Commit 0d21680c authored by Yann Gautier's avatar Yann Gautier
Browse files

stm32mp1: update clock driver



Remove useless private structure in function prototypes.
Add a reference counter on clocks.
Prepare for future secured/shared/non-secured clocks.

Change-Id: I3dbed81721da5ceff5e10b2c4155b1e340c036ee
Signed-off-by: default avatarYann Gautier <yann.gautier@st.com>
Signed-off-by: default avatarEtienne Carriere <etienne.carriere@st.com>
Signed-off-by: default avatarLionel Debieve <lionel.debieve@st.com>
Signed-off-by: default avatarNicolas LE BAYON <nicolas.le.bayon@st.com>
parent 5202cb39
......@@ -24,10 +24,12 @@
#include <drivers/st/stm32mp1_rcc.h>
#include <dt-bindings/clock/stm32mp1-clksrc.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <lib/utils_def.h>
#include <plat/common/platform.h>
#define MAX_HSI_HZ 64000000
#define USB_PHY_48_MHZ 48000000
#define TIMEOUT_US_200MS U(200000)
#define TIMEOUT_US_1S U(1000000)
......@@ -68,12 +70,20 @@ enum stm32mp1_parent_id {
_HCLK2,
_CK_PER,
_CK_MPU,
_USB_PHY_48,
_PARENT_NB,
_UNKNOWN_ID = 0xff,
};
/* Lists only the parent clock we are interested in */
enum stm32mp1_parent_sel {
_I2C12_SEL,
_I2C35_SEL,
_STGEN_SEL,
_I2C46_SEL,
_SPI6_SEL,
_USART1_SEL,
_RNG1_SEL,
_UART6_SEL,
_UART24_SEL,
_UART35_SEL,
......@@ -82,9 +92,9 @@ enum stm32mp1_parent_sel {
_SDMMC3_SEL,
_QSPI_SEL,
_FMC_SEL,
_ASS_SEL,
_USBPHY_SEL,
_USBO_SEL,
_STGEN_SEL,
_PARENT_SEL_NB,
_UNKNOWN_SEL = 0xff,
};
......@@ -164,9 +174,8 @@ struct stm32mp1_clk_gate {
uint8_t bit;
uint8_t index;
uint8_t set_clr;
enum stm32mp1_parent_sel sel;
enum stm32mp1_parent_id fixed;
bool secure;
uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
};
struct stm32mp1_clk_sel {
......@@ -189,21 +198,8 @@ struct stm32mp1_clk_pll {
enum stm32mp_osc_id refclk[REFCLK_SIZE];
};
struct stm32mp1_clk_data {
const struct stm32mp1_clk_gate *gate;
const struct stm32mp1_clk_sel *sel;
const struct stm32mp1_clk_pll *pll;
const int nb_gate;
};
struct stm32mp1_clk_priv {
uint32_t base;
const struct stm32mp1_clk_data *data;
unsigned long osc[NB_OSC];
uint32_t pkcs_usb_value;
};
#define STM32MP1_CLK(off, b, idx, s) \
/* Clocks with selectable source and non set/clr register access */
#define _CLK_SELEC(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
......@@ -211,10 +207,10 @@ struct stm32mp1_clk_priv {
.set_clr = 0, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
.secure = 0, \
}
#define STM32MP1_CLK_F(off, b, idx, f) \
/* Clocks with fixed source and non set/clr register access */
#define _CLK_FIXED(off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
......@@ -222,10 +218,10 @@ struct stm32mp1_clk_priv {
.set_clr = 0, \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
.secure = 0, \
}
#define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
/* Clocks with selectable source and set/clr register access */
#define _CLK_SC_SELEC(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
......@@ -233,10 +229,10 @@ struct stm32mp1_clk_priv {
.set_clr = 1, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
.secure = 0, \
}
#define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
/* Clocks with fixed source and set/clr register access */
#define _CLK_SC_FIXED(off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
......@@ -244,32 +240,20 @@ struct stm32mp1_clk_priv {
.set_clr = 1, \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
.secure = 0, \
}
#define STM32MP1_CLK_SEC_SET_CLR(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
.secure = 1, \
}
#define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
#define _CLK_PARENT(idx, off, s, m, p) \
[(idx)] = { \
.offset = (off), \
.src = (s), \
.msk = (m), \
.parent = (p), \
.nb_parent = ARRAY_SIZE((p)) \
.nb_parent = ARRAY_SIZE(p) \
}
#define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, \
off4, off5, off6, \
p1, p2, p3, p4) \
#define _CLK_PLL(idx, type, off1, off2, off3, \
off4, off5, off6, \
p1, p2, p3, p4) \
[(idx)] = { \
.plltype = (type), \
.rckxselr = (off1), \
......@@ -285,113 +269,176 @@ struct stm32mp1_clk_priv {
}
static const uint8_t stm32mp1_clks[][2] = {
{CK_PER, _CK_PER},
{CK_MPU, _CK_MPU},
{CK_AXI, _ACLK},
{CK_HSE, _HSE},
{CK_CSI, _CSI},
{CK_LSI, _LSI},
{CK_LSE, _LSE},
{CK_HSI, _HSI},
{CK_HSE_DIV2, _HSE_KER_DIV2},
{ CK_PER, _CK_PER },
{ CK_MPU, _CK_MPU },
{ CK_AXI, _ACLK },
{ CK_HSE, _HSE },
{ CK_CSI, _CSI },
{ CK_LSI, _LSI },
{ CK_LSE, _LSE },
{ CK_HSI, _HSI },
{ CK_HSE_DIV2, _HSE_KER_DIV2 },
};
#define NB_GATES ARRAY_SIZE(stm32mp1_clk_gate)
static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 11, TZC1, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 12, TZC2, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 5, HASH1, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _CSI_KER),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _USART1_SEL),
_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
};
static const uint8_t i2c12_parents[] = {
_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
};
static const uint8_t i2c35_parents[] = {
_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
};
static const uint8_t stgen_parents[] = {
_HSI_KER, _HSE_KER
};
static const uint8_t i2c46_parents[] = {
_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
};
static const uint8_t spi6_parents[] = {
_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
};
static const uint8_t usart1_parents[] = {
_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
};
static const uint8_t rng1_parents[] = {
_CSI, _PLL4_R, _LSE, _LSI
};
static const uint8_t uart6_parents[] = {
_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
};
static const uint8_t uart234578_parents[] = {
_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
};
static const uint8_t sdmmc12_parents[] = {
_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
};
static const uint8_t sdmmc3_parents[] = {
_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
};
static const uint8_t qspi_parents[] = {
_ACLK, _PLL3_R, _PLL4_P, _CK_PER
};
static const uint8_t fmc_parents[] = {
_ACLK, _PLL3_R, _PLL4_P, _CK_PER
};
static const uint8_t ass_parents[] = {
_HSI, _HSE, _PLL2
};
static const uint8_t i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
static const uint8_t uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
static const uint8_t sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
static const uint8_t qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
static const uint8_t fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
static const uint8_t usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
static const uint8_t usbo_parents[] = {_PLL4_R, _USB_PHY_48};
static const uint8_t stgen_parents[] = {_HSI_KER, _HSE_KER};
static const uint8_t usbphy_parents[] = {
_HSE_KER, _PLL4_R, _HSE_KER_DIV2
};
static const uint8_t usbo_parents[] = {
_PLL4_R, _USB_PHY_48
};
static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
uart24_parents),
STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
uart35_parents),
STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
uart78_parents),
STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
sdmmc12_parents),
STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
sdmmc3_parents),
STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
_CLK_PARENT(_SPI6_SEL, RCC_SPI6CKSELR, 0, 0x7, spi6_parents),
_CLK_PARENT(_USART1_SEL, RCC_UART1CKSELR, 0, 0x7, usart1_parents),
_CLK_PARENT(_RNG1_SEL, RCC_RNG1CKSELR, 0, 0x3, rng1_parents),
_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7, uart234578_parents),
_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7, uart234578_parents),
_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7, uart234578_parents),
_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7, sdmmc12_parents),
_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7, sdmmc3_parents),
_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
_CLK_PARENT(_ASS_SEL, RCC_ASSCKSELR, 0, 0x3, ass_parents),
_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
};
/* Define characteristic of PLL according type */
......@@ -413,26 +460,26 @@ static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
static const uint8_t pllncfgr2[_DIV_NB] = {
[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT
[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
};
static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
STM32MP1_CLK_PLL(_PLL1, PLL_1600,
RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
STM32MP1_CLK_PLL(_PLL2, PLL_1600,
RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
STM32MP1_CLK_PLL(_PLL3, PLL_800,
RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
_HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
STM32MP1_CLK_PLL(_PLL4, PLL_800,
RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
_HSI, _HSE, _CSI, _I2S_CKIN),
_CLK_PLL(_PLL1, PLL_1600,
RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
_CLK_PLL(_PLL2, PLL_1600,
RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
_CLK_PLL(_PLL3, PLL_800,
RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
_HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
_CLK_PLL(_PLL4, PLL_800,
RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
_HSI, _HSE, _CSI, _I2S_CKIN),
};
/* Prescaler table lookups for clock computation */
......@@ -449,33 +496,84 @@ static const uint8_t stm32mp1_axi_div[8] = {
1, 2, 3, 4, 4, 4, 4, 4
};
static const struct stm32mp1_clk_data stm32mp1_data = {
.gate = stm32mp1_clk_gate,
.sel = stm32mp1_clk_sel,
.pll = stm32mp1_clk_pll,
.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
};
/* RCC clock device driver private */
static unsigned long stm32mp1_osc[NB_OSC];
static struct spinlock reg_lock;
static unsigned int gate_refcounts[NB_GATES];
static struct spinlock refcount_lock;
static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
{
return &stm32mp1_clk_gate[idx];
}
static struct stm32mp1_clk_priv stm32mp1_clk_priv_data;
static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
{
return &stm32mp1_clk_sel[idx];
}
static unsigned long stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv,
enum stm32mp_osc_id idx)
static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
{
return &stm32mp1_clk_pll[idx];
}
static int stm32mp1_lock_available(void)
{
/* The spinlocks are used only when MMU is enabled */
return (read_sctlr() & SCTLR_M_BIT) && (read_sctlr() & SCTLR_C_BIT);
}
static void stm32mp1_clk_lock(struct spinlock *lock)
{
if (stm32mp1_lock_available() == 0U) {
return;
}
/* Assume interrupts are masked */
spin_lock(lock);
}
static void stm32mp1_clk_unlock(struct spinlock *lock)
{
if (stm32mp1_lock_available() == 0U) {
return;
}
spin_unlock(lock);
}
bool stm32mp1_rcc_is_secure(void)
{
uintptr_t rcc_base = stm32mp_rcc_base();
return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
}
void stm32mp1_clk_rcc_regs_lock(void)
{
stm32mp1_clk_lock(&reg_lock);
}
void stm32mp1_clk_rcc_regs_unlock(void)
{
stm32mp1_clk_unlock(&reg_lock);
}
static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
{
if (idx >= NB_OSC) {
return 0;
}
return priv->osc[idx];
return stm32mp1_osc[idx];
}
static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
static int stm32mp1_clk_get_gated_id(unsigned long id)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i;
int nb_clks = priv->data->nb_gate;
unsigned int i;
for (i = 0; i < nb_clks; i++) {
if (gate[i].index == id) {
for (i = 0U; i < NB_GATES; i++) {
if (gate_ref(i)->index == id) {
return i;
}
}
......@@ -485,77 +583,64 @@ static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
return -EINVAL;
}
static enum stm32mp1_parent_sel
stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv, int i)
static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
return gate[i].sel;
return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
}
static enum stm32mp1_parent_id
stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv, int i)
static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
return gate[i].fixed;
return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
}
static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
unsigned long id)
static int stm32mp1_clk_get_parent(unsigned long id)
{
const struct stm32mp1_clk_sel *sel = priv->data->sel;
const struct stm32mp1_clk_sel *sel;
uint32_t j, p_sel;
int i;
enum stm32mp1_parent_id p;
enum stm32mp1_parent_sel s;
uintptr_t rcc_base = stm32mp_rcc_base();
for (j = 0; j < ARRAY_SIZE(stm32mp1_clks); j++) {
for (j = 0U; j < ARRAY_SIZE(stm32mp1_clks); j++) {
if (stm32mp1_clks[j][0] == id) {
return (int)stm32mp1_clks[j][1];
}
}
i = stm32mp1_clk_get_id(priv, id);
i = stm32mp1_clk_get_gated_id(id);
if (i < 0) {
return i;
panic();
}
p = stm32mp1_clk_get_fixed_parent(priv, i);
p = stm32mp1_clk_get_fixed_parent(i);
if (p < _PARENT_NB) {
return (int)p;
}
s = stm32mp1_clk_get_sel(priv, i);
if (s >= _PARENT_SEL_NB) {
s = stm32mp1_clk_get_sel(i);
if (s == _UNKNOWN_SEL) {
return -EINVAL;
}
p_sel = (mmio_read_32(priv->base + sel[s].offset) >> sel[s].src) &
sel[s].msk;
if (p_sel < sel[s].nb_parent) {
return (int)sel[s].parent[p_sel];
if (s >= _PARENT_SEL_NB) {
panic();
}
ERROR("%s: no parents defined for clk id %ld\n", __func__, id);
sel = clk_sel_ref(s);
p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) & sel->msk;
if (p_sel < sel->nb_parent) {
return (int)sel->parent[p_sel];
}
return -EINVAL;
}
static unsigned long stm32mp1_pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t selr, src;
unsigned long refclk;
uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
selr = mmio_read_32(priv->base + pll[pll_id].rckxselr);
src = selr & RCC_SELR_REFCLK_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
return refclk;
return stm32mp1_clk_get_fixed(pll->refclk[src]);
}
/*
......@@ -564,20 +649,19 @@ static unsigned long stm32mp1_pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
* - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
* => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
*/
static unsigned long stm32mp1_pll_get_fvco(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
unsigned long refclk, fvco;
uint32_t cfgr1, fracr, divm, divn;
uintptr_t rcc_base = stm32mp_rcc_base();
cfgr1 = mmio_read_32(priv->base + pll[pll_id].pllxcfgr1);
fracr = mmio_read_32(priv->base + pll[pll_id].pllxfracr);
cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
fracr = mmio_read_32(rcc_base + pll->pllxfracr);
divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
refclk = stm32mp1_pll_get_fref_ck(priv, pll_id);
refclk = stm32mp1_pll_get_fref(pll);
/*
* With FRACV :
......@@ -586,13 +670,13 @@ static unsigned long stm32mp1_pll_get_fvco(struct stm32mp1_clk_priv *priv,
* Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
*/
if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
>> RCC_PLLNFRACR_FRACV_SHIFT;
uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
RCC_PLLNFRACR_FRACV_SHIFT;
unsigned long long numerator, denominator;
numerator = ((unsigned long long)divn + 1U) << 13;
numerator = (refclk * numerator) + fracv;
denominator = ((unsigned long long)divm + 1U) << 13;
numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
numerator = refclk * numerator;
denominator = ((unsigned long long)divm + 1U) << 13;
fvco = (unsigned long)(numerator / denominator);
} else {
fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
......@@ -601,11 +685,10 @@ static unsigned long stm32mp1_pll_get_fvco(struct stm32mp1_clk_priv *priv,
return fvco;
}
static unsigned long stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
enum stm32mp1_div_id div_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
unsigned long dfout;
uint32_t cfgr2, divy;
......@@ -613,42 +696,42 @@ static unsigned long stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
return 0;
}
cfgr2 = mmio_read_32(priv->base + pll[pll_id].pllxcfgr2);
cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
dfout = stm32mp1_pll_get_fvco(priv, pll_id) / (divy + 1U);
dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
return dfout;
}
static unsigned long stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
static unsigned long get_clock_rate(int p)
{
uint32_t reg, clkdiv;
unsigned long clock = 0;
uintptr_t rcc_base = stm32mp_rcc_base();
switch (p) {
case _CK_MPU:
/* MPU sub system */
reg = mmio_read_32(priv->base + RCC_MPCKSELR);
reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_MPCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case RCC_MPCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case RCC_MPCKSELR_PLL:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
break;
case RCC_MPCKSELR_PLL_MPUDIV:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
reg = mmio_read_32(priv->base + RCC_MPCKDIVR);
reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
clkdiv = reg & RCC_MPUDIV_MASK;
if (clkdiv != 0U) {
clock /= stm32mp1_mpu_div[clkdiv];
}
break;
default:
break;
......@@ -660,32 +743,32 @@ static unsigned long stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
case _HCLK6:
case _PCLK4:
case _PCLK5:
reg = mmio_read_32(priv->base + RCC_ASSCKSELR);
reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_ASSCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case RCC_ASSCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case RCC_ASSCKSELR_PLL:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
break;
default:
break;
}
/* System clock divider */
reg = mmio_read_32(priv->base + RCC_AXIDIVR);
reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
switch (p) {
case _PCLK4:
reg = mmio_read_32(priv->base + RCC_APB4DIVR);
reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK5:
reg = mmio_read_32(priv->base + RCC_APB5DIVR);
reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
default:
......@@ -693,16 +776,16 @@ static unsigned long stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
}
break;
case _CK_PER:
reg = mmio_read_32(priv->base + RCC_CPERCKSELR);
reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_CPERCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case RCC_CPERCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case RCC_CPERCKSELR_CSI:
clock = stm32mp1_clk_get_fixed(priv, _CSI);
clock = stm32mp1_clk_get_fixed(_CSI);
break;
default:
break;
......@@ -710,65 +793,65 @@ static unsigned long stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
break;
case _HSI:
case _HSI_KER:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case _CSI:
case _CSI_KER:
clock = stm32mp1_clk_get_fixed(priv, _CSI);
clock = stm32mp1_clk_get_fixed(_CSI);
break;
case _HSE:
case _HSE_KER:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case _HSE_KER_DIV2:
clock = stm32mp1_clk_get_fixed(priv, _HSE) >> 1;
clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
break;
case _LSI:
clock = stm32mp1_clk_get_fixed(priv, _LSI);
clock = stm32mp1_clk_get_fixed(_LSI);
break;
case _LSE:
clock = stm32mp1_clk_get_fixed(priv, _LSE);
clock = stm32mp1_clk_get_fixed(_LSE);
break;
/* PLL */
case _PLL1_P:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
break;
case _PLL1_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_Q);
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
break;
case _PLL1_R:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_R);
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
break;
case _PLL2_P:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
break;
case _PLL2_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_Q);
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
break;
case _PLL2_R:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_R);
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
break;
case _PLL3_P:
clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
break;
case _PLL3_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_Q);
clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
break;
case _PLL3_R:
clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_R);
clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
break;
case _PLL4_P:
clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_P);
clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
break;
case _PLL4_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_Q);
clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
break;
case _PLL4_R:
clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_R);
clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
break;
/* Other */
case _USB_PHY_48:
clock = stm32mp1_clk_get_fixed(priv, _USB_PHY_48);
clock = USB_PHY_48_MHZ;
break;
default:
break;
......@@ -777,104 +860,155 @@ static unsigned long stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
return clock;
}
bool stm32mp_clk_is_enabled(unsigned long id)
static void __clk_enable(struct stm32mp1_clk_gate const *gate)
{
uintptr_t rcc_base = stm32mp_rcc_base();
if (gate->set_clr != 0U) {
mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
} else {
mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
}
VERBOSE("Clock %d has been enabled", gate->index);
}
static void __clk_disable(struct stm32mp1_clk_gate const *gate)
{
uintptr_t rcc_base = stm32mp_rcc_base();
if (gate->set_clr != 0U) {
mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
BIT(gate->bit));
} else {
mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
}
VERBOSE("Clock %d has been disabled", gate->index);
}
static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
{
uintptr_t rcc_base = stm32mp_rcc_base();
return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
}
unsigned int stm32mp1_clk_get_refcount(unsigned long id)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, id);
int i = stm32mp1_clk_get_gated_id(id);
if (i < 0) {
return false;
panic();
}
return ((mmio_read_32(priv->base + gate[i].offset) &
BIT(gate[i].bit)) != 0U);
return gate_refcounts[i];
}
int stm32mp_clk_enable(unsigned long id)
void __stm32mp1_clk_enable(unsigned long id, bool secure)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, id);
const struct stm32mp1_clk_gate *gate;
int i = stm32mp1_clk_get_gated_id(id);
unsigned int *refcnt;
if (i < 0) {
return i;
ERROR("Clock %d can't be enabled\n", (uint32_t)id);
panic();
}
if (gate[i].set_clr != 0U) {
mmio_write_32(priv->base + gate[i].offset, BIT(gate[i].bit));
} else {
mmio_setbits_32(priv->base + gate[i].offset, BIT(gate[i].bit));
gate = gate_ref(i);
refcnt = &gate_refcounts[i];
stm32mp1_clk_lock(&refcount_lock);
if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
__clk_enable(gate);
}
return 0;
stm32mp1_clk_unlock(&refcount_lock);
}
int stm32mp_clk_disable(unsigned long id)
void __stm32mp1_clk_disable(unsigned long id, bool secure)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, id);
const struct stm32mp1_clk_gate *gate;
int i = stm32mp1_clk_get_gated_id(id);
unsigned int *refcnt;
if (i < 0) {
return i;
ERROR("Clock %d can't be disabled\n", (uint32_t)id);
panic();
}
if (gate[i].set_clr != 0U) {
mmio_write_32(priv->base + gate[i].offset
+ RCC_MP_ENCLRR_OFFSET,
BIT(gate[i].bit));
} else {
mmio_clrbits_32(priv->base + gate[i].offset, BIT(gate[i].bit));
gate = gate_ref(i);
refcnt = &gate_refcounts[i];
stm32mp1_clk_lock(&refcount_lock);
if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
__clk_disable(gate);
}
return 0;
stm32mp1_clk_unlock(&refcount_lock);
}
void stm32mp_clk_enable(unsigned long id)
{
__stm32mp1_clk_enable(id, true);
}
void stm32mp_clk_disable(unsigned long id)
{
__stm32mp1_clk_disable(id, true);
}
bool stm32mp_clk_is_enabled(unsigned long id)
{
int i = stm32mp1_clk_get_gated_id(id);
if (i < 0) {
panic();
}
return __clk_is_enabled(gate_ref(i));
}
unsigned long stm32mp_clk_get_rate(unsigned long id)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
int p = stm32mp1_clk_get_parent(priv, id);
unsigned long rate;
int p = stm32mp1_clk_get_parent(id);
if (p < 0) {
return 0;
}
rate = stm32mp1_clk_get(priv, p);
return rate;
return get_clock_rate(p);
}
static void stm32mp1_ls_osc_set(int enable, uint32_t rcc, uint32_t offset,
uint32_t mask_on)
static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
{
uint32_t address = rcc + offset;
uintptr_t address = stm32mp_rcc_base() + offset;
if (enable != 0) {
if (enable) {
mmio_setbits_32(address, mask_on);
} else {
mmio_clrbits_32(address, mask_on);
}
}
static void stm32mp1_hs_ocs_set(int enable, uint32_t rcc, uint32_t mask_on)
static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
{
if (enable != 0) {
mmio_setbits_32(rcc + RCC_OCENSETR, mask_on);
} else {
mmio_setbits_32(rcc + RCC_OCENCLRR, mask_on);
}
uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
uintptr_t address = stm32mp_rcc_base() + offset;
mmio_write_32(address, mask_on);
}
static int stm32mp1_osc_wait(int enable, uint32_t rcc, uint32_t offset,
uint32_t mask_rdy)
static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
{
uint64_t timeout;
uint32_t mask_test;
uint32_t address = rcc + offset;
uintptr_t address = stm32mp_rcc_base() + offset;
if (enable != 0) {
if (enable) {
mask_test = mask_rdy;
} else {
mask_test = 0;
......@@ -883,7 +1017,7 @@ static int stm32mp1_osc_wait(int enable, uint32_t rcc, uint32_t offset,
timeout = timeout_init_us(OSCRDY_TIMEOUT);
while ((mmio_read_32(address) & mask_rdy) != mask_test) {
if (timeout_elapsed(timeout)) {
ERROR("OSC %x @ %x timeout for enable=%d : 0x%x\n",
ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
mask_rdy, address, enable, mmio_read_32(address));
return -ETIMEDOUT;
}
......@@ -892,19 +1026,24 @@ static int stm32mp1_osc_wait(int enable, uint32_t rcc, uint32_t offset,
return 0;
}
static void stm32mp1_lse_enable(uint32_t rcc, bool bypass, uint32_t lsedrv)
static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
{
uint32_t value;
uintptr_t rcc_base = stm32mp_rcc_base();
if (digbyp) {
mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
}
if (bypass) {
mmio_setbits_32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
if (bypass || digbyp) {
mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
}
/*
* Warning: not recommended to switch directly from "high drive"
* to "medium low drive", and vice-versa.
*/
value = (mmio_read_32(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
RCC_BDCR_LSEDRV_SHIFT;
while (value != lsedrv) {
......@@ -914,78 +1053,82 @@ static void stm32mp1_lse_enable(uint32_t rcc, bool bypass, uint32_t lsedrv)
value++;
}
mmio_clrsetbits_32(rcc + RCC_BDCR,
mmio_clrsetbits_32(rcc_base + RCC_BDCR,
RCC_BDCR_LSEDRV_MASK,
value << RCC_BDCR_LSEDRV_SHIFT);
}
stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
}
static void stm32mp1_lse_wait(uint32_t rcc)
static void stm32mp1_lse_wait(void)
{
if (stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
VERBOSE("%s: failed\n", __func__);
}
}
static void stm32mp1_lsi_set(uint32_t rcc, int enable)
static void stm32mp1_lsi_set(bool enable)
{
stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
if (stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) !=
0) {
stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
VERBOSE("%s: failed\n", __func__);
}
}
static void stm32mp1_hse_enable(uint32_t rcc, bool bypass, bool css)
static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
{
if (bypass) {
mmio_setbits_32(rcc + RCC_OCENSETR, RCC_OCENR_HSEBYP);
uintptr_t rcc_base = stm32mp_rcc_base();
if (digbyp) {
mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
}
stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
if (stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY) !=
0) {
if (bypass || digbyp) {
mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
}
stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
VERBOSE("%s: failed\n", __func__);
}
if (css) {
mmio_setbits_32(rcc + RCC_OCENSETR, RCC_OCENR_HSECSSON);
mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
}
}
static void stm32mp1_csi_set(uint32_t rcc, int enable)
static void stm32mp1_csi_set(bool enable)
{
stm32mp1_ls_osc_set(enable, rcc, RCC_OCENSETR, RCC_OCENR_CSION);
if (stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) !=
0) {
stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
VERBOSE("%s: failed\n", __func__);
}
}
static void stm32mp1_hsi_set(uint32_t rcc, int enable)
static void stm32mp1_hsi_set(bool enable)
{
stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
if (stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) !=
0) {
stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
VERBOSE("%s: failed\n", __func__);
}
}
static int stm32mp1_set_hsidiv(uint32_t rcc, uint8_t hsidiv)
static int stm32mp1_set_hsidiv(uint8_t hsidiv)
{
uint32_t address = rcc + RCC_OCRDYR;
uint64_t timeout;
uintptr_t rcc_base = stm32mp_rcc_base();
uintptr_t address = rcc_base + RCC_OCRDYR;
mmio_clrsetbits_32(rcc + RCC_HSICFGR,
mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
RCC_HSICFGR_HSIDIV_MASK,
RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
timeout = timeout_init_us(HSIDIV_TIMEOUT);
while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("HSIDIV failed @ 0x%x: 0x%x\n",
ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
address, mmio_read_32(address));
return -ETIMEDOUT;
}
......@@ -994,7 +1137,7 @@ static int stm32mp1_set_hsidiv(uint32_t rcc, uint8_t hsidiv)
return 0;
}
static int stm32mp1_hsidiv(uint32_t rcc, unsigned long hsifreq)
static int stm32mp1_hsidiv(unsigned long hsifreq)
{
uint8_t hsidiv;
uint32_t hsidivfreq = MAX_HSI_HZ;
......@@ -1013,31 +1156,102 @@ static int stm32mp1_hsidiv(uint32_t rcc, unsigned long hsifreq)
}
if (hsidiv != 0U) {
return stm32mp1_set_hsidiv(rcc, hsidiv);
return stm32mp1_set_hsidiv(hsidiv);
}
return 0;
}
static void stm32mp1_pll_start(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
unsigned int clksrc,
uint32_t *pllcfg, int plloff)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t rcc_base = stm32mp_rcc_base();
uintptr_t pllxcr = rcc_base + pll->pllxcr;
enum stm32mp1_plltype type = pll->plltype;
uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
unsigned long refclk;
uint32_t ifrge = 0U;
uint32_t src, value, fracv;
/* Check PLL output */
if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
return false;
}
/* Check current clksrc */
src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
if (src != (clksrc & RCC_SELR_SRC_MASK)) {
return false;
}
/* Check Div */
src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
(pllcfg[PLLCFG_M] + 1U);
if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
(refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
return false;
}
if ((type == PLL_800) && (refclk >= 8000000U)) {
ifrge = 1U;
}
value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
RCC_PLLNCFGR1_DIVN_MASK;
value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
RCC_PLLNCFGR1_DIVM_MASK;
value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
RCC_PLLNCFGR1_IFRGE_MASK;
if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
return false;
}
/* Fractional configuration */
fracv = fdt_read_uint32_default(plloff, "frac", 0);
value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
value |= RCC_PLLNFRACR_FRACLE;
if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
return false;
}
/* Output config */
value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
RCC_PLLNCFGR2_DIVP_MASK;
value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
RCC_PLLNCFGR2_DIVQ_MASK;
value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
RCC_PLLNCFGR2_DIVR_MASK;
if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
return false;
}
return true;
}
static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
mmio_write_32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_PLLON);
mmio_write_32(pllxcr, RCC_PLLNCR_PLLON);
}
static int stm32mp1_pll_output(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id, uint32_t output)
static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t pllxcr = priv->base + pll[pll_id].pllxcr;
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
/* Wait PLL lock */
while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("PLL%d start failed @ 0x%x: 0x%x\n",
ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
pll_id, pllxcr, mmio_read_32(pllxcr));
return -ETIMEDOUT;
}
......@@ -1049,11 +1263,10 @@ static int stm32mp1_pll_output(struct stm32mp1_clk_priv *priv,
return 0;
}
static int stm32mp1_pll_stop(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t pllxcr = priv->base + pll[pll_id].pllxcr;
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
uint64_t timeout;
/* Stop all output */
......@@ -1067,7 +1280,7 @@ static int stm32mp1_pll_stop(struct stm32mp1_clk_priv *priv,
/* Wait PLL stopped */
while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
if (timeout_elapsed(timeout)) {
ERROR("PLL%d stop failed @ 0x%x: 0x%x\n",
ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
pll_id, pllxcr, mmio_read_32(pllxcr));
return -ETIMEDOUT;
}
......@@ -1076,12 +1289,11 @@ static int stm32mp1_pll_stop(struct stm32mp1_clk_priv *priv,
return 0;
}
static void stm32mp1_pll_config_output(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
uint32_t *pllcfg)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t rcc = priv->base;
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t rcc_base = stm32mp_rcc_base();
uint32_t value;
value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
......@@ -1090,24 +1302,23 @@ static void stm32mp1_pll_config_output(struct stm32mp1_clk_priv *priv,
RCC_PLLNCFGR2_DIVQ_MASK;
value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
RCC_PLLNCFGR2_DIVR_MASK;
mmio_write_32(rcc + pll[pll_id].pllxcfgr2, value);
mmio_write_32(rcc_base + pll->pllxcfgr2, value);
}
static int stm32mp1_pll_config(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
uint32_t *pllcfg, uint32_t fracv)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t rcc = priv->base;
enum stm32mp1_plltype type = pll[pll_id].plltype;
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t rcc_base = stm32mp_rcc_base();
enum stm32mp1_plltype type = pll->plltype;
unsigned long refclk;
uint32_t ifrge = 0;
uint32_t src, value;
src = mmio_read_32(priv->base + pll[pll_id].rckxselr) &
src = mmio_read_32(rcc_base + pll->rckxselr) &
RCC_SELR_REFCLK_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
(pllcfg[PLLCFG_M] + 1U);
if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
......@@ -1125,28 +1336,26 @@ static int stm32mp1_pll_config(struct stm32mp1_clk_priv *priv,
RCC_PLLNCFGR1_DIVM_MASK;
value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
RCC_PLLNCFGR1_IFRGE_MASK;
mmio_write_32(rcc + pll[pll_id].pllxcfgr1, value);
mmio_write_32(rcc_base + pll->pllxcfgr1, value);
/* Fractional configuration */
value = 0;
mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
mmio_write_32(rcc_base + pll->pllxfracr, value);
value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
mmio_write_32(rcc_base + pll->pllxfracr, value);
value |= RCC_PLLNFRACR_FRACLE;
mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
mmio_write_32(rcc_base + pll->pllxfracr, value);
stm32mp1_pll_config_output(priv, pll_id, pllcfg);
stm32mp1_pll_config_output(pll_id, pllcfg);
return 0;
}
static void stm32mp1_pll_csg(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
uint32_t *csg)
static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uint32_t pllxcsg = 0;
pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
......@@ -1158,23 +1367,22 @@ static void stm32mp1_pll_csg(struct stm32mp1_clk_priv *priv,
pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
RCC_PLLNCSGR_SSCG_MODE_MASK;
mmio_write_32(priv->base + pll[pll_id].pllxcsgr, pllxcsg);
mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
}
static int stm32mp1_set_clksrc(struct stm32mp1_clk_priv *priv,
unsigned int clksrc)
static int stm32mp1_set_clksrc(unsigned int clksrc)
{
uint32_t address = priv->base + (clksrc >> 4);
uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
uint64_t timeout;
mmio_clrsetbits_32(address, RCC_SELR_SRC_MASK,
mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
clksrc & RCC_SELR_SRC_MASK);
timeout = timeout_init_us(CLKSRC_TIMEOUT);
while ((mmio_read_32(address) & RCC_SELR_SRCRDY) == 0U) {
while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("CLKSRC %x start failed @ 0x%x: 0x%x\n",
clksrc, address, mmio_read_32(address));
ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
clksrc_address, mmio_read_32(clksrc_address));
return -ETIMEDOUT;
}
}
......@@ -1182,7 +1390,7 @@ static int stm32mp1_set_clksrc(struct stm32mp1_clk_priv *priv,
return 0;
}
static int stm32mp1_set_clkdiv(unsigned int clkdiv, uint32_t address)
static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
{
uint64_t timeout;
......@@ -1192,7 +1400,7 @@ static int stm32mp1_set_clkdiv(unsigned int clkdiv, uint32_t address)
timeout = timeout_init_us(CLKDIV_TIMEOUT);
while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("CLKDIV %x start failed @ 0x%x: 0x%x\n",
ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
clkdiv, address, mmio_read_32(address));
return -ETIMEDOUT;
}
......@@ -1201,10 +1409,9 @@ static int stm32mp1_set_clkdiv(unsigned int clkdiv, uint32_t address)
return 0;
}
static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
uint32_t clksrc, uint32_t clkdiv)
static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
{
uint32_t address = priv->base + (clksrc >> 4);
uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
/*
* Binding clksrc :
......@@ -1213,22 +1420,21 @@ static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
* bit2-0: MCOSEL[2:0]
*/
if ((clksrc & 0x8U) != 0U) {
mmio_clrbits_32(address, RCC_MCOCFG_MCOON);
mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
} else {
mmio_clrsetbits_32(address,
mmio_clrsetbits_32(clksrc_address,
RCC_MCOCFG_MCOSRC_MASK,
clksrc & RCC_MCOCFG_MCOSRC_MASK);
mmio_clrsetbits_32(address,
mmio_clrsetbits_32(clksrc_address,
RCC_MCOCFG_MCODIV_MASK,
clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
mmio_setbits_32(address, RCC_MCOCFG_MCOON);
mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
}
}
static void stm32mp1_set_rtcsrc(struct stm32mp1_clk_priv *priv,
unsigned int clksrc, bool lse_css)
static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
{
uint32_t address = priv->base + RCC_BDCR;
uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
(clksrc != (uint32_t)CLK_RTC_DISABLED)) {
......@@ -1247,38 +1453,35 @@ static void stm32mp1_set_rtcsrc(struct stm32mp1_clk_priv *priv,
#define CNTCVL_OFF 0x008
#define CNTCVU_OFF 0x00C
static void stm32mp1_stgen_config(struct stm32mp1_clk_priv *priv)
static void stm32mp1_stgen_config(void)
{
uintptr_t stgen;
int p;
uint32_t cntfid0;
unsigned long rate;
unsigned long long counter;
stgen = fdt_get_stgen_base();
cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
p = stm32mp1_clk_get_parent(priv, STGEN_K);
rate = stm32mp1_clk_get(priv, p);
rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
if (cntfid0 != rate) {
unsigned long long counter;
if (cntfid0 == rate) {
return;
}
mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
counter = (unsigned long long)
mmio_read_32(stgen + CNTCVL_OFF);
counter |= ((unsigned long long)
(mmio_read_32(stgen + CNTCVU_OFF))) << 32;
counter = (counter * rate / cntfid0);
mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
mmio_write_32(stgen + CNTFID_OFF, rate);
mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
counter = (counter * rate / cntfid0);
write_cntfrq((u_register_t)rate);
mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
mmio_write_32(stgen + CNTFID_OFF, rate);
mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
/* Need to update timer with new frequency */
generic_delay_timer_init();
}
write_cntfrq((u_register_t)rate);
/* Need to update timer with new frequency */
generic_delay_timer_init();
}
void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
......@@ -1299,9 +1502,9 @@ void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
}
static void stm32mp1_pkcs_config(struct stm32mp1_clk_priv *priv, uint32_t pkcs)
static void stm32mp1_pkcs_config(uint32_t pkcs)
{
uint32_t address = priv->base + ((pkcs >> 4) & 0xFFFU);
uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
uint32_t value = pkcs & 0xFU;
uint32_t mask = 0xFU;
......@@ -1315,8 +1518,7 @@ static void stm32mp1_pkcs_config(struct stm32mp1_clk_priv *priv, uint32_t pkcs)
int stm32mp1_clk_init(void)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
uint32_t rcc = priv->base;
uintptr_t rcc_base = stm32mp_rcc_base();
unsigned int clksrc[CLKSRC_NB];
unsigned int clkdiv[CLKDIV_NB];
unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
......@@ -1324,11 +1526,14 @@ int stm32mp1_clk_init(void)
int ret, len;
enum stm32mp1_pll_id i;
bool lse_css = false;
bool pll3_preserve = false;
bool pll4_preserve = false;
bool pll4_bootrom = false;
const fdt32_t *pkcs_cell;
/* Check status field to disable security */
if (!fdt_get_rcc_secure_status()) {
mmio_write_32(rcc + RCC_TZCR, 0);
mmio_write_32(rcc_base + RCC_TZCR, 0);
}
ret = fdt_rcc_read_uint32_array("st,clksrc", clksrc,
......@@ -1360,113 +1565,135 @@ int stm32mp1_clk_init(void)
}
}
stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
/*
* Switch ON oscillator found in device-tree.
* Note: HSI already ON after BootROM stage.
*/
if (priv->osc[_LSI] != 0U) {
stm32mp1_lsi_set(rcc, 1);
if (stm32mp1_osc[_LSI] != 0U) {
stm32mp1_lsi_set(true);
}
if (priv->osc[_LSE] != 0U) {
bool bypass;
if (stm32mp1_osc[_LSE] != 0U) {
bool bypass, digbyp;
uint32_t lsedrv;
bypass = fdt_osc_read_bool(_LSE, "st,bypass");
digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
lse_css = fdt_osc_read_bool(_LSE, "st,css");
lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
LSEDRV_MEDIUM_HIGH);
stm32mp1_lse_enable(rcc, bypass, lsedrv);
stm32mp1_lse_enable(bypass, digbyp, lsedrv);
}
if (priv->osc[_HSE] != 0U) {
bool bypass, css;
if (stm32mp1_osc[_HSE] != 0U) {
bool bypass, digbyp, css;
bypass = fdt_osc_read_bool(_LSE, "st,bypass");
css = fdt_osc_read_bool(_LSE, "st,css");
stm32mp1_hse_enable(rcc, bypass, css);
bypass = fdt_osc_read_bool(_HSE, "st,bypass");
digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
css = fdt_osc_read_bool(_HSE, "st,css");
stm32mp1_hse_enable(bypass, digbyp, css);
}
/*
* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
* => switch on CSI even if node is not present in device tree
*/
stm32mp1_csi_set(rcc, 1);
stm32mp1_csi_set(true);
/* Come back to HSI */
ret = stm32mp1_set_clksrc(priv, CLK_MPU_HSI);
ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clksrc(priv, CLK_AXI_HSI);
ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
if (ret != 0) {
return ret;
}
if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
clksrc[CLKSRC_PLL3],
pllcfg[_PLL3],
plloff[_PLL3]);
pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
clksrc[CLKSRC_PLL4],
pllcfg[_PLL4],
plloff[_PLL4]);
}
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
if (i == _PLL4)
if (((i == _PLL3) && pll3_preserve) ||
((i == _PLL4) && pll4_preserve)) {
continue;
ret = stm32mp1_pll_stop(priv, i);
}
ret = stm32mp1_pll_stop(i);
if (ret != 0) {
return ret;
}
}
/* Configure HSIDIV */
if (priv->osc[_HSI] != 0U) {
ret = stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
if (stm32mp1_osc[_HSI] != 0U) {
ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
if (ret != 0) {
return ret;
}
stm32mp1_stgen_config(priv);
stm32mp1_stgen_config();
}
/* Select DIV */
/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
mmio_write_32(rcc + RCC_MPCKDIVR,
mmio_write_32(rcc_base + RCC_MPCKDIVR,
clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
if (ret != 0) {
return ret;
}
/* No ready bit for RTC */
mmio_write_32(rcc + RCC_RTCDIVR,
mmio_write_32(rcc_base + RCC_RTCDIVR,
clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
/* Configure PLLs source */
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL12]);
ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL3]);
if (ret != 0) {
return ret;
if (!pll3_preserve) {
ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
if (ret != 0) {
return ret;
}
}
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL4]);
if (ret != 0) {
return ret;
if (!pll4_preserve) {
ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
if (ret != 0) {
return ret;
}
}
/* Configure and start PLLs */
......@@ -1474,25 +1701,36 @@ int stm32mp1_clk_init(void)
uint32_t fracv;
uint32_t csg[PLLCSG_NB];
if (((i == _PLL3) && pll3_preserve) ||
((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
continue;
}
if (!fdt_check_node(plloff[i])) {
continue;
}
if ((i == _PLL4) && pll4_bootrom) {
/* Set output divider if not done by the Bootrom */
stm32mp1_pll_config_output(i, pllcfg[i]);
continue;
}
fracv = fdt_read_uint32_default(plloff[i], "frac", 0);
ret = stm32mp1_pll_config(priv, i, pllcfg[i], fracv);
ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
if (ret != 0) {
return ret;
}
ret = fdt_read_uint32_array(plloff[i], "csg", csg,
(uint32_t)PLLCSG_NB);
if (ret == 0) {
stm32mp1_pll_csg(priv, i, csg);
stm32mp1_pll_csg(i, csg);
} else if (ret != -FDT_ERR_NOTFOUND) {
return ret;
}
stm32mp1_pll_start(priv, i);
stm32mp1_pll_start(i);
}
/* Wait and start PLLs ouptut when ready */
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
......@@ -1500,26 +1738,26 @@ int stm32mp1_clk_init(void)
continue;
}
ret = stm32mp1_pll_output(priv, i, pllcfg[i][PLLCFG_O]);
ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
if (ret != 0) {
return ret;
}
}
/* Wait LSE ready before to use it */
if (priv->osc[_LSE] != 0U) {
stm32mp1_lse_wait(rcc);
if (stm32mp1_osc[_LSE] != 0U) {
stm32mp1_lse_wait();
}
/* Configure with expected clock source */
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_MPU]);
ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_AXI]);
ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
if (ret != 0) {
return ret;
}
stm32mp1_set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
/* Configure PKCK */
pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
......@@ -1527,8 +1765,6 @@ int stm32mp1_clk_init(void)
bool ckper_disabled = false;
uint32_t j;
priv->pkcs_usb_value = 0;
for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
......@@ -1536,7 +1772,7 @@ int stm32mp1_clk_init(void)
ckper_disabled = true;
continue;
}
stm32mp1_pkcs_config(priv, pkcs);
stm32mp1_pkcs_config(pkcs);
}
/*
......@@ -1546,18 +1782,18 @@ int stm32mp1_clk_init(void)
* => deactivated CKPER only after switching clock
*/
if (ckper_disabled) {
stm32mp1_pkcs_config(priv, CLK_CKPER_DISABLED);
stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
}
}
/* Switch OFF HSI if not found in device-tree */
if (priv->osc[_HSI] == 0U) {
stm32mp1_hsi_set(rcc, 0);
if (stm32mp1_osc[_HSI] == 0U) {
stm32mp1_hsi_set(false);
}
stm32mp1_stgen_config(priv);
stm32mp1_stgen_config();
/* Software Self-Refresh mode (SSR) during DDR initilialization */
mmio_clrsetbits_32(priv->base + RCC_DDRITFCR,
mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
RCC_DDRITFCR_DDRCKMOD_MASK,
RCC_DDRITFCR_DDRCKMOD_SSR <<
RCC_DDRITFCR_DDRCKMOD_SHIFT);
......@@ -1566,47 +1802,26 @@ int stm32mp1_clk_init(void)
}
static void stm32mp1_osc_clk_init(const char *name,
struct stm32mp1_clk_priv *priv,
enum stm32mp_osc_id index)
{
uint32_t frequency;
priv->osc[index] = 0;
if (fdt_osc_read_freq(name, &frequency) != 0) {
ERROR("%s frequency request failed\n", name);
panic();
} else {
priv->osc[index] = frequency;
if (fdt_osc_read_freq(name, &frequency) == 0) {
stm32mp1_osc[index] = frequency;
}
}
static void stm32mp1_osc_init(void)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
enum stm32mp_osc_id i;
for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], priv, i);
stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
}
}
int stm32mp1_clk_probe(void)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
priv->base = fdt_rcc_read_addr();
if (priv->base == 0U) {
return -EINVAL;
}
priv->data = &stm32mp1_data;
if ((priv->data->gate == NULL) || (priv->data->sel == NULL) ||
(priv->data->pll == NULL)) {
return -EINVAL;
}
stm32mp1_osc_init();
return 0;
......
......@@ -23,7 +23,6 @@ const char *stm32mp_osc_node_label[NB_OSC] = {
[_HSE] = "clk-hse",
[_CSI] = "clk-csi",
[_I2S_CKIN] = "i2s_ckin",
[_USB_PHY_48] = "ck_usbo_48m"
};
/*
......
......@@ -11,10 +11,14 @@
void ddr_enable_clock(void)
{
stm32mp1_clk_rcc_regs_lock();
mmio_setbits_32(stm32mp_rcc_base() + RCC_DDRITFCR,
RCC_DDRITFCR_DDRC1EN |
RCC_DDRITFCR_DDRC2EN |
RCC_DDRITFCR_DDRPHYCEN |
RCC_DDRITFCR_DDRPHYCAPBEN |
RCC_DDRITFCR_DDRCAPBEN);
stm32mp1_clk_rcc_regs_unlock();
}
......@@ -168,7 +168,7 @@ static int stm32mp1_ddr_setup(void)
int ret;
struct stm32mp1_ddr_config config;
int node, len;
uint32_t tamp_clk_off = 0, uret, idx;
uint32_t uret, idx;
void *fdt;
#define PARAM(x, y) \
......@@ -237,19 +237,6 @@ static int stm32mp1_ddr_setup(void)
}
}
if (!stm32mp_clk_is_enabled(RTCAPB)) {
tamp_clk_off = 1;
if (stm32mp_clk_enable(RTCAPB) != 0) {
return -EINVAL;
}
}
if (tamp_clk_off != 0U) {
if (stm32mp_clk_disable(RTCAPB) != 0) {
return -EINVAL;
}
}
/* Disable axidcg clock gating during init */
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN);
......
......@@ -702,8 +702,6 @@ unsigned long long stm32_sdmmc2_mmc_get_device_size(void)
int stm32_sdmmc2_mmc_init(struct stm32_sdmmc2_params *params)
{
int ret;
assert((params != NULL) &&
((params->reg_base & MMC_BLOCK_MASK) == 0U) &&
((params->bus_width == MMC_BUS_WIDTH_1) ||
......@@ -717,12 +715,7 @@ int stm32_sdmmc2_mmc_init(struct stm32_sdmmc2_params *params)
return -ENOMEM;
}
ret = stm32mp_clk_enable(sdmmc2_params.clock_id);
if (ret != 0) {
ERROR("%s: clock %d failed\n", __func__,
sdmmc2_params.clock_id);
return ret;
}
stm32mp_clk_enable(sdmmc2_params.clock_id);
stm32mp_reset_assert(sdmmc2_params.reset_id);
udelay(2);
......
......@@ -11,6 +11,38 @@
int stm32mp1_clk_probe(void);
int stm32mp1_clk_init(void);
bool stm32mp1_rcc_is_secure(void);
void __stm32mp1_clk_enable(unsigned long id, bool caller_is_secure);
void __stm32mp1_clk_disable(unsigned long id, bool caller_is_secure);
static inline void stm32mp1_clk_enable_non_secure(unsigned long id)
{
__stm32mp1_clk_enable(id, false);
}
static inline void stm32mp1_clk_enable_secure(unsigned long id)
{
__stm32mp1_clk_enable(id, true);
}
static inline void stm32mp1_clk_disable_non_secure(unsigned long id)
{
__stm32mp1_clk_disable(id, false);
}
static inline void stm32mp1_clk_disable_secure(unsigned long id)
{
__stm32mp1_clk_disable(id, true);
}
unsigned int stm32mp1_clk_get_refcount(unsigned long id);
/* SMP protection on RCC registers access */
void stm32mp1_clk_rcc_regs_lock(void);
void stm32mp1_clk_rcc_regs_unlock(void);
void stm32mp1_stgen_increment(unsigned long long offset_in_ms);
#endif /* STM32MP1_CLK_H */
......@@ -18,7 +18,6 @@ enum stm32mp_osc_id {
_LSI,
_LSE,
_I2S_CKIN,
_USB_PHY_48,
NB_OSC,
_UNKNOWN_OSC_ID = 0xFF
};
......
......@@ -50,8 +50,8 @@ uint32_t stm32_get_gpio_bank_offset(unsigned int bank);
* @id: Target clock ID, ID used in clock DT bindings
*/
bool stm32mp_clk_is_enabled(unsigned long id);
int stm32mp_clk_enable(unsigned long id);
int stm32mp_clk_disable(unsigned long id);
void stm32mp_clk_enable(unsigned long id);
void stm32mp_clk_disable(unsigned long id);
unsigned long stm32mp_clk_get_rate(unsigned long id);
/* Initialise the IO layer and register platform IO devices */
......
/*
* Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef STM32MP_SHRES_HELPERS_H
#define STM32MP_SHRES_HELPERS_H
#include <stdint.h>
#include <common/debug.h>
/*
* Shared reference counter: increments by 2 on secure increment
* request, decrements by 2 on secure decrement request. Bit #0
* is set to 1 on non-secure increment request and reset to 0 on
* non-secure decrement request. The counter initializes to
* either 0, 1 or 2 upon their expect default state.
* Counters saturates once above UINT_MAX / 2.
*/
#define SHREFCNT_NONSECURE_FLAG 0x1UL
#define SHREFCNT_SECURE_STEP 0x2UL
#define SHREFCNT_MAX (UINT32_MAX / 2)
/* Return 1 if refcnt increments from 0, else return 0 */
static inline int stm32mp_incr_shrefcnt(unsigned int *refcnt, bool secure)
{
int rc = !*refcnt;
if (secure) {
*refcnt += SHREFCNT_SECURE_STEP;
if (*refcnt >= SHREFCNT_MAX) {
panic();
}
} else {
*refcnt |= SHREFCNT_NONSECURE_FLAG;
}
return rc;
}
/* Return 1 if refcnt decrements to 0, else return 0 */
static inline int stm32mp_decr_shrefcnt(unsigned int *refcnt, bool secure)
{
int rc = 0;
if (secure) {
if (*refcnt < SHREFCNT_MAX) {
if (*refcnt < SHREFCNT_SECURE_STEP) {
panic();
}
*refcnt -= SHREFCNT_SECURE_STEP;
rc = !*refcnt;
}
} else {
rc = (*refcnt == SHREFCNT_NONSECURE_FLAG) ? 1 : 0;
*refcnt &= ~SHREFCNT_NONSECURE_FLAG;
}
return rc;
}
static inline int stm32mp_incr_refcnt(unsigned int *refcnt)
{
return stm32mp_incr_shrefcnt(refcnt, true);
}
static inline int stm32mp_decr_refcnt(unsigned int *refcnt)
{
return stm32mp_decr_shrefcnt(refcnt, true);
}
#endif /* STM32MP_SHRES_HELPERS_H */
......@@ -225,9 +225,7 @@ void bl2_el3_plat_arch_setup(void)
goto skip_console_init;
}
if (stm32mp_clk_enable((unsigned long)dt_uart_info.clock) != 0) {
goto skip_console_init;
}
stm32mp_clk_enable((unsigned long)dt_uart_info.clock);
stm32mp_reset_assert((uint32_t)dt_uart_info.reset);
udelay(2);
......
......@@ -20,26 +20,16 @@
int stm32_save_boot_interface(uint32_t interface, uint32_t instance)
{
uint32_t tamp_clk_off = 0;
uint32_t bkpr_itf_idx = tamp_bkpr(TAMP_BOOT_ITF_BACKUP_REG_ID);
if (!stm32mp_clk_is_enabled(RTCAPB)) {
tamp_clk_off = 1;
if (stm32mp_clk_enable(RTCAPB) != 0) {
return -EINVAL;
}
}
stm32mp_clk_enable(RTCAPB);
mmio_clrsetbits_32(bkpr_itf_idx,
TAMP_BOOT_ITF_MASK,
((interface << 4) | (instance & 0xFU)) <<
TAMP_BOOT_ITF_SHIFT);
if (tamp_clk_off != 0U) {
if (stm32mp_clk_disable(RTCAPB) != 0) {
return -EINVAL;
}
}
stm32mp_clk_disable(RTCAPB);
return 0;
}
......@@ -20,6 +20,7 @@
#include <boot_api.h>
#include <stm32mp_common.h>
#include <stm32mp_dt.h>
#include <stm32mp_shres_helpers.h>
#include <stm32mp1_private.h>
#endif
......
......@@ -59,7 +59,6 @@ static void stm32_cpu_standby(plat_local_state_t cpu_state)
static int stm32_pwr_domain_on(u_register_t mpidr)
{
unsigned long current_cpu_mpidr = read_mpidr_el1();
uint32_t tamp_clk_off = 0;
uint32_t bkpr_core1_addr =
tamp_bkpr(BOOT_API_CORE1_BRANCH_ADDRESS_TAMP_BCK_REG_IDX);
uint32_t bkpr_core1_magic =
......@@ -75,12 +74,7 @@ static int stm32_pwr_domain_on(u_register_t mpidr)
return PSCI_E_INVALID_ADDRESS;
}
if (!stm32mp_clk_is_enabled(RTCAPB)) {
tamp_clk_off = 1;
if (stm32mp_clk_enable(RTCAPB) != 0) {
panic();
}
}
stm32mp_clk_enable(RTCAPB);
cntfrq_core0 = read_cntfrq_el0();
......@@ -90,11 +84,7 @@ static int stm32_pwr_domain_on(u_register_t mpidr)
/* Write magic number in backup register */
mmio_write_32(bkpr_core1_magic, BOOT_API_A7_CORE1_MAGIC_NUMBER);
if (tamp_clk_off != 0U) {
if (stm32mp_clk_disable(RTCAPB) != 0) {
panic();
}
}
stm32mp_clk_disable(RTCAPB);
/* Generate an IT to core 1 */
gicv2_raise_sgi(ARM_IRQ_SEC_SGI_0, STM32MP_SECONDARY_CPU);
......
......@@ -61,14 +61,8 @@ static void init_tzc400(void)
******************************************************************************/
static void early_init_tzc400(void)
{
if (stm32mp_clk_enable(TZC1) != 0) {
ERROR("Cannot enable TZC1 clock\n");
panic();
}
if (stm32mp_clk_enable(TZC2) != 0) {
ERROR("Cannot enable TZC2 clock\n");
panic();
}
stm32mp_clk_enable(TZC1);
stm32mp_clk_enable(TZC2);
tzc400_init(STM32MP1_TZC_BASE);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment