* The 'state' arg. allows the platform to decide whether the cluster was
* turned off prior to wakeup and do what's necessary to set it up.
* Handler called when a power domain has just been powered on after
* being turned off earlier. The target_state encodes the low power state that
* each level has woken up from.
******************************************************************************/
void tegra_affinst_on_finish(unsigned int afflvl, unsigned int state)
void tegra_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
plat_params_from_bl2_t *plat_params;
/*
* Support individual CPU power on only.
*/
if (afflvl > MPIDR_AFFLVL0)
return;
/*
* Initialize the GIC cpu and distributor interfaces
*/
......@@ -253,7 +157,8 @@ void tegra_affinst_on_finish(unsigned int afflvl, unsigned int state)
/*
* Check if we are exiting from deep sleep.
*/
if (tegra_system_suspended()) {
if (target_state->pwr_domain_state[PLAT_MAX_PWR_LVL] ==
PSTATE_ID_SOC_POWERDN) {
/*
* Lock scratch registers which hold the CPU vectors.
......@@ -276,18 +181,17 @@ void tegra_affinst_on_finish(unsigned int afflvl, unsigned int state)
/*
* Reset hardware settings.
*/
tegra_soc_prepare_cpu_on_finish(read_mpidr());
tegra_soc_pwr_domain_on_finish(target_state);
}
/*******************************************************************************
* Handler called when an affinity instance has just been powered on after
* having been suspended earlier. The level and mpidr determine the affinity
* instance.
* Handler called when a power domain has just been powered on after
* having been suspended earlier. The target_state encodes the low power state
* that each level has woken up from.
******************************************************************************/
void tegra_affinst_suspend_finish(unsigned int afflvl, unsigned int state)
void tegra_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
{
if (afflvl == MPIDR_AFFLVL0)
tegra_affinst_on_finish(afflvl, state);
tegra_pwr_domain_on_finish(target_state);
}
/*******************************************************************************
......@@ -313,36 +217,78 @@ __dead2 void tegra_system_reset(void)
tegra_pmc_system_reset();
}
/*******************************************************************************
* Handler called to check the validity of the power state parameter.
******************************************************************************/
int32_t tegra_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
assert(req_state);
if (pwr_lvl > PLAT_MAX_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
return tegra_soc_validate_power_state(power_state, req_state);
}
/*******************************************************************************
* Platform handler called to check the validity of the non secure entrypoint.
******************************************************************************/
int tegra_validate_ns_entrypoint(uintptr_t entrypoint)
{
/*
* Check if the non secure entrypoint lies within the non
* secure DRAM.
*/
if ((entrypoint >= TEGRA_DRAM_BASE) && (entrypoint <= TEGRA_DRAM_END))
return PSCI_E_SUCCESS;
return PSCI_E_INVALID_ADDRESS;
}
/*******************************************************************************
* Export the platform handlers to enable psci to invoke them
******************************************************************************/
static const plat_pm_ops_t tegra_plat_pm_ops = {
.affinst_standby = tegra_affinst_standby,
.affinst_on = tegra_affinst_on,
.affinst_off = tegra_affinst_off,
.affinst_suspend = tegra_affinst_suspend,
.affinst_on_finish = tegra_affinst_on_finish,
.affinst_suspend_finish = tegra_affinst_suspend_finish,
static const plat_psci_ops_t tegra_plat_psci_ops = {
.cpu_standby = tegra_cpu_standby,
.pwr_domain_on = tegra_pwr_domain_on,
.pwr_domain_off = tegra_pwr_domain_off,
.pwr_domain_suspend = tegra_pwr_domain_suspend,
.pwr_domain_on_finish = tegra_pwr_domain_on_finish,
.pwr_domain_suspend_finish = tegra_pwr_domain_suspend_finish,
.system_off = tegra_system_off,
.system_reset = tegra_system_reset,
.validate_power_state = tegra_validate_power_state,
.get_sys_suspend_power_state = tegra_get_sys_suspend_power_state
.validate_ns_entrypoint = tegra_validate_ns_entrypoint,
.get_sys_suspend_power_state = tegra_get_sys_suspend_power_state,
};
/*******************************************************************************
* Export the platform specific power ops & initialize the fvp power controller
* Export the platform specific power ops and initialize Power Controller
******************************************************************************/
int platform_setup_pm(const plat_pm_ops_t **plat_ops)
int plat_setup_psci_ops(uintptr_t sec_entrypoint,
const plat_psci_ops_t **psci_ops)
{
psci_power_state_t target_state = { { PSCI_LOCAL_STATE_RUN } };
/*
* Flush entrypoint variable to PoC since it will be
* accessed after a reset with the caches turned off.
*/
tegra_sec_entry_point = sec_entrypoint;
flush_dcache_range((uint64_t)&tegra_sec_entry_point, sizeof(uint64_t));
/*
* Reset hardware settings.
*/
tegra_soc_prepare_cpu_on_finish(read_mpidr());
tegra_soc_pwr_domain_on_finish(&target_state);
/*
* Initialize PM ops struct
* Initialize PSCI ops struct
*/
*plat_ops = &tegra_plat_pm_ops;
*psci_ops = &tegra_plat_psci_ops;
return 0;
}
......@@ -28,45 +28,47 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch_helpers.h>
#include <arch.h>
#include <platform_def.h>
#include <psci.h>
extern const unsigned char tegra_power_domain_tree_desc[];
/*******************************************************************************
* This function implements a part of the critical interface between the psci
* generic layer and the platform to allow the former to detect the platform
* topology. psci queries the platform to determine how many affinity instances
* are present at a particular level for a given mpidr.
* This function returns the Tegra default topology tree information.
******************************************************************************/
unsigned int plat_get_aff_count(unsigned int aff_lvl,
unsigned long mpidr)
const unsigned char *plat_get_power_domain_tree_desc(void)
{
switch (aff_lvl) {
case MPIDR_AFFLVL2:
/* Last supported affinity level */
return 1;
case MPIDR_AFFLVL1:
/* Return # of clusters */
return PLATFORM_CLUSTER_COUNT;
case MPIDR_AFFLVL0:
/* # of cpus per cluster */
return PLATFORM_MAX_CPUS_PER_CLUSTER;
default:
return PSCI_AFF_ABSENT;
}
return tegra_power_domain_tree_desc;
}
/*******************************************************************************
* This function implements a part of the critical interface between the psci
* generic layer and the platform to allow the former to detect the state of a
* affinity instance in the platform topology. psci queries the platform to
* determine whether an affinity instance is present or absent.
* generic layer and the platform that allows the former to query the platform
* to convert an MPIDR to a unique linear index. An error code (-1) is returned
* in case the MPIDR is invalid.
******************************************************************************/
unsigned int plat_get_aff_state(unsigned int aff_lvl,
unsigned long mpidr)
int plat_core_pos_by_mpidr(u_register_t mpidr)
{
return (aff_lvl <= MPIDR_AFFLVL2) ? PSCI_AFF_PRESENT : PSCI_AFF_ABSENT;
unsigned int cluster_id, cpu_id;
mpidr &= MPIDR_AFFINITY_MASK;
if (mpidr & ~(MPIDR_CLUSTER_MASK | MPIDR_CPU_MASK))
return -1;
cluster_id = (mpidr >> MPIDR_AFF1_SHIFT) & MPIDR_AFFLVL_MASK;
cpu_id = (mpidr >> MPIDR_AFF0_SHIFT) & MPIDR_AFFLVL_MASK;
if (cluster_id >= PLATFORM_CLUSTER_COUNT)
return -1;
/*
* Validate cpu_id by checking whether it represents a CPU in
* one of the two clusters present on the platform.
*/
if (cpu_id >= PLATFORM_MAX_CPUS_PER_CLUSTER)
return -1;
return (cpu_id + (cluster_id * 4));
}
......@@ -73,8 +73,8 @@ static inline void tegra_fc_write_32(uint32_t off, uint32_t val)
mmio_write_32(TEGRA_FLOWCTRL_BASE + off, val);
}
void tegra_fc_cpu_idle(uint32_t mpidr);
void tegra_fc_cluster_idle(uint32_t midr);
void tegra_fc_cpu_powerdn(uint32_t mpidr);
void tegra_fc_cluster_powerdn(uint32_t midr);
void tegra_fc_soc_powerdn(uint32_t midr);
void tegra_fc_cpu_on(int cpu);
......
......@@ -33,6 +33,7 @@
#include <arch.h>
#include <common_def.h>
#include <tegra_def.h>
/*******************************************************************************
* Generic platform constants
......@@ -47,12 +48,18 @@
#define TEGRA_PRIMARY_CPU 0x0
#define PLATFORM_MAX_AFFLVL MPIDR_AFFLVL2
#define PLAT_MAX_PWR_LVL MPIDR_AFFLVL2
#define PLATFORM_CORE_COUNT (PLATFORM_CLUSTER_COUNT * \
PLATFORM_MAX_CPUS_PER_CLUSTER)
#define PLATFORM_NUM_AFFS (PLATFORM_CORE_COUNT + \
#define PLAT_NUM_PWR_DOMAINS (PLATFORM_CORE_COUNT + \
PLATFORM_CLUSTER_COUNT + 1)
/*******************************************************************************
* Platform power states
******************************************************************************/
#define PLAT_MAX_RET_STATE 1
#define PLAT_MAX_OFF_STATE (PSTATE_ID_SOC_POWERDN + 1)
/*******************************************************************************
* Platform console related constants
******************************************************************************/
......
......@@ -37,7 +37,7 @@
* This value is used by the PSCI implementation during the `SYSTEM_SUSPEND`
* call as the `state-id` field in the 'power state' parameter.
******************************************************************************/
#define PLAT_SYS_SUSPEND_STATE_ID 0xD
#define PSTATE_ID_SOC_POWERDN 0xD
/*******************************************************************************
* GIC memory map
......
......@@ -31,8 +31,9 @@
#ifndef __TEGRA_PRIVATE_H__
#define __TEGRA_PRIVATE_H__
#include <xlat_tables.h>
#include <arch.h>
#include <platform_def.h>
#include <xlat_tables.h>
/*******************************************************************************
* Tegra DRAM memory base address
......@@ -45,7 +46,8 @@ typedef struct plat_params_from_bl2 {
} plat_params_from_bl2_t;
/* Declarations for plat_psci_handlers.c */
int32_t tegra_soc_validate_power_state(unsigned int power_state);
int32_t tegra_soc_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state);
/* Declarations for plat_setup.c */
const mmap_region_t *plat_get_mmio_map(void);
......
......@@ -30,6 +30,9 @@
SOC_DIR := plat/nvidia/tegra/soc/${TARGET_SOC}
# Disable the PSCI platform compatibility layer
ENABLE_PLAT_COMPAT := 0
include plat/nvidia/tegra/common/tegra_common.mk
include ${SOC_DIR}/platform_${TARGET_SOC}.mk
......
......@@ -56,28 +56,55 @@
static int cpu_powergate_mask[PLATFORM_MAX_CPUS_PER_CLUSTER];
int32_t tegra_soc_validate_power_state(unsigned int power_state)
int32_t tegra_soc_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
int state_id = psci_get_pstate_id(power_state);
int cpu = read_mpidr() & MPIDR_CPU_MASK;
if (pwr_lvl > PLAT_MAX_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
/* Sanity check the requested afflvl */
if (psci_get_pstate_type(power_state) == PSTATE_TYPE_STANDBY) {
/*
* It's possible to enter standby only on affinity level 0 i.e.
* a cpu on Tegra. Ignore any other affinity level.
*/
if (psci_get_pstate_afflvl(power_state) != MPIDR_AFFLVL0)
if (pwr_lvl != MPIDR_AFFLVL0)
return PSCI_E_INVALID_PARAMS;
/* power domain in standby state */
req_state->pwr_domain_state[pwr_lvl] = PLAT_MAX_RET_STATE;
return PSCI_E_SUCCESS;
}
/* Sanity check the requested state id */
if (psci_get_pstate_id(power_state) != PLAT_SYS_SUSPEND_STATE_ID) {
ERROR("unsupported state id\n");
return PSCI_E_NOT_SUPPORTED;
/*
* Sanity check the requested state id, power level and CPU number.
* Currently T132 only supports SYSTEM_SUSPEND on last standing CPU
* i.e. CPU 0
*/
if ((pwr_lvl != PLAT_MAX_PWR_LVL) ||
(state_id != PSTATE_ID_SOC_POWERDN) ||
(cpu != 0)) {
ERROR("unsupported state id @ power level\n");
return PSCI_E_INVALID_PARAMS;
}
/* Set lower power states to PLAT_MAX_OFF_STATE */
for (int i = MPIDR_AFFLVL0; i < PLAT_MAX_PWR_LVL; i++)
req_state->pwr_domain_state[i] = PLAT_MAX_OFF_STATE;
/* Set the SYSTEM_SUSPEND state-id */
req_state->pwr_domain_state[PLAT_MAX_PWR_LVL] =
PSTATE_ID_SOC_POWERDN;
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_on(unsigned long mpidr)
int tegra_soc_pwr_domain_on(u_register_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
uint32_t mask = CPU_CORE_RESET_MASK << cpu;
......@@ -101,29 +128,29 @@ int tegra_soc_prepare_cpu_on(unsigned long mpidr)
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_off(unsigned long mpidr)
int tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
{
tegra_fc_cpu_off(mpidr & MPIDR_CPU_MASK);
tegra_fc_cpu_off(read_mpidr() & MPIDR_CPU_MASK);
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_suspend(unsigned int id, unsigned int afflvl)
int tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
{
/* Nothing to be done for lower affinity levels */
if (afflvl < MPIDR_AFFLVL2)
return PSCI_E_SUCCESS;
#if DEBUG
int cpu = read_mpidr() & MPIDR_CPU_MASK;
/* Enter system suspend state */
tegra_pm_system_suspend_entry();
/* SYSTEM_SUSPEND only on CPU0 */
assert(cpu == 0);
#endif
/* Allow restarting CPU #1 using PMC on suspend exit */
cpu_powergate_mask[1] = 0;
/* Program FC to enter suspend state */
tegra_fc_cpu_idle(read_mpidr());
tegra_fc_cpu_powerdn(read_mpidr());
/* Suspend DCO operations */
write_actlr_el1(id);
write_actlr_el1(target_state->pwr_domain_state[PLAT_MAX_PWR_LVL]);
return PSCI_E_SUCCESS;
}
......
......@@ -31,6 +31,21 @@
#include <xlat_tables.h>
#include <tegra_def.h>
/*******************************************************************************
* The Tegra power domain tree has a single system level power domain i.e. a
* single root node. The first entry in the power domain descriptor specifies
* the number of power domains at the highest power level.
*******************************************************************************
*/
const unsigned char tegra_power_domain_tree_desc[] = {
/* No of root nodes */
1,
/* No of clusters */
PLATFORM_CLUSTER_COUNT,
/* No of CPU cores */
PLATFORM_CORE_COUNT,
};
/* sets of MMIO ranges setup */
#define MMIO_RANGE_0_ADDR 0x50000000
#define MMIO_RANGE_1_ADDR 0x60000000
......
......@@ -55,83 +55,139 @@
static int cpu_powergate_mask[PLATFORM_MAX_CPUS_PER_CLUSTER];
int32_t tegra_soc_validate_power_state(unsigned int power_state)
int32_t tegra_soc_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
int state_id = psci_get_pstate_id(power_state);
if (pwr_lvl > PLAT_MAX_PWR_LVL) {
ERROR("%s: unsupported power_state (0x%x)\n", __func__,
power_state);
return PSCI_E_INVALID_PARAMS;
}
/* Sanity check the requested afflvl */
if (psci_get_pstate_type(power_state) == PSTATE_TYPE_STANDBY) {
/*
* It's possible to enter standby only on affinity level 0 i.e.
* a cpu on Tegra. Ignore any other affinity level.
*/
if (psci_get_pstate_afflvl(power_state) != MPIDR_AFFLVL0)
if (pwr_lvl != MPIDR_AFFLVL0)
return PSCI_E_INVALID_PARAMS;
/* power domain in standby state */
req_state->pwr_domain_state[pwr_lvl] = PLAT_MAX_RET_STATE;
return PSCI_E_SUCCESS;
}
/* Sanity check the requested state id */
switch (psci_get_pstate_id(power_state)) {
switch (state_id) {
case PSTATE_ID_CORE_POWERDN:
/*
* Core powerdown request only for afflvl 0
*/
if (pwr_lvl != MPIDR_AFFLVL0)
goto error;
req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id & 0xff;
break;
case PSTATE_ID_CLUSTER_IDLE:
case PSTATE_ID_CLUSTER_POWERDN:
/*
* Cluster powerdown/idle request only for afflvl 1
*/
if (pwr_lvl != MPIDR_AFFLVL1)
goto error;
req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;
req_state->pwr_domain_state[MPIDR_AFFLVL0] = PLAT_MAX_OFF_STATE;
break;
case PSTATE_ID_SOC_POWERDN:
/*
* System powerdown request only for afflvl 2
*/
if (pwr_lvl != PLAT_MAX_PWR_LVL)
goto error;
for (int i = MPIDR_AFFLVL0; i < PLAT_MAX_PWR_LVL; i++)
req_state->pwr_domain_state[i] = PLAT_MAX_OFF_STATE;
req_state->pwr_domain_state[PLAT_MAX_PWR_LVL] =
PLAT_SYS_SUSPEND_STATE_ID;
break;
default:
ERROR("unsupported state id\n");
return PSCI_E_NOT_SUPPORTED;
ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
return PSCI_E_INVALID_PARAMS;
}
return PSCI_E_SUCCESS;
error:
ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
return PSCI_E_INVALID_PARAMS;
}
int tegra_soc_prepare_cpu_suspend(unsigned int id, unsigned int afflvl)
int tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
{
/* There's nothing to be done for affinity level 1 */
if (afflvl == MPIDR_AFFLVL1)
return PSCI_E_SUCCESS;
u_register_t mpidr = read_mpidr();
const plat_local_state_t *pwr_domain_state =
target_state->pwr_domain_state;
unsigned int stateid_afflvl2 = pwr_domain_state[MPIDR_AFFLVL2];
unsigned int stateid_afflvl1 = pwr_domain_state[MPIDR_AFFLVL1];
unsigned int stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0];
switch (id) {
/* Prepare for cpu idle */
case PSTATE_ID_CORE_POWERDN:
tegra_fc_cpu_idle(read_mpidr());
return PSCI_E_SUCCESS;
if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
assert(stateid_afflvl0 == PLAT_MAX_OFF_STATE);
assert(stateid_afflvl1 == PLAT_MAX_OFF_STATE);
/* suspend the entire soc */
tegra_fc_soc_powerdn(mpidr);
} else if (stateid_afflvl1 == PSTATE_ID_CLUSTER_IDLE) {
assert(stateid_afflvl0 == PLAT_MAX_OFF_STATE);
/* Prepare for cluster idle */
case PSTATE_ID_CLUSTER_IDLE:
tegra_fc_cluster_idle(read_mpidr());
return PSCI_E_SUCCESS;
tegra_fc_cluster_idle(mpidr);
/* Prepare for cluster powerdn */
case PSTATE_ID_CLUSTER_POWERDN:
tegra_fc_cluster_powerdn(read_mpidr());
return PSCI_E_SUCCESS;
} else if (stateid_afflvl1 == PSTATE_ID_CLUSTER_POWERDN) {
/* Prepare for system idle */
case PSTATE_ID_SOC_POWERDN:
assert(stateid_afflvl0 == PLAT_MAX_OFF_STATE);
/* Enter system suspend state */
tegra_pm_system_suspend_entry();
/* Prepare for cluster powerdn */
tegra_fc_cluster_powerdn(mpidr);
/* suspend the entire soc */
tegra_fc_soc_powerdn(read_mpidr());
} else if (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN) {
return PSCI_E_SUCCESS;
/* Prepare for cpu powerdn */
tegra_fc_cpu_powerdn(mpidr);
default:
ERROR("Unknown state id (%d)\n", id);
break;
} else {
ERROR("%s: Unknown state id\n", __func__);
return PSCI_E_NOT_SUPPORTED;
}
return PSCI_E_NOT_SUPPORTED;
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_on_finish(unsigned long mpidr)
int tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
uint32_t val;
/*
* Check if we are exiting from SOC_POWERDN.
*/
if (tegra_system_suspended()) {
if (target_state->pwr_domain_state[PLAT_MAX_PWR_LVL] ==
PLAT_SYS_SUSPEND_STATE_ID) {
/*
* Enable WRAP to INCR burst type conversions for
......@@ -147,11 +203,6 @@ int tegra_soc_prepare_cpu_on_finish(unsigned long mpidr)
* address and reset it.
*/
tegra_fc_reset_bpmp();
/*
* System resume complete.
*/
tegra_pm_system_suspend_exit();
}
/*
......@@ -159,13 +210,12 @@ int tegra_soc_prepare_cpu_on_finish(unsigned long mpidr)
* used for power management and boot purposes. Inform the BPMP that
* we have completed the cluster power up.
*/
if (psci_get_max_phys_off_afflvl() == MPIDR_AFFLVL1)
tegra_fc_lock_active_cluster();
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_on(unsigned long mpidr)
int tegra_soc_pwr_domain_on(u_register_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
uint32_t mask = CPU_CORE_RESET_MASK << cpu;
......@@ -184,9 +234,9 @@ int tegra_soc_prepare_cpu_on(unsigned long mpidr)
return PSCI_E_SUCCESS;
}
int tegra_soc_prepare_cpu_off(unsigned long mpidr)
int tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
{
tegra_fc_cpu_off(mpidr & MPIDR_CPU_MASK);
tegra_fc_cpu_off(read_mpidr() & MPIDR_CPU_MASK);
return PSCI_E_SUCCESS;
}
......
......@@ -32,6 +32,23 @@
#include <tegra_def.h>
#include <xlat_tables.h>
/*******************************************************************************
* The Tegra power domain tree has a single system level power domain i.e. a
* single root node. The first entry in the power domain descriptor specifies
* the number of power domains at the highest power level.
*******************************************************************************
*/
const unsigned char tegra_power_domain_tree_desc[] = {
/* No of root nodes */
1,
/* No of clusters */
PLATFORM_CLUSTER_COUNT,
/* No of CPU cores - cluster0 */
PLATFORM_MAX_CPUS_PER_CLUSTER,
/* No of CPU cores - cluster1 */
PLATFORM_MAX_CPUS_PER_CLUSTER
};
/* sets of MMIO ranges setup */
#define MMIO_RANGE_0_ADDR 0x50000000
#define MMIO_RANGE_1_ADDR 0x60000000
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment