Commit 695f7df8 authored by Lionel Debieve's avatar Lionel Debieve
Browse files

fmc: stm32_fmc2_nand: Add FMC2 driver support



Add fmc2_nand driver support. The driver implements
only read interface for NAND devices.

Change-Id: I3cd037e8ff645ce0d217092b96f33ef41cb7a522
Signed-off-by: default avatarLionel Debieve <lionel.debieve@st.com>
Signed-off-by: default avatarChristophe Kerello <christophe.kerello@st.com>
parent e98f594a
/*
* Copyright (c) 2019, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <libfdt.h>
#include <platform_def.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <drivers/raw_nand.h>
#include <drivers/st/stm32_fmc2_nand.h>
#include <drivers/st/stm32_gpio.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
/* FMC2 Compatibility */
#define DT_FMC2_COMPAT "st,stm32mp15-fmc2"
#define MAX_CS 2U
/* FMC2 Controller Registers */
#define FMC2_BCR1 0x00U
#define FMC2_PCR 0x80U
#define FMC2_SR 0x84U
#define FMC2_PMEM 0x88U
#define FMC2_PATT 0x8CU
#define FMC2_HECCR 0x94U
#define FMC2_BCHISR 0x254U
#define FMC2_BCHDSR0 0x27CU
#define FMC2_BCHDSR1 0x280U
#define FMC2_BCHDSR2 0x284U
#define FMC2_BCHDSR3 0x288U
#define FMC2_BCHDSR4 0x28CU
/* FMC2_BCR1 register */
#define FMC2_BCR1_FMC2EN BIT(31)
/* FMC2_PCR register */
#define FMC2_PCR_PWAITEN BIT(1)
#define FMC2_PCR_PBKEN BIT(2)
#define FMC2_PCR_PWID_MASK GENMASK_32(5, 4)
#define FMC2_PCR_PWID(x) (((x) << 4) & FMC2_PCR_PWID_MASK)
#define FMC2_PCR_PWID_8 0x0U
#define FMC2_PCR_PWID_16 0x1U
#define FMC2_PCR_ECCEN BIT(6)
#define FMC2_PCR_ECCALG BIT(8)
#define FMC2_PCR_TCLR_MASK GENMASK_32(12, 9)
#define FMC2_PCR_TCLR(x) (((x) << 9) & FMC2_PCR_TCLR_MASK)
#define FMC2_PCR_TCLR_DEFAULT 0xFU
#define FMC2_PCR_TAR_MASK GENMASK_32(16, 13)
#define FMC2_PCR_TAR(x) (((x) << 13) & FMC2_PCR_TAR_MASK)
#define FMC2_PCR_TAR_DEFAULT 0xFU
#define FMC2_PCR_ECCSS_MASK GENMASK_32(19, 17)
#define FMC2_PCR_ECCSS(x) (((x) << 17) & FMC2_PCR_ECCSS_MASK)
#define FMC2_PCR_ECCSS_512 0x1U
#define FMC2_PCR_ECCSS_2048 0x3U
#define FMC2_PCR_BCHECC BIT(24)
#define FMC2_PCR_WEN BIT(25)
/* FMC2_SR register */
#define FMC2_SR_NWRF BIT(6)
/* FMC2_PMEM register*/
#define FMC2_PMEM_MEMSET(x) (((x) & GENMASK_32(7, 0)) << 0)
#define FMC2_PMEM_MEMWAIT(x) (((x) & GENMASK_32(7, 0)) << 8)
#define FMC2_PMEM_MEMHOLD(x) (((x) & GENMASK_32(7, 0)) << 16)
#define FMC2_PMEM_MEMHIZ(x) (((x) & GENMASK_32(7, 0)) << 24)
#define FMC2_PMEM_DEFAULT 0x0A0A0A0AU
/* FMC2_PATT register */
#define FMC2_PATT_ATTSET(x) (((x) & GENMASK_32(7, 0)) << 0)
#define FMC2_PATT_ATTWAIT(x) (((x) & GENMASK_32(7, 0)) << 8)
#define FMC2_PATT_ATTHOLD(x) (((x) & GENMASK_32(7, 0)) << 16)
#define FMC2_PATT_ATTHIZ(x) (((x) & GENMASK_32(7, 0)) << 24)
#define FMC2_PATT_DEFAULT 0x0A0A0A0AU
/* FMC2_BCHISR register */
#define FMC2_BCHISR_DERF BIT(1)
/* FMC2_BCHDSR0 register */
#define FMC2_BCHDSR0_DUE BIT(0)
#define FMC2_BCHDSR0_DEF BIT(1)
#define FMC2_BCHDSR0_DEN_MASK GENMASK_32(7, 4)
#define FMC2_BCHDSR0_DEN_SHIFT 4U
/* FMC2_BCHDSR1 register */
#define FMC2_BCHDSR1_EBP1_MASK GENMASK_32(12, 0)
#define FMC2_BCHDSR1_EBP2_MASK GENMASK_32(28, 16)
#define FMC2_BCHDSR1_EBP2_SHIFT 16U
/* FMC2_BCHDSR2 register */
#define FMC2_BCHDSR2_EBP3_MASK GENMASK_32(12, 0)
#define FMC2_BCHDSR2_EBP4_MASK GENMASK_32(28, 16)
#define FMC2_BCHDSR2_EBP4_SHIFT 16U
/* FMC2_BCHDSR3 register */
#define FMC2_BCHDSR3_EBP5_MASK GENMASK_32(12, 0)
#define FMC2_BCHDSR3_EBP6_MASK GENMASK_32(28, 16)
#define FMC2_BCHDSR3_EBP6_SHIFT 16U
/* FMC2_BCHDSR4 register */
#define FMC2_BCHDSR4_EBP7_MASK GENMASK_32(12, 0)
#define FMC2_BCHDSR4_EBP8_MASK GENMASK_32(28, 16)
#define FMC2_BCHDSR4_EBP8_SHIFT 16U
/* Timings */
#define FMC2_THIZ 0x01U
#define FMC2_TIO 8000U
#define FMC2_TSYNC 3000U
#define FMC2_PCR_TIMING_MASK GENMASK_32(3, 0)
#define FMC2_PMEM_PATT_TIMING_MASK GENMASK_32(7, 0)
#define FMC2_BBM_LEN 2U
#define FMC2_MAX_ECC_BYTES 14U
#define TIMEOUT_US_10_MS 10000U
#define FMC2_PSEC_PER_MSEC (1000UL * 1000UL * 1000UL)
enum stm32_fmc2_ecc {
FMC2_ECC_HAM = 1U,
FMC2_ECC_BCH4 = 4U,
FMC2_ECC_BCH8 = 8U
};
struct stm32_fmc2_cs_reg {
uintptr_t data_base;
uintptr_t cmd_base;
uintptr_t addr_base;
};
struct stm32_fmc2_nand_timings {
uint8_t tclr;
uint8_t tar;
uint8_t thiz;
uint8_t twait;
uint8_t thold_mem;
uint8_t tset_mem;
uint8_t thold_att;
uint8_t tset_att;
};
struct stm32_fmc2_nfc {
uintptr_t reg_base;
struct stm32_fmc2_cs_reg cs[MAX_CS];
unsigned long clock_id;
unsigned int reset_id;
uint8_t cs_sel;
};
static struct stm32_fmc2_nfc stm32_fmc2;
static uintptr_t fmc2_base(void)
{
return stm32_fmc2.reg_base;
}
static void stm32_fmc2_nand_setup_timing(void)
{
struct stm32_fmc2_nand_timings tims;
unsigned long hclk = stm32mp_clk_get_rate(stm32_fmc2.clock_id);
unsigned long hclkp = FMC2_PSEC_PER_MSEC / (hclk / 1000U);
unsigned long timing, tar, tclr, thiz, twait;
unsigned long tset_mem, tset_att, thold_mem, thold_att;
uint32_t pcr, pmem, patt;
tar = MAX(hclkp, NAND_TAR_MIN);
timing = div_round_up(tar, hclkp) - 1U;
tims.tar = MIN(timing, (unsigned long)FMC2_PCR_TIMING_MASK);
tclr = MAX(hclkp, NAND_TCLR_MIN);
timing = div_round_up(tclr, hclkp) - 1U;
tims.tclr = MIN(timing, (unsigned long)FMC2_PCR_TIMING_MASK);
tims.thiz = FMC2_THIZ;
thiz = (tims.thiz + 1U) * hclkp;
/*
* tWAIT > tRP
* tWAIT > tWP
* tWAIT > tREA + tIO
*/
twait = MAX(hclkp, NAND_TRP_MIN);
twait = MAX(twait, NAND_TWP_MIN);
twait = MAX(twait, NAND_TREA_MAX + FMC2_TIO);
timing = div_round_up(twait, hclkp);
tims.twait = CLAMP(timing, 1UL,
(unsigned long)FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_MEM > tCS - tWAIT
* tSETUP_MEM > tALS - tWAIT
* tSETUP_MEM > tDS - (tWAIT - tHIZ)
*/
tset_mem = hclkp;
if ((twait < NAND_TCS_MIN) && (tset_mem < (NAND_TCS_MIN - twait))) {
tset_mem = NAND_TCS_MIN - twait;
}
if ((twait < NAND_TALS_MIN) && (tset_mem < (NAND_TALS_MIN - twait))) {
tset_mem = NAND_TALS_MIN - twait;
}
if ((twait > thiz) && ((twait - thiz) < NAND_TDS_MIN) &&
(tset_mem < (NAND_TDS_MIN - (twait - thiz)))) {
tset_mem = NAND_TDS_MIN - (twait - thiz);
}
timing = div_round_up(tset_mem, hclkp);
tims.tset_mem = CLAMP(timing, 1UL,
(unsigned long)FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_MEM > tCH
* tHOLD_MEM > tREH - tSETUP_MEM
* tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
*/
thold_mem = MAX(hclkp, NAND_TCH_MIN);
if ((tset_mem < NAND_TREH_MIN) &&
(thold_mem < (NAND_TREH_MIN - tset_mem))) {
thold_mem = NAND_TREH_MIN - tset_mem;
}
if (((tset_mem + twait) < NAND_TRC_MIN) &&
(thold_mem < (NAND_TRC_MIN - (tset_mem + twait)))) {
thold_mem = NAND_TRC_MIN - (tset_mem + twait);
}
if (((tset_mem + twait) < NAND_TWC_MIN) &&
(thold_mem < (NAND_TWC_MIN - (tset_mem + twait)))) {
thold_mem = NAND_TWC_MIN - (tset_mem + twait);
}
timing = div_round_up(thold_mem, hclkp);
tims.thold_mem = CLAMP(timing, 1UL,
(unsigned long)FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_ATT > tCS - tWAIT
* tSETUP_ATT > tCLS - tWAIT
* tSETUP_ATT > tALS - tWAIT
* tSETUP_ATT > tRHW - tHOLD_MEM
* tSETUP_ATT > tDS - (tWAIT - tHIZ)
*/
tset_att = hclkp;
if ((twait < NAND_TCS_MIN) && (tset_att < (NAND_TCS_MIN - twait))) {
tset_att = NAND_TCS_MIN - twait;
}
if ((twait < NAND_TCLS_MIN) && (tset_att < (NAND_TCLS_MIN - twait))) {
tset_att = NAND_TCLS_MIN - twait;
}
if ((twait < NAND_TALS_MIN) && (tset_att < (NAND_TALS_MIN - twait))) {
tset_att = NAND_TALS_MIN - twait;
}
if ((thold_mem < NAND_TRHW_MIN) &&
(tset_att < (NAND_TRHW_MIN - thold_mem))) {
tset_att = NAND_TRHW_MIN - thold_mem;
}
if ((twait > thiz) && ((twait - thiz) < NAND_TDS_MIN) &&
(tset_att < (NAND_TDS_MIN - (twait - thiz)))) {
tset_att = NAND_TDS_MIN - (twait - thiz);
}
timing = div_round_up(tset_att, hclkp);
tims.tset_att = CLAMP(timing, 1UL,
(unsigned long)FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_ATT > tALH
* tHOLD_ATT > tCH
* tHOLD_ATT > tCLH
* tHOLD_ATT > tCOH
* tHOLD_ATT > tDH
* tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
* tHOLD_ATT > tADL - tSETUP_MEM
* tHOLD_ATT > tWH - tSETUP_MEM
* tHOLD_ATT > tWHR - tSETUP_MEM
* tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
* tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
*/
thold_att = MAX(hclkp, NAND_TALH_MIN);
thold_att = MAX(thold_att, NAND_TCH_MIN);
thold_att = MAX(thold_att, NAND_TCLH_MIN);
thold_att = MAX(thold_att, NAND_TCOH_MIN);
thold_att = MAX(thold_att, NAND_TDH_MIN);
if (((NAND_TWB_MAX + FMC2_TIO + FMC2_TSYNC) > tset_mem) &&
(thold_att < (NAND_TWB_MAX + FMC2_TIO + FMC2_TSYNC - tset_mem))) {
thold_att = NAND_TWB_MAX + FMC2_TIO + FMC2_TSYNC - tset_mem;
}
if ((tset_mem < NAND_TADL_MIN) &&
(thold_att < (NAND_TADL_MIN - tset_mem))) {
thold_att = NAND_TADL_MIN - tset_mem;
}
if ((tset_mem < NAND_TWH_MIN) &&
(thold_att < (NAND_TWH_MIN - tset_mem))) {
thold_att = NAND_TWH_MIN - tset_mem;
}
if ((tset_mem < NAND_TWHR_MIN) &&
(thold_att < (NAND_TWHR_MIN - tset_mem))) {
thold_att = NAND_TWHR_MIN - tset_mem;
}
if (((tset_att + twait) < NAND_TRC_MIN) &&
(thold_att < (NAND_TRC_MIN - (tset_att + twait)))) {
thold_att = NAND_TRC_MIN - (tset_att + twait);
}
if (((tset_att + twait) < NAND_TWC_MIN) &&
(thold_att < (NAND_TWC_MIN - (tset_att + twait)))) {
thold_att = NAND_TWC_MIN - (tset_att + twait);
}
timing = div_round_up(thold_att, hclkp);
tims.thold_att = CLAMP(timing, 1UL,
(unsigned long)FMC2_PMEM_PATT_TIMING_MASK);
VERBOSE("NAND timings: %u - %u - %u - %u - %u - %u - %u - %u\n",
tims.tclr, tims.tar, tims.thiz, tims.twait,
tims.thold_mem, tims.tset_mem,
tims.thold_att, tims.tset_att);
/* Set tclr/tar timings */
pcr = mmio_read_32(fmc2_base() + FMC2_PCR);
pcr &= ~FMC2_PCR_TCLR_MASK;
pcr |= FMC2_PCR_TCLR(tims.tclr);
pcr &= ~FMC2_PCR_TAR_MASK;
pcr |= FMC2_PCR_TAR(tims.tar);
/* Set tset/twait/thold/thiz timings in common bank */
pmem = FMC2_PMEM_MEMSET(tims.tset_mem);
pmem |= FMC2_PMEM_MEMWAIT(tims.twait);
pmem |= FMC2_PMEM_MEMHOLD(tims.thold_mem);
pmem |= FMC2_PMEM_MEMHIZ(tims.thiz);
/* Set tset/twait/thold/thiz timings in attribute bank */
patt = FMC2_PATT_ATTSET(tims.tset_att);
patt |= FMC2_PATT_ATTWAIT(tims.twait);
patt |= FMC2_PATT_ATTHOLD(tims.thold_att);
patt |= FMC2_PATT_ATTHIZ(tims.thiz);
mmio_write_32(fmc2_base() + FMC2_PCR, pcr);
mmio_write_32(fmc2_base() + FMC2_PMEM, pmem);
mmio_write_32(fmc2_base() + FMC2_PATT, patt);
}
static void stm32_fmc2_set_buswidth_16(bool set)
{
mmio_clrsetbits_32(fmc2_base() + FMC2_PCR, FMC2_PCR_PWID_MASK,
(set ? FMC2_PCR_PWID(FMC2_PCR_PWID_16) : 0U));
}
static void stm32_fmc2_set_ecc(bool enable)
{
mmio_clrsetbits_32(fmc2_base() + FMC2_PCR, FMC2_PCR_ECCEN,
(enable ? FMC2_PCR_ECCEN : 0U));
}
static int stm32_fmc2_ham_correct(uint8_t *buffer, uint8_t *eccbuffer,
uint8_t *ecc)
{
uint8_t xor_ecc_ones;
uint16_t xor_ecc_1b, xor_ecc_2b, xor_ecc_3b;
union {
uint32_t val;
uint8_t bytes[4];
} xor_ecc;
/* Page size--------ECC_Code Size
* 256---------------22 bits LSB (ECC_CODE & 0x003FFFFF)
* 512---------------24 bits (ECC_CODE & 0x00FFFFFF)
* 1024--------------26 bits (ECC_CODE & 0x03FFFFFF)
* 2048--------------28 bits (ECC_CODE & 0x0FFFFFFF)
* 4096--------------30 bits (ECC_CODE & 0x3FFFFFFF)
* 8192--------------32 bits (ECC_CODE & 0xFFFFFFFF)
*/
/* For Page size 512, ECC_Code size 24 bits */
xor_ecc_1b = ecc[0] ^ eccbuffer[0];
xor_ecc_2b = ecc[1] ^ eccbuffer[1];
xor_ecc_3b = ecc[2] ^ eccbuffer[2];
xor_ecc.val = 0L;
xor_ecc.bytes[2] = xor_ecc_3b;
xor_ecc.bytes[1] = xor_ecc_2b;
xor_ecc.bytes[0] = xor_ecc_1b;
if (xor_ecc.val == 0U) {
return 0; /* No Error */
}
xor_ecc_ones = __builtin_popcount(xor_ecc.val);
if (xor_ecc_ones < 23U) {
if (xor_ecc_ones == 12U) {
uint16_t bit_address, byte_address;
/* Correctable ERROR */
bit_address = ((xor_ecc_1b >> 1) & BIT(0)) |
((xor_ecc_1b >> 2) & BIT(1)) |
((xor_ecc_1b >> 3) & BIT(2));
byte_address = ((xor_ecc_1b >> 7) & BIT(0)) |
((xor_ecc_2b) & BIT(1)) |
((xor_ecc_2b >> 1) & BIT(2)) |
((xor_ecc_2b >> 2) & BIT(3)) |
((xor_ecc_2b >> 3) & BIT(4)) |
((xor_ecc_3b << 4) & BIT(5)) |
((xor_ecc_3b << 3) & BIT(6)) |
((xor_ecc_3b << 2) & BIT(7)) |
((xor_ecc_3b << 1) & BIT(8));
/* Correct bit error in the data */
buffer[byte_address] =
buffer[byte_address] ^ BIT(bit_address);
VERBOSE("Hamming: 1 ECC error corrected\n");
return 0;
}
/* Non Correctable ERROR */
ERROR("%s: Uncorrectable ECC Errors\n", __func__);
return -1;
}
/* ECC ERROR */
ERROR("%s: Hamming correction error\n", __func__);
return -1;
}
static int stm32_fmc2_ham_calculate(uint8_t *buffer, uint8_t *ecc)
{
uint32_t heccr;
uint64_t timeout = timeout_init_us(TIMEOUT_US_10_MS);
while ((mmio_read_32(fmc2_base() + FMC2_SR) & FMC2_SR_NWRF) == 0U) {
if (timeout_elapsed(timeout)) {
return -ETIMEDOUT;
}
}
heccr = mmio_read_32(fmc2_base() + FMC2_HECCR);
ecc[0] = heccr;
ecc[1] = heccr >> 8;
ecc[2] = heccr >> 16;
/* Disable ECC */
stm32_fmc2_set_ecc(false);
return 0;
}
static int stm32_fmc2_bch_correct(uint8_t *buffer, unsigned int eccsize)
{
uint32_t bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4;
uint16_t pos[8];
int i, den;
uint64_t timeout = timeout_init_us(TIMEOUT_US_10_MS);
while ((mmio_read_32(fmc2_base() + FMC2_BCHISR) &
FMC2_BCHISR_DERF) == 0U) {
if (timeout_elapsed(timeout)) {
return -ETIMEDOUT;
}
}
bchdsr0 = mmio_read_32(fmc2_base() + FMC2_BCHDSR0);
bchdsr1 = mmio_read_32(fmc2_base() + FMC2_BCHDSR1);
bchdsr2 = mmio_read_32(fmc2_base() + FMC2_BCHDSR2);
bchdsr3 = mmio_read_32(fmc2_base() + FMC2_BCHDSR3);
bchdsr4 = mmio_read_32(fmc2_base() + FMC2_BCHDSR4);
/* Disable ECC */
stm32_fmc2_set_ecc(false);
/* No error found */
if ((bchdsr0 & FMC2_BCHDSR0_DEF) == 0U) {
return 0;
}
/* Too many errors detected */
if ((bchdsr0 & FMC2_BCHDSR0_DUE) != 0U) {
return -EBADMSG;
}
pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
for (i = 0; i < den; i++) {
if (pos[i] < (eccsize * 8U)) {
uint8_t bitmask = BIT(pos[i] % 8U);
uint32_t offset = pos[i] / 8U;
*(buffer + offset) ^= bitmask;
}
}
return 0;
}
static void stm32_fmc2_hwctl(struct nand_device *nand)
{
stm32_fmc2_set_ecc(false);
if (nand->ecc.max_bit_corr != FMC2_ECC_HAM) {
mmio_clrbits_32(fmc2_base() + FMC2_PCR, FMC2_PCR_WEN);
}
stm32_fmc2_set_ecc(true);
}
static int stm32_fmc2_read_page(struct nand_device *nand,
unsigned int page, uintptr_t buffer)
{
unsigned int eccsize = nand->ecc.size;
unsigned int eccbytes = nand->ecc.bytes;
unsigned int eccsteps = nand->page_size / eccsize;
uint8_t ecc_corr[FMC2_MAX_ECC_BYTES];
uint8_t ecc_cal[FMC2_MAX_ECC_BYTES] = {0U};
uint8_t *p;
unsigned int i;
unsigned int s;
int ret;
VERBOSE(">%s page %i buffer %lx\n", __func__, page, buffer);
ret = nand_read_page_cmd(page, 0U, 0U, 0U);
if (ret != 0) {
return ret;
}
for (s = 0U, i = nand->page_size + FMC2_BBM_LEN, p = (uint8_t *)buffer;
s < eccsteps;
s++, i += eccbytes, p += eccsize) {
stm32_fmc2_hwctl(nand);
/* Read the NAND page sector (512 bytes) */
ret = nand_change_read_column_cmd(s * eccsize, (uintptr_t)p,
eccsize);
if (ret != 0) {
return ret;
}
if (nand->ecc.max_bit_corr == FMC2_ECC_HAM) {
ret = stm32_fmc2_ham_calculate(p, ecc_cal);
if (ret != 0) {
return ret;
}
}
/* Read the corresponding ECC bytes */
ret = nand_change_read_column_cmd(i, (uintptr_t)ecc_corr,
eccbytes);
if (ret != 0) {
return ret;
}
/* Correct the data */
if (nand->ecc.max_bit_corr == FMC2_ECC_HAM) {
ret = stm32_fmc2_ham_correct(p, ecc_corr, ecc_cal);
} else {
ret = stm32_fmc2_bch_correct(p, eccsize);
}
if (ret != 0) {
return ret;
}
}
return 0;
}
static void stm32_fmc2_read_data(struct nand_device *nand,
uint8_t *buff, unsigned int length,
bool use_bus8)
{
uintptr_t data_base = stm32_fmc2.cs[stm32_fmc2.cs_sel].data_base;
if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) {
stm32_fmc2_set_buswidth_16(false);
}
if ((((uintptr_t)buff & BIT(0)) != 0U) && (length != 0U)) {
*buff = mmio_read_8(data_base);
buff += sizeof(uint8_t);
length -= sizeof(uint8_t);
}
if ((((uintptr_t)buff & GENMASK_32(1, 0)) != 0U) &&
(length >= sizeof(uint16_t))) {
*(uint16_t *)buff = mmio_read_16(data_base);
buff += sizeof(uint16_t);
length -= sizeof(uint16_t);
}
/* 32bit aligned */
while (length >= sizeof(uint32_t)) {
*(uint32_t *)buff = mmio_read_32(data_base);
buff += sizeof(uint32_t);
length -= sizeof(uint32_t);
}
/* Read remaining bytes */
if (length >= sizeof(uint16_t)) {
*(uint16_t *)buff = mmio_read_16(data_base);
buff += sizeof(uint16_t);
length -= sizeof(uint16_t);
}
if (length != 0U) {
*buff = mmio_read_8(data_base);
}
if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) {
/* Reconfigure bus width to 16-bit */
stm32_fmc2_set_buswidth_16(true);
}
}
static void stm32_fmc2_write_data(struct nand_device *nand,
uint8_t *buff, unsigned int length,
bool use_bus8)
{
uintptr_t data_base = stm32_fmc2.cs[stm32_fmc2.cs_sel].data_base;
if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) {
/* Reconfigure bus width to 8-bit */
stm32_fmc2_set_buswidth_16(false);
}
if ((((uintptr_t)buff & BIT(0)) != 0U) && (length != 0U)) {
mmio_write_8(data_base, *buff);
buff += sizeof(uint8_t);
length -= sizeof(uint8_t);
}
if ((((uintptr_t)buff & GENMASK_32(1, 0)) != 0U) &&
(length >= sizeof(uint16_t))) {
mmio_write_16(data_base, *(uint16_t *)buff);
buff += sizeof(uint16_t);
length -= sizeof(uint16_t);
}
/* 32bits aligned */
while (length >= sizeof(uint32_t)) {
mmio_write_32(data_base, *(uint32_t *)buff);
buff += sizeof(uint32_t);
length -= sizeof(uint32_t);
}
/* Read remaining bytes */
if (length >= sizeof(uint16_t)) {
mmio_write_16(data_base, *(uint16_t *)buff);
buff += sizeof(uint16_t);
length -= sizeof(uint16_t);
}
if (length != 0U) {
mmio_write_8(data_base, *buff);
}
if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) {
/* Reconfigure bus width to 16-bit */
stm32_fmc2_set_buswidth_16(true);
}
}
static void stm32_fmc2_ctrl_init(void)
{
uint32_t pcr = mmio_read_32(fmc2_base() + FMC2_PCR);
uint32_t bcr1 = mmio_read_32(fmc2_base() + FMC2_BCR1);
/* Enable wait feature and NAND flash memory bank */
pcr |= FMC2_PCR_PWAITEN;
pcr |= FMC2_PCR_PBKEN;
/* Set buswidth to 8 bits mode for identification */
pcr &= ~FMC2_PCR_PWID_MASK;
/* ECC logic is disabled */
pcr &= ~FMC2_PCR_ECCEN;
/* Default mode */
pcr &= ~FMC2_PCR_ECCALG;
pcr &= ~FMC2_PCR_BCHECC;
pcr &= ~FMC2_PCR_WEN;
/* Set default ECC sector size */
pcr &= ~FMC2_PCR_ECCSS_MASK;
pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
/* Set default TCLR/TAR timings */
pcr &= ~FMC2_PCR_TCLR_MASK;
pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
pcr &= ~FMC2_PCR_TAR_MASK;
pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
/* Enable FMC2 controller */
bcr1 |= FMC2_BCR1_FMC2EN;
mmio_write_32(fmc2_base() + FMC2_BCR1, bcr1);
mmio_write_32(fmc2_base() + FMC2_PCR, pcr);
mmio_write_32(fmc2_base() + FMC2_PMEM, FMC2_PMEM_DEFAULT);
mmio_write_32(fmc2_base() + FMC2_PATT, FMC2_PATT_DEFAULT);
}
static int stm32_fmc2_exec(struct nand_req *req)
{
int ret = 0;
switch (req->type & NAND_REQ_MASK) {
case NAND_REQ_CMD:
VERBOSE("Write CMD %x\n", (uint8_t)req->type);
mmio_write_8(stm32_fmc2.cs[stm32_fmc2.cs_sel].cmd_base,
(uint8_t)req->type);
break;
case NAND_REQ_ADDR:
VERBOSE("Write ADDR %x\n", *(req->addr));
mmio_write_8(stm32_fmc2.cs[stm32_fmc2.cs_sel].addr_base,
*(req->addr));
break;
case NAND_REQ_DATAIN:
VERBOSE("Read data\n");
stm32_fmc2_read_data(req->nand, req->addr, req->length,
((req->type & NAND_REQ_BUS_WIDTH_8) !=
0U));
break;
case NAND_REQ_DATAOUT:
VERBOSE("Write data\n");
stm32_fmc2_write_data(req->nand, req->addr, req->length,
((req->type & NAND_REQ_BUS_WIDTH_8) !=
0U));
break;
case NAND_REQ_WAIT:
VERBOSE("WAIT Ready\n");
ret = nand_wait_ready(req->delay_ms);
break;
default:
ret = -EINVAL;
break;
};
return ret;
}
static void stm32_fmc2_setup(struct nand_device *nand)
{
uint32_t pcr = mmio_read_32(fmc2_base() + FMC2_PCR);
/* Set buswidth */
pcr &= ~FMC2_PCR_PWID_MASK;
if (nand->buswidth == NAND_BUS_WIDTH_16) {
pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_16);
}
if (nand->ecc.mode == NAND_ECC_HW) {
nand->mtd_read_page = stm32_fmc2_read_page;
pcr &= ~FMC2_PCR_ECCALG;
pcr &= ~FMC2_PCR_BCHECC;
pcr &= ~FMC2_PCR_ECCSS_MASK;
pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
switch (nand->ecc.max_bit_corr) {
case FMC2_ECC_HAM:
nand->ecc.bytes = 3;
break;
case FMC2_ECC_BCH8:
pcr |= FMC2_PCR_ECCALG;
pcr |= FMC2_PCR_BCHECC;
nand->ecc.bytes = 13;
break;
default:
/* Use FMC2 ECC BCH4 */
pcr |= FMC2_PCR_ECCALG;
nand->ecc.bytes = 7;
break;
}
if ((nand->buswidth & NAND_BUS_WIDTH_16) != 0) {
nand->ecc.bytes++;
}
}
mmio_write_32(stm32_fmc2.reg_base + FMC2_PCR, pcr);
}
static const struct nand_ctrl_ops ctrl_ops = {
.setup = stm32_fmc2_setup,
.exec = stm32_fmc2_exec
};
int stm32_fmc2_init(void)
{
int fmc_node;
int fmc_subnode = 0;
int nchips = 0;
unsigned int i;
void *fdt = NULL;
const fdt32_t *cuint;
struct dt_node_info info;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
fmc_node = dt_get_node(&info, -1, DT_FMC2_COMPAT);
if (fmc_node == -FDT_ERR_NOTFOUND) {
WARN("No FMC2 node found\n");
return fmc_node;
}
if (info.status == DT_DISABLED) {
return -FDT_ERR_NOTFOUND;
}
stm32_fmc2.reg_base = info.base;
if ((info.clock < 0) || (info.reset < 0)) {
return -FDT_ERR_BADVALUE;
}
stm32_fmc2.clock_id = (unsigned long)info.clock;
stm32_fmc2.reset_id = (unsigned int)info.reset;
cuint = fdt_getprop(fdt, fmc_node, "reg", NULL);
if (cuint == NULL) {
return -FDT_ERR_BADVALUE;
}
cuint += 2;
for (i = 0U; i < MAX_CS; i++) {
stm32_fmc2.cs[i].data_base = fdt32_to_cpu(*cuint);
stm32_fmc2.cs[i].cmd_base = fdt32_to_cpu(*(cuint + 2));
stm32_fmc2.cs[i].addr_base = fdt32_to_cpu(*(cuint + 4));
cuint += 6;
}
/* Pinctrl initialization */
if (dt_set_pinctrl_config(fmc_node) != 0) {
return -FDT_ERR_BADVALUE;
}
/* Parse flash nodes */
fdt_for_each_subnode(fmc_subnode, fdt, fmc_node) {
nchips++;
}
if (nchips != 1) {
WARN("Only one SLC NAND device supported\n");
return -FDT_ERR_BADVALUE;
}
fdt_for_each_subnode(fmc_subnode, fdt, fmc_node) {
/* Get chip select */
cuint = fdt_getprop(fdt, fmc_subnode, "reg", NULL);
if (cuint == NULL) {
WARN("Chip select not well defined\n");
return -FDT_ERR_BADVALUE;
}
stm32_fmc2.cs_sel = fdt32_to_cpu(*cuint);
VERBOSE("NAND CS %i\n", stm32_fmc2.cs_sel);
}
/* Enable Clock */
stm32mp_clk_enable(stm32_fmc2.clock_id);
/* Reset IP */
stm32mp_reset_assert(stm32_fmc2.reset_id);
stm32mp_reset_deassert(stm32_fmc2.reset_id);
/* Setup default IP registers */
stm32_fmc2_ctrl_init();
/* Setup default timings */
stm32_fmc2_nand_setup_timing();
/* Init NAND RAW framework */
nand_raw_ctrl_init(&ctrl_ops);
return 0;
}
/*
* Copyright (c) 2019, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#ifndef STM32_FMC2_NAND_H
#define STM32_FMC2_NAND_H
int stm32_fmc2_init(void);
#endif /* STM32_FMC2_NAND_H */
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment