Commit 167a9357 authored by Andrew Thoelke's avatar Andrew Thoelke
Browse files

Initialise CPU contexts from entry_point_info

Consolidate all BL3-1 CPU context initialization for cold boot, PSCI
and SPDs into two functions:
*  The first uses entry_point_info to initialize the relevant
   cpu_context for first entry into a lower exception level on a CPU
*  The second populates the EL1 and EL2 system registers as needed
   from the cpu_context to ensure correct entry into the lower EL

This patch alters the way that BL3-1 determines which exception level
is used when first entering EL1 or EL2 during cold boot - this is now
fully determined by the SPSR value in the entry_point_info for BL3-3,
as set up by the platform code in BL2 (or otherwise provided to BL3-1).

In the situation that EL1 (or svc mode) is selected for a processor
that supports EL2, the context management code will now configure all
essential EL2 register state to ensure correct execution of EL1. This
allows the platform code to run non-secure EL1 payloads directly
without requiring a small EL2 stub or OS loader.

Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
parent 5298f2cb
......@@ -46,11 +46,10 @@ void bl1_arch_setup(void)
isb();
/*
* Enable HVCs, route FIQs to EL3, set the next EL to be AArch64, route
* external abort and SError interrupts to EL3
* Set the next EL to be AArch64, route external abort and SError
* interrupts to EL3
*/
tmp_reg = SCR_RES1_BITS | SCR_RW_BIT | SCR_HCE_BIT | SCR_EA_BIT |
SCR_FIQ_BIT;
tmp_reg = SCR_RES1_BITS | SCR_RW_BIT | SCR_EA_BIT;
write_scr(tmp_reg);
/*
......
......@@ -51,11 +51,11 @@ void bl31_arch_setup(void)
write_sctlr_el3(tmp_reg);
/*
* Enable HVCs, route FIQs to EL3, set the next EL to be AArch64, route
* external abort and SError interrupts to EL3
* Route external abort and SError interrupts to EL3
* other SCR bits will be configured before exiting to a lower exception
* level
*/
tmp_reg = SCR_RES1_BITS | SCR_RW_BIT | SCR_HCE_BIT | SCR_EA_BIT |
SCR_FIQ_BIT;
tmp_reg = SCR_RES1_BITS | SCR_EA_BIT;
write_scr(tmp_reg);
/*
......@@ -68,39 +68,3 @@ void bl31_arch_setup(void)
counter_freq = plat_get_syscnt_freq();
write_cntfrq_el0(counter_freq);
}
/*******************************************************************************
* Detect what the security state of the next EL is and setup the minimum
* required architectural state: program SCTRL to reflect the RES1 bits, and to
* have MMU and caches disabled
******************************************************************************/
void bl31_next_el_arch_setup(uint32_t security_state)
{
unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1();
unsigned long next_sctlr;
unsigned long el_status;
unsigned long scr = read_scr();
/* Use the same endianness than the current BL */
next_sctlr = (read_sctlr_el3() & SCTLR_EE_BIT);
/* Find out which EL we are going to */
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) & ID_AA64PFR0_ELX_MASK;
if (security_state == NON_SECURE) {
/* Check if EL2 is supported */
if (el_status && (scr & SCR_HCE_BIT)) {
/* Set SCTLR EL2 */
next_sctlr |= SCTLR_EL2_RES1;
write_sctlr_el2(next_sctlr);
return;
}
}
/*
* SCTLR_EL1 needs the same programming irrespective of the
* security state of EL1.
*/
next_sctlr |= SCTLR_EL1_RES1;
write_sctlr_el1(next_sctlr);
}
......@@ -43,9 +43,8 @@
.global el3_sysregs_context_save
func el3_sysregs_context_save
mrs x9, scr_el3
mrs x10, sctlr_el3
stp x9, x10, [x0, #CTX_SCR_EL3]
str x10, [x0, #CTX_SCTLR_EL3]
mrs x11, cptr_el3
stp x11, xzr, [x0, #CTX_CPTR_EL3]
......@@ -98,8 +97,7 @@ func el3_sysregs_context_restore
/* Make sure all the above changes are observed */
isb
ldp x9, x10, [x0, #CTX_SCR_EL3]
msr scr_el3, x9
ldr x10, [x0, #CTX_SCTLR_EL3]
msr sctlr_el3, x10
isb
......
......@@ -140,53 +140,18 @@ uint32_t bl31_get_next_image_type(void)
void bl31_prepare_next_image_entry()
{
entry_point_info_t *next_image_info;
uint32_t scr, image_type;
cpu_context_t *ctx;
gp_regs_t *gp_regs;
uint32_t image_type;
/* Determine which image to execute next */
image_type = bl31_get_next_image_type();
/*
* Setup minimal architectural state of the next highest EL to
* allow execution in it immediately upon entering it.
*/
bl31_next_el_arch_setup(image_type);
/* Program EL3 registers to enable entry into the next EL */
next_image_info = bl31_plat_get_next_image_ep_info(image_type);
assert(next_image_info);
assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
scr = read_scr();
scr &= ~SCR_NS_BIT;
if (image_type == NON_SECURE)
scr |= SCR_NS_BIT;
scr &= ~SCR_RW_BIT;
if ((next_image_info->spsr & (1 << MODE_RW_SHIFT)) ==
(MODE_RW_64 << MODE_RW_SHIFT))
scr |= SCR_RW_BIT;
/*
* Tell the context mgmt. library to ensure that SP_EL3 points to
* the right context to exit from EL3 correctly.
*/
cm_set_el3_eret_context(image_type,
next_image_info->pc,
next_image_info->spsr,
scr);
/*
* Save the args generated in BL2 for the image in the right context
* used on its entry
*/
ctx = cm_get_context(image_type);
gp_regs = get_gpregs_ctx(ctx);
memcpy(gp_regs, (void *)&next_image_info->args, sizeof(aapcs64_params_t));
/* Finally set the next context */
cm_set_next_eret_context(image_type);
cm_init_context(read_mpidr_el1(), next_image_info);
cm_prepare_el3_exit(image_type);
}
/*******************************************************************************
......
......@@ -40,6 +40,7 @@
#include <platform.h>
#include <platform_def.h>
#include <runtime_svc.h>
#include <string.h>
/*******************************************************************************
......@@ -86,6 +87,177 @@ void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_st
set_cpu_data_by_mpidr(mpidr, cpu_context[security_state], context);
}
/*******************************************************************************
* This function is used to program the context that's used for exception
* return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
* the required security state
******************************************************************************/
static inline void cm_set_next_context(void *context)
{
#if DEBUG
uint64_t sp_mode;
/*
* Check that this function is called with SP_EL0 as the stack
* pointer
*/
__asm__ volatile("mrs %0, SPSel\n"
: "=r" (sp_mode));
assert(sp_mode == MODE_SP_EL0);
#endif
__asm__ volatile("msr spsel, #1\n"
"mov sp, %0\n"
"msr spsel, #0\n"
: : "r" (context));
}
/*******************************************************************************
* The following function initializes a cpu_context for the current CPU for
* first use, and sets the initial entrypoint state as specified by the
* entry_point_info structure.
*
* The security state to initialize is determined by the SECURE attribute
* of the entry_point_info. The function returns a pointer to the initialized
* context and sets this as the next context to return to.
*
* The EE and ST attributes are used to configure the endianess and secure
* timer availability for the new excution context.
*
* To prepare the register state for entry call cm_prepare_el3_exit() and
* el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
* cm_e1_sysreg_context_restore().
******************************************************************************/
void cm_init_context(uint64_t mpidr, const entry_point_info_t *ep)
{
uint32_t security_state;
cpu_context_t *ctx;
uint32_t scr_el3;
el3_state_t *state;
gp_regs_t *gp_regs;
unsigned long sctlr_elx;
security_state = GET_SECURITY_STATE(ep->h.attr);
ctx = cm_get_context_by_mpidr(mpidr, security_state);
assert(ctx);
/* Clear any residual register values from the context */
memset(ctx, 0, sizeof(*ctx));
/*
* Base the context SCR on the current value, adjust for entry point
* specific requirements and set trap bits from the IMF
* TODO: provide the base/global SCR bits using another mechanism?
*/
scr_el3 = read_scr();
scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
SCR_ST_BIT | SCR_HCE_BIT);
if (security_state != SECURE)
scr_el3 |= SCR_NS_BIT;
if (GET_RW(ep->spsr) == MODE_RW_64)
scr_el3 |= SCR_RW_BIT;
if (EP_GET_ST(ep->h.attr))
scr_el3 |= SCR_ST_BIT;
scr_el3 |= get_scr_el3_from_routing_model(security_state);
/*
* Set up SCTLR_ELx for the target exception level:
* EE bit is taken from the entrpoint attributes
* M, C and I bits must be zero (as required by PSCI specification)
*
* The target exception level is based on the spsr mode requested.
* If execution is requested to EL2 or hyp mode, HVC is enabled
* via SCR_EL3.HCE.
*
* Always compute the SCTLR_EL1 value and save in the cpu_context
* - the EL2 registers are set up by cm_preapre_ns_entry() as they
* are not part of the stored cpu_context
*
* TODO: In debug builds the spsr should be validated and checked
* against the CPU support, security state, endianess and pc
*/
sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
sctlr_elx |= SCTLR_EL1_RES1;
write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
if ((GET_RW(ep->spsr) == MODE_RW_64
&& GET_EL(ep->spsr) == MODE_EL2)
|| (GET_RW(ep->spsr) != MODE_RW_64
&& GET_M32(ep->spsr) == MODE32_hyp)) {
scr_el3 |= SCR_HCE_BIT;
}
/* Populate EL3 state so that we've the right context before doing ERET */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
/*
* Store the X0-X7 value from the entrypoint into the context
* Use memcpy as we are in control of the layout of the structures
*/
gp_regs = get_gpregs_ctx(ctx);
memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}
/*******************************************************************************
* Prepare the CPU system registers for first entry into secure or normal world
*
* If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
* If execution is requested to non-secure EL1 or svc mode, and the CPU supports
* EL2 then EL2 is disabled by configuring all necessary EL2 registers.
* For all entries, the EL1 registers are initialized from the cpu_context
******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
uint32_t sctlr_elx, scr_el3, cptr_el2;
cpu_context_t *ctx = cm_get_context(security_state);
assert(ctx);
if (security_state == NON_SECURE) {
scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
if (scr_el3 & SCR_HCE_BIT) {
/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
CTX_SCTLR_EL1);
sctlr_elx &= ~SCTLR_EE_BIT;
sctlr_elx |= SCTLR_EL2_RES1;
write_sctlr_el2(sctlr_elx);
} else if (read_id_aa64pfr0_el1() &
(ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
/* EL2 present but unused, need to disable safely */
/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
/* SCTLR_EL2 : can be ignored when bypassing */
/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
cptr_el2 = read_cptr_el2();
cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
write_cptr_el2(cptr_el2);
/* Enable EL1 access to timer */
write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
write_vpidr_el2(read_midr_el1());
write_vmpidr_el2(read_mpidr_el1());
}
}
el1_sysregs_context_restore(get_sysregs_ctx(ctx));
cm_set_next_context(ctx);
}
/*******************************************************************************
* The next four functions are used by runtime services to save and restore EL3
* and EL1 contexts on the 'cpu_context' structure for the specified security
......@@ -132,13 +304,10 @@ void cm_el1_sysregs_context_restore(uint32_t security_state)
}
/*******************************************************************************
* This function populates 'cpu_context' pertaining to the given security state
* with the entrypoint, SPSR and SCR values so that an ERET from this security
* state correctly restores corresponding values to drop the CPU to the next
* exception level
* This function populates ELR_EL3 member of 'cpu_context' pertaining to the
* given security state with the given entrypoint
******************************************************************************/
void cm_set_el3_eret_context(uint32_t security_state, uint64_t entrypoint,
uint32_t spsr, uint32_t scr)
void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
{
cpu_context_t *ctx;
el3_state_t *state;
......@@ -146,23 +315,17 @@ void cm_set_el3_eret_context(uint32_t security_state, uint64_t entrypoint,
ctx = cm_get_context(security_state);
assert(ctx);
/* Program the interrupt routing model for this security state */
scr &= ~SCR_FIQ_BIT;
scr &= ~SCR_IRQ_BIT;
scr |= get_scr_el3_from_routing_model(security_state);
/* Populate EL3 state so that we've the right context before doing ERET */
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_SPSR_EL3, spsr);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
write_ctx_reg(state, CTX_SCR_EL3, scr);
}
/*******************************************************************************
* This function populates ELR_EL3 member of 'cpu_context' pertaining to the
* given security state with the given entrypoint
* This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
* pertaining to the given security state
******************************************************************************/
void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
void cm_set_elr_spsr_el3(uint32_t security_state,
uint64_t entrypoint, uint32_t spsr)
{
cpu_context_t *ctx;
el3_state_t *state;
......@@ -173,6 +336,7 @@ void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
write_ctx_reg(state, CTX_SPSR_EL3, spsr);
}
/*******************************************************************************
......@@ -233,26 +397,9 @@ uint32_t cm_get_scr_el3(uint32_t security_state)
void cm_set_next_eret_context(uint32_t security_state)
{
cpu_context_t *ctx;
#if DEBUG
uint64_t sp_mode;
#endif
ctx = cm_get_context(security_state);
assert(ctx);
#if DEBUG
/*
* Check that this function is called with SP_EL0 as the stack
* pointer
*/
__asm__ volatile("mrs %0, SPSel\n"
: "=r" (sp_mode));
assert(sp_mode == MODE_SP_EL0);
#endif
__asm__ volatile("msr spsel, #1\n"
"mov sp, %0\n"
"msr spsel, #0\n"
: : "r" (ctx));
cm_set_next_context(ctx);
}
......@@ -34,6 +34,11 @@
#include <cpu_data.h>
#include <stdint.h>
/*******************************************************************************
* Forward declarations
******************************************************************************/
struct entry_point_info;
/*******************************************************************************
* Function & variable prototypes
******************************************************************************/
......@@ -45,12 +50,14 @@ void cm_set_context_by_mpidr(uint64_t mpidr,
uint32_t security_state);
static inline void cm_set_context(void *context, uint32_t security_state);
void cm_el3_sysregs_context_save(uint32_t security_state);
void cm_init_context(uint64_t mpidr, const struct entry_point_info *ep);
void cm_prepare_el3_exit(uint32_t security_state);
void cm_el3_sysregs_context_restore(uint32_t security_state);
void cm_el1_sysregs_context_save(uint32_t security_state);
void cm_el1_sysregs_context_restore(uint32_t security_state);
void cm_set_el3_eret_context(uint32_t security_state, uint64_t entrypoint,
uint32_t spsr, uint32_t scr);
void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint);
void cm_set_elr_spsr_el3(uint32_t security_state,
uint64_t entrypoint, uint32_t spsr);
void cm_write_scr_el3_bit(uint32_t security_state,
uint32_t bit_pos,
uint32_t value);
......
......@@ -33,7 +33,6 @@
#define SECURE 0x0
#define NON_SECURE 0x1
#define PARAM_EP_SECURITY_MASK 0x1
#define UP 1
#define DOWN 0
......@@ -64,10 +63,23 @@
#define ENTRY_POINT_INFO_PC_OFFSET 0x08
#define ENTRY_POINT_INFO_ARGS_OFFSET 0x18
#define PARAM_EP_SECURITY_MASK 0x1
#define GET_SECURITY_STATE(x) (x & PARAM_EP_SECURITY_MASK)
#define SET_SECURITY_STATE(x, security) \
((x) = ((x) & ~PARAM_EP_SECURITY_MASK) | (security))
#define EP_EE_MASK 0x2
#define EP_EE_LITTLE 0x0
#define EP_EE_BIG 0x2
#define EP_GET_EE(x) (x & EP_EE_MASK)
#define EP_SET_EE(x, ee) ((x) = ((x) & ~EP_EE_MASK) | (ee))
#define EP_ST_MASK 0x4
#define EP_ST_DISABLE 0x0
#define EP_ST_ENABLE 0x4
#define EP_GET_ST(x) (x & EP_ST_MASK)
#define EP_SET_ST(x, ee) ((x) = ((x) & ~EP_ST_MASK) | (ee))
#define PARAM_EP 0x01
#define PARAM_IMAGE_BINARY 0x02
#define PARAM_BL31 0x03
......
......@@ -167,6 +167,7 @@
#define HCR_FMO_BIT (1 << 3)
/* CNTHCTL_EL2 definitions */
#define EVNTEN_BIT (1 << 2)
#define EL1PCEN_BIT (1 << 1)
#define EL1PCTEN_BIT (1 << 0)
......
......@@ -262,6 +262,9 @@ DEFINE_SYSREG_RW_FUNCS(cnthctl_el2)
DEFINE_SYSREG_RW_FUNCS(tpidr_el3)
DEFINE_SYSREG_RW_FUNCS(vpidr_el2)
DEFINE_SYSREG_RW_FUNCS(vmpidr_el2)
/* Implementation specific registers */
DEFINE_RENAME_SYSREG_RW_FUNCS(cpuectlr_el1, CPUECTLR_EL1)
......
......@@ -45,9 +45,8 @@ int32_t tspd_init_secure_context(uint64_t entrypoint,
uint64_t mpidr,
tsp_context_t *tsp_ctx)
{
uint32_t scr, sctlr;
el1_sys_regs_t *el1_state;
uint32_t spsr;
entry_point_info_t ep;
uint32_t ep_attr;
/* Passing a NULL context is a critical programming error */
assert(tsp_ctx);
......@@ -58,51 +57,24 @@ int32_t tspd_init_secure_context(uint64_t entrypoint,
*/
assert(rw == TSP_AARCH64);
/*
* This might look redundant if the context was statically
* allocated but this function cannot make that assumption.
*/
memset(tsp_ctx, 0, sizeof(*tsp_ctx));
/*
* Set the right security state, register width and enable access to
* the secure physical timer for the SP.
*/
scr = read_scr();
scr &= ~SCR_NS_BIT;
scr &= ~SCR_RW_BIT;
scr |= SCR_ST_BIT;
if (rw == TSP_AARCH64)
scr |= SCR_RW_BIT;
/* Get a pointer to the S-EL1 context memory */
el1_state = get_sysregs_ctx(&tsp_ctx->cpu_ctx);
/*
* Program the SCTLR_EL1 such that upon entry in S-EL1, caches and MMU are
* disabled and exception endianess is set to be the same as EL3
*/
sctlr = read_sctlr_el3();
sctlr &= SCTLR_EE_BIT;
sctlr |= SCTLR_EL1_RES1;
write_ctx_reg(el1_state, CTX_SCTLR_EL1, sctlr);
/* Set this context as ready to be initialised i.e OFF */
/* Associate this context with the cpu specified */
tsp_ctx->mpidr = mpidr;
tsp_ctx->state = 0;
set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_OFF);
/*
* This context has not been used yet. It will become valid
* when the TSP is interrupted and wants the TSPD to preserve
* the context.
*/
clr_std_smc_active_flag(tsp_ctx->state);
/* Associate this context with the cpu specified */
tsp_ctx->mpidr = mpidr;
cm_set_context_by_mpidr(mpidr, &tsp_ctx->cpu_ctx, SECURE);
/* initialise an entrypoint to set up the CPU context */
ep_attr = SECURE | EP_ST_ENABLE;
if (read_sctlr_el3() & SCTLR_EE_BIT)
ep_attr |= EP_EE_BIG;
SET_PARAM_HEAD(&ep, PARAM_EP, VERSION_1, ep_attr);
ep.pc = entrypoint;
ep.spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
memset(&ep.args, 0, sizeof(ep.args));
cm_set_context(&tsp_ctx->cpu_ctx, SECURE);
spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
cm_set_el3_eret_context(SECURE, entrypoint, spsr, scr);
cm_init_context(mpidr, &ep);
return 0;
}
......
......@@ -122,13 +122,9 @@ static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
CTX_ELR_EL3);
}
SMC_SET_EL3(&tsp_ctx->cpu_ctx,
CTX_SPSR_EL3,
SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
SMC_SET_EL3(&tsp_ctx->cpu_ctx,
CTX_ELR_EL3,
(uint64_t) &tsp_vectors->fiq_entry);
cm_el1_sysregs_context_restore(SECURE);
cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
cm_set_next_eret_context(SECURE);
/*
......
......@@ -42,8 +42,8 @@ typedef int (*afflvl_off_handler_t)(unsigned long, aff_map_node_t *);
******************************************************************************/
static int psci_afflvl0_off(unsigned long mpidr, aff_map_node_t *cpu_node)
{
unsigned int index, plat_state;
int rc = PSCI_E_SUCCESS;
unsigned int plat_state;
int rc;
unsigned long sctlr;
assert(cpu_node->level == MPIDR_AFFLVL0);
......@@ -67,9 +67,6 @@ static int psci_afflvl0_off(unsigned long mpidr, aff_map_node_t *cpu_node)
return rc;
}
index = cpu_node->data;
memset(&psci_ns_entry_info[index], 0, sizeof(psci_ns_entry_info[index]));
/*
* Arch. management. Perform the necessary steps to flush all
* cpu caches.
......@@ -96,6 +93,7 @@ static int psci_afflvl0_off(unsigned long mpidr, aff_map_node_t *cpu_node)
* Plat. management: Perform platform specific actions to turn this
* cpu off e.g. exit cpu coherency, program the power controller etc.
*/
rc = PSCI_E_SUCCESS;
if (psci_plat_pm_ops->affinst_off) {
/* Get the current physical state of this cpu */
......
......@@ -75,8 +75,10 @@ static int psci_afflvl0_on(unsigned long target_cpu,
unsigned long ns_entrypoint,
unsigned long context_id)
{
unsigned int index, plat_state;
unsigned int plat_state;
unsigned long psci_entrypoint;
uint32_t ns_scr_el3 = read_scr_el3();
uint32_t ns_sctlr_el1 = read_sctlr_el1();
int rc;
/* Sanity check to safeguard against data corruption */
......@@ -103,8 +105,8 @@ static int psci_afflvl0_on(unsigned long target_cpu,
* the non-secure world from the non-secure state from
* where this call originated.
*/
index = cpu_node->data;
rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
rc = psci_save_ns_entry(target_cpu, ns_entrypoint, context_id,
ns_scr_el3, ns_sctlr_el1);
if (rc != PSCI_E_SUCCESS)
return rc;
......@@ -336,7 +338,7 @@ int psci_afflvl_on(unsigned long target_cpu,
static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
aff_map_node_t *cpu_node)
{
unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
unsigned int plat_state, state, rc;
assert(cpu_node->level == MPIDR_AFFLVL0);
......@@ -383,11 +385,9 @@ static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
/*
* Generic management: Now we just need to retrieve the
* information that we had stashed away during the cpu_on
* call to set this cpu on its way. First get the index
* for restoring the re-entry info
* call to set this cpu on its way.
*/
index = cpu_node->data;
psci_get_ns_entry_info(index);
cm_prepare_el3_exit(NON_SECURE);
/* State management: mark this cpu as on */
psci_set_state(cpu_node, PSCI_STATE_ON);
......@@ -395,6 +395,7 @@ static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
/* Clean caches before re-entering normal world */
dcsw_op_louis(DCCSW);
rc = PSCI_E_SUCCESS;
return rc;
}
......
......@@ -132,10 +132,12 @@ static int psci_afflvl0_suspend(unsigned long mpidr,
unsigned long context_id,
unsigned int power_state)
{
unsigned int index, plat_state;
unsigned int plat_state;
unsigned long psci_entrypoint, sctlr;
el3_state_t *saved_el3_state;
int rc = PSCI_E_SUCCESS;
uint32_t ns_scr_el3 = read_scr_el3();
uint32_t ns_sctlr_el1 = read_sctlr_el1();
int rc;
/* Sanity check to safeguard against data corruption */
assert(cpu_node->level == MPIDR_AFFLVL0);
......@@ -163,8 +165,8 @@ static int psci_afflvl0_suspend(unsigned long mpidr,
* Generic management: Store the re-entry information for the
* non-secure world
*/
index = cpu_node->data;
rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
rc = psci_save_ns_entry(read_mpidr_el1(), ns_entrypoint, context_id,
ns_scr_el3, ns_sctlr_el1);
if (rc != PSCI_E_SUCCESS)
return rc;
......@@ -174,7 +176,6 @@ static int psci_afflvl0_suspend(unsigned long mpidr,
* L1 caches and exit intra-cluster coherency et al
*/
cm_el3_sysregs_context_save(NON_SECURE);
rc = PSCI_E_SUCCESS;
/*
* The EL3 state to PoC since it will be accessed after a
......@@ -214,6 +215,8 @@ static int psci_afflvl0_suspend(unsigned long mpidr,
* platform defined mailbox with the psci entrypoint,
* program the power controller etc.
*/
rc = PSCI_E_SUCCESS;
if (psci_plat_pm_ops->affinst_suspend) {
plat_state = psci_get_phys_state(cpu_node);
rc = psci_plat_pm_ops->affinst_suspend(mpidr,
......@@ -454,7 +457,7 @@ int psci_afflvl_suspend(unsigned long mpidr,
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
aff_map_node_t *cpu_node)
{
unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
unsigned int plat_state, state, rc;
int32_t suspend_level;
assert(cpu_node->level == MPIDR_AFFLVL0);
......@@ -481,14 +484,11 @@ static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
}
/* Get the index for restoring the re-entry information */
index = cpu_node->data;
/*
* Arch. management: Restore the stashed EL3 architectural
* context from the 'cpu_context' structure for this cpu.
*/
cm_el3_sysregs_context_restore(NON_SECURE);
rc = PSCI_E_SUCCESS;
/*
* Call the cpu suspend finish handler registered by the Secure Payload
......@@ -509,7 +509,7 @@ static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
* information that we had stashed away during the suspend
* call to set this cpu on its way.
*/
psci_get_ns_entry_info(index);
cm_prepare_el3_exit(NON_SECURE);
/* State management: mark this cpu as on */
psci_set_state(cpu_node, PSCI_STATE_ON);
......@@ -517,6 +517,7 @@ static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
/* Clean caches before re-entering normal world */
dcsw_op_louis(DCCSW);
rc = PSCI_E_SUCCESS;
return rc;
}
......
......@@ -36,6 +36,7 @@
#include <context_mgmt.h>
#include <debug.h>
#include <platform.h>
#include <string.h>
#include "psci_private.h"
/*
......@@ -50,7 +51,6 @@ const spd_pm_ops_t *psci_spd_pm;
* array during startup.
******************************************************************************/
suspend_context_t psci_suspend_context[PSCI_NUM_AFFS];
ns_entry_info_t psci_ns_entry_info[PSCI_NUM_AFFS];
/*******************************************************************************
* Grand array that holds the platform's topology information for state
......@@ -212,97 +212,36 @@ int psci_validate_mpidr(unsigned long mpidr, int level)
}
/*******************************************************************************
* This function retrieves all the stashed information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND
* This function determines the full entrypoint information for the requested
* PSCI entrypoint on power on/resume and saves this in the non-secure CPU
* cpu_context, ready for when the core boots.
******************************************************************************/
void psci_get_ns_entry_info(unsigned int index)
int psci_save_ns_entry(uint64_t mpidr,
uint64_t entrypoint, uint64_t context_id,
uint32_t ns_scr_el3, uint32_t ns_sctlr_el1)
{
unsigned long sctlr = 0, scr, el_status, id_aa64pfr0;
cpu_context_t *ns_entry_context;
gp_regs_t *ns_entry_gpregs;
uint32_t ep_attr, mode, sctlr, daif, ee;
entry_point_info_t ep;
scr = read_scr();
sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
ee = 0;
/* Find out which EL we are going to */
id_aa64pfr0 = read_id_aa64pfr0_el1();
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
/* Restore endianess */
if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT)
sctlr |= SCTLR_EE_BIT;
else
sctlr &= ~SCTLR_EE_BIT;
/* Turn off MMU and Caching */
sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT);
/* Set the register width */
if (psci_ns_entry_info[index].scr & SCR_RW_BIT)
scr |= SCR_RW_BIT;
else
scr &= ~SCR_RW_BIT;
scr |= SCR_NS_BIT;
if (el_status)
write_sctlr_el2(sctlr);
else
write_sctlr_el1(sctlr);
/* Fulfill the cpu_on entry reqs. as per the psci spec */
ns_entry_context = (cpu_context_t *) cm_get_context(NON_SECURE);
assert(ns_entry_context);
/*
* Setup general purpose registers to return the context id and
* prevent leakage of secure information into the normal world.
*/
ns_entry_gpregs = get_gpregs_ctx(ns_entry_context);
write_ctx_reg(ns_entry_gpregs,
CTX_GPREG_X0,
psci_ns_entry_info[index].context_id);
/*
* Tell the context management library to setup EL3 system registers to
* be able to ERET into the ns state, and SP_EL3 points to the right
* context to exit from EL3 correctly.
*/
cm_set_el3_eret_context(NON_SECURE,
psci_ns_entry_info[index].eret_info.entrypoint,
psci_ns_entry_info[index].eret_info.spsr,
scr);
cm_set_next_eret_context(NON_SECURE);
}
/*******************************************************************************
* This function retrieves and stashes all the information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND. This is done prior to
* turning it on or before suspending it.
******************************************************************************/
int psci_set_ns_entry_info(unsigned int index,
unsigned long entrypoint,
unsigned long context_id)
{
int rc = PSCI_E_SUCCESS;
unsigned int rw, mode, ee, spsr = 0;
unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr();
unsigned long el_status;
unsigned long daif;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if (sctlr & SCTLR_EE_BIT) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(&ep, PARAM_EP, VERSION_1, ep_attr);
/* Figure out what mode do we enter the non-secure world in */
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
ep.pc = entrypoint;
memset(&ep.args, 0, sizeof(ep.args));
ep.args.arg0 = context_id;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
rw = scr & SCR_RW_BIT;
if (rw) {
if (ns_scr_el3 & SCR_RW_BIT) {
/*
* Check whether a Thumb entry point has been provided for an
......@@ -311,28 +250,12 @@ int psci_set_ns_entry_info(unsigned int index,
if (entrypoint & 0x1)
return PSCI_E_INVALID_PARAMS;
if (el_status && (scr & SCR_HCE_BIT)) {
mode = MODE_EL2;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = MODE_EL1;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr |= SCR_RW_BIT;
ep.spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
} else {
if (el_status && (scr & SCR_HCE_BIT)) {
mode = MODE32_hyp;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = MODE32_svc;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
......@@ -340,18 +263,13 @@ int psci_set_ns_entry_info(unsigned int index,
*/
daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
/* Ensure that the CSPR.E and SCTLR.EE bits match */
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr &= ~SCR_RW_BIT;
ep.spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
}
psci_ns_entry_info[index].eret_info.entrypoint = entrypoint;
psci_ns_entry_info[index].eret_info.spsr = spsr;
psci_ns_entry_info[index].context_id = context_id;
/* initialise an entrypoint to set up the CPU context */
cm_init_context(mpidr, &ep);
return rc;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
......
......@@ -35,22 +35,6 @@
#include <bakery_lock.h>
#include <psci.h>
/*******************************************************************************
* The following two data structures hold the generic information to bringup
* a suspended/hotplugged out cpu
******************************************************************************/
typedef struct eret_params {
unsigned long entrypoint;
unsigned long spsr;
} eret_params_t;
typedef struct ns_entry_info {
eret_params_t eret_info;
unsigned long context_id;
unsigned int scr;
unsigned int sctlr;
} ns_entry_info_t;
/*******************************************************************************
* The following two data structures hold the topology tree which in turn tracks
* the state of the all the affinity instances supported by the platform.
......@@ -85,7 +69,6 @@ typedef unsigned int (*afflvl_power_on_finisher_t)(unsigned long,
* Data prototypes
******************************************************************************/
extern suspend_context_t psci_suspend_context[PSCI_NUM_AFFS];
extern ns_entry_info_t psci_ns_entry_info[PSCI_NUM_AFFS];
extern const plat_pm_ops_t *psci_plat_pm_ops;
extern aff_map_node_t psci_aff_map[PSCI_NUM_AFFS];
......@@ -102,7 +85,6 @@ int get_max_afflvl(void);
unsigned short psci_get_state(aff_map_node_t *node);
unsigned short psci_get_phys_state(aff_map_node_t *node);
void psci_set_state(aff_map_node_t *node, unsigned short state);
void psci_get_ns_entry_info(unsigned int index);
unsigned long mpidr_set_aff_inst(unsigned long, unsigned char, int);
int psci_validate_mpidr(unsigned long, int);
int get_power_on_target_afflvl(unsigned long mpidr);
......@@ -110,9 +92,9 @@ void psci_afflvl_power_on_finish(unsigned long,
int,
int,
afflvl_power_on_finisher_t *);
int psci_set_ns_entry_info(unsigned int index,
unsigned long entrypoint,
unsigned long context_id);
int psci_save_ns_entry(uint64_t mpidr,
uint64_t entrypoint, uint64_t context_id,
uint32_t caller_scr_el3, uint32_t caller_sctlr_el1);
int psci_check_afflvl_range(int start_afflvl, int end_afflvl);
void psci_acquire_afflvl_locks(unsigned long mpidr,
int start_afflvl,
......
......@@ -59,7 +59,7 @@ static aff_limits_node_t psci_aff_limits[MPIDR_MAX_AFFLVL + 1];
/*******************************************************************************
* 'psci_ns_einfo_idx' keeps track of the next free index in the
* 'psci_ns_entry_info' & 'psci_suspend_context' arrays.
* 'psci_suspend_context' arrays.
******************************************************************************/
static unsigned int psci_ns_einfo_idx;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment