Commit 9719e19a authored by Joanna Farley's avatar Joanna Farley Committed by TrustedFirmware Code Review
Browse files

Merge changes I500ddbe9,I9c10dac9,I53bfff85,I06f7594d,I24bff8d4, ... into integration

* changes:
  nxp lx2160a-aqds: new plat based on soc lx2160a
  NXP lx2160a-rdb: new plat based on SoC lx2160a
  nxp lx2162aqds: new plat based on soc lx2160a
  nxp: errata handling at soc level for lx2160a
  nxp: make file for loading additional ddr image
  nxp: adding support of soc lx2160a
  nxp: deflt hdr files for soc & their platforms
  nxp: platform files for bl2 and bl31 setup
  nxp: warm reset support to retain ddr content
  nxp: nv storage api on platforms
  nxp: supports two mode of trusted board boot
  nxp: fip-handler for additional fip_fuse.bin
  nxp: fip-handler for additional ddr-fip.bin
  nxp: image loader for loading fip image
  nxp: svp & sip smc handling
  nxp: psci platform functions used by lib/psci
  nxp: helper function used by plat & common code
  nxp: add data handler used by bl31
  nxp: adding the driver.mk file
  nxp-tool: for creating pbl file from bl2
  nxp: adding the smmu driver
  nxp: cot using nxp internal and mbedtls
  nxp:driver for crypto h/w accelerator caam
  nxp:add driver support for sd and emmc
  nxp:add qspi driver
  nxp: add flexspi driver support
  nxp: adding gic apis for nxp soc
  nxp: gpio driver support
  nxp: added csu driver
  nxp: driver pmu for nxp soc
  nxp: ddr driver enablement for nxp layerscape soc
  nxp: i2c driver support.
  NXP: Driver for NXP Security Monitor
  NXP: SFP driver support for NXP SoC
  NXP: Interconnect API based on ARM CCN-CCI driver
  NXP: TZC API to configure ddr region
  NXP: Timer API added to enable ARM generic timer
  nxp: add dcfg driver
  nxp:add console driver for nxp platform
  tools: add mechanism to allow platform specific image UUID
  tbbr-cot: conditional definition for the macro
  tbbr-cot: fix the issue of compiling time define
  cert_create: updated tool for platform defined certs, keys & extensions
  tbbr-tools: enable override TRUSTED_KEY_CERT
parents b59444ea f359a382
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <common/debug.h>
#include <ddr.h>
#include <dimm.h>
#include <i2c.h>
#include <lib/utils.h>
int read_spd(unsigned char chip, void *buf, int len)
{
unsigned char dummy = 0U;
int ret;
if (len < 256) {
ERROR("Invalid SPD length\n");
return -EINVAL;
}
i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
ret = i2c_read(chip, 0, 1, buf, 256);
if (ret == 0) {
i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
ret = i2c_read(chip, 0, 1, buf + 256, min(256, len - 256));
}
if (ret != 0) {
zeromem(buf, len);
}
return ret;
}
int crc16(unsigned char *ptr, int count)
{
int i;
int crc = 0;
while (--count >= 0) {
crc = crc ^ (int)*ptr++ << 8;
for (i = 0; i < 8; ++i) {
if ((crc & 0x8000) != 0) {
crc = crc << 1 ^ 0x1021;
} else {
crc = crc << 1;
}
}
}
return crc & 0xffff;
}
static int ddr4_spd_check(const struct ddr4_spd *spd)
{
void *p = (void *)spd;
int csum16;
int len;
char crc_lsb; /* byte 126 */
char crc_msb; /* byte 127 */
len = 126;
csum16 = crc16(p, len);
crc_lsb = (char) (csum16 & 0xff);
crc_msb = (char) (csum16 >> 8);
if (spd->crc[0] != crc_lsb || spd->crc[1] != crc_msb) {
ERROR("SPD CRC = 0x%x%x, computed CRC = 0x%x%x\n",
spd->crc[1], spd->crc[0], crc_msb, crc_lsb);
return -EINVAL;
}
p = (void *)spd + 128;
len = 126;
csum16 = crc16(p, len);
crc_lsb = (char) (csum16 & 0xff);
crc_msb = (char) (csum16 >> 8);
if (spd->mod_section.uc[126] != crc_lsb ||
spd->mod_section.uc[127] != crc_msb) {
ERROR("SPD CRC = 0x%x%x, computed CRC = 0x%x%x\n",
spd->mod_section.uc[127], spd->mod_section.uc[126],
crc_msb, crc_lsb);
return -EINVAL;
}
return 0;
}
static unsigned long long
compute_ranksize(const struct ddr4_spd *spd)
{
unsigned long long bsize;
int nbit_sdram_cap_bsize = 0;
int nbit_primary_bus_width = 0;
int nbit_sdram_width = 0;
int die_count = 0;
bool package_3ds;
if ((spd->density_banks & 0xf) <= 7) {
nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
}
if ((spd->bus_width & 0x7) < 4) {
nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
}
if ((spd->organization & 0x7) < 4) {
nbit_sdram_width = (spd->organization & 0x7) + 2;
}
package_3ds = (spd->package_type & 0x3) == 0x2;
if (package_3ds) {
die_count = (spd->package_type >> 4) & 0x7;
}
bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
nbit_primary_bus_width - nbit_sdram_width +
die_count);
return bsize;
}
int cal_dimm_params(const struct ddr4_spd *spd, struct dimm_params *pdimm)
{
int ret;
int i;
static const unsigned char udimm_rc_e_dq[18] = {
0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15,
0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36
};
int spd_error = 0;
unsigned char *ptr;
unsigned char val;
if (spd->mem_type != SPD_MEMTYPE_DDR4) {
ERROR("Not a DDR4 DIMM.\n");
return -EINVAL;
}
ret = ddr4_spd_check(spd);
if (ret != 0) {
ERROR("DIMM SPD checksum mismatch\n");
return -EINVAL;
}
/*
* The part name in ASCII in the SPD EEPROM is not null terminated.
* Guarantee null termination here by presetting all bytes to 0
* and copying the part name in ASCII from the SPD onto it
*/
if ((spd->info_size_crc & 0xF) > 2) {
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
}
/* DIMM organization parameters */
pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
debug("n_ranks %d\n", pdimm->n_ranks);
pdimm->rank_density = compute_ranksize(spd);
if (pdimm->rank_density == 0) {
return -EINVAL;
}
debug("rank_density 0x%llx\n", pdimm->rank_density);
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
debug("capacity 0x%llx\n", pdimm->capacity);
pdimm->die_density = spd->density_banks & 0xf;
debug("die density 0x%x\n", pdimm->die_density);
pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
debug("primary_sdram_width %d\n", pdimm->primary_sdram_width);
if (((spd->bus_width >> 3) & 0x3) != 0) {
pdimm->ec_sdram_width = 8;
} else {
pdimm->ec_sdram_width = 0;
}
debug("ec_sdram_width %d\n", pdimm->ec_sdram_width);
pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
debug("device_width %d\n", pdimm->device_width);
pdimm->package_3ds = (spd->package_type & 0x3) == 0x2 ?
(spd->package_type >> 4) & 0x7 : 0;
debug("package_3ds %d\n", pdimm->package_3ds);
switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) {
case DDR4_SPD_RDIMM:
case DDR4_SPD_MINI_RDIMM:
case DDR4_SPD_72B_SO_RDIMM:
pdimm->rdimm = 1;
pdimm->rc = spd->mod_section.registered.ref_raw_card & 0x8f;
if ((spd->mod_section.registered.reg_map & 0x1) != 0) {
pdimm->mirrored_dimm = 1;
}
val = spd->mod_section.registered.ca_stren;
pdimm->rcw[3] = val >> 4;
pdimm->rcw[4] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
val = spd->mod_section.registered.clk_stren;
pdimm->rcw[5] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
pdimm->rcw[6] = 0xf;
/* A17 used for 16Gb+, C[2:0] used for 3DS */
pdimm->rcw[8] = pdimm->die_density >= 0x6 ? 0x0 : 0x8 |
(pdimm->package_3ds > 0x3 ? 0x0 :
(pdimm->package_3ds > 0x1 ? 0x1 :
(pdimm->package_3ds > 0 ? 0x2 : 0x3)));
if (pdimm->package_3ds != 0 || pdimm->n_ranks != 4) {
pdimm->rcw[13] = 0x4;
} else {
pdimm->rcw[13] = 0x5;
}
pdimm->rcw[13] |= pdimm->mirrored_dimm ? 0x8 : 0;
break;
case DDR4_SPD_UDIMM:
case DDR4_SPD_SO_DIMM:
case DDR4_SPD_MINI_UDIMM:
case DDR4_SPD_72B_SO_UDIMM:
case DDR4_SPD_16B_SO_DIMM:
case DDR4_SPD_32B_SO_DIMM:
pdimm->rc = spd->mod_section.unbuffered.ref_raw_card & 0x8f;
if ((spd->mod_section.unbuffered.addr_mapping & 0x1) != 0) {
pdimm->mirrored_dimm = 1;
}
if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 &&
(spd->mod_section.unbuffered.ref_raw_card == 0x04)) {
/* Fix SPD error found on DIMMs with raw card E0 */
for (i = 0; i < 18; i++) {
if (spd->mapping[i] == udimm_rc_e_dq[i]) {
continue;
}
spd_error = 1;
ptr = (unsigned char *)&spd->mapping[i];
*ptr = udimm_rc_e_dq[i];
}
if (spd_error != 0) {
INFO("SPD DQ mapping error fixed\n");
}
}
break;
default:
ERROR("Unknown module_type 0x%x\n", spd->module_type);
return -EINVAL;
}
debug("rdimm %d\n", pdimm->rdimm);
debug("mirrored_dimm %d\n", pdimm->mirrored_dimm);
debug("rc 0x%x\n", pdimm->rc);
/* SDRAM device parameters */
pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
debug("n_row_addr %d\n", pdimm->n_row_addr);
pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
debug("n_col_addr %d\n", pdimm->n_col_addr);
pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
debug("bank_addr_bits %d\n", pdimm->bank_addr_bits);
pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
debug("bank_group_bits %d\n", pdimm->bank_group_bits);
if (pdimm->ec_sdram_width != 0) {
pdimm->edc_config = 0x02;
} else {
pdimm->edc_config = 0x00;
}
debug("edc_config %d\n", pdimm->edc_config);
/* DDR4 spec has BL8 -bit3, BC4 -bit2 */
pdimm->burst_lengths_bitmask = 0x0c;
debug("burst_lengths_bitmask 0x%x\n", pdimm->burst_lengths_bitmask);
/* MTB - medium timebase
* The MTB in the SPD spec is 125ps,
*
* FTB - fine timebase
* use 1/10th of ps as our unit to avoid floating point
* eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
*/
if ((spd->timebases & 0xf) == 0x0) {
pdimm->mtb_ps = 125;
pdimm->ftb_10th_ps = 10;
} else {
ERROR("Unknown Timebases\n");
return -EINVAL;
}
/* sdram minimum cycle time */
pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
debug("tckmin_x_ps %d\n", pdimm->tckmin_x_ps);
/* sdram max cycle time */
pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
debug("tckmax_ps %d\n", pdimm->tckmax_ps);
/*
* CAS latency supported
* bit0 - CL7
* bit4 - CL11
* bit8 - CL15
* bit12- CL19
* bit16- CL23
*/
pdimm->caslat_x = (spd->caslat_b1 << 7) |
(spd->caslat_b2 << 15) |
(spd->caslat_b3 << 23);
debug("caslat_x 0x%x\n", pdimm->caslat_x);
if (spd->caslat_b4 != 0) {
WARN("Unhandled caslat_b4 value\n");
}
/*
* min CAS latency time
*/
pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
debug("taa_ps %d\n", pdimm->taa_ps);
/*
* min RAS to CAS delay time
*/
pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
debug("trcd_ps %d\n", pdimm->trcd_ps);
/*
* Min Row Precharge Delay Time
*/
pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
debug("trp_ps %d\n", pdimm->trp_ps);
/* min active to precharge delay time */
pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
spd->tras_min_lsb) * pdimm->mtb_ps;
debug("tras_ps %d\n", pdimm->tras_ps);
/* min active to actice/refresh delay time */
pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
spd->trc_min_lsb), spd->fine_trc_min);
debug("trc_ps %d\n", pdimm->trc_ps);
/* Min Refresh Recovery Delay Time */
pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
pdimm->mtb_ps;
debug("trfc1_ps %d\n", pdimm->trfc1_ps);
pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
pdimm->mtb_ps;
debug("trfc2_ps %d\n", pdimm->trfc2_ps);
pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
pdimm->mtb_ps;
debug("trfc4_ps %d\n", pdimm->trfc4_ps);
/* min four active window delay time */
pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
pdimm->mtb_ps;
debug("tfaw_ps %d\n", pdimm->tfaw_ps);
/* min row active to row active delay time, different bank group */
pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
debug("trrds_ps %d\n", pdimm->trrds_ps);
/* min row active to row active delay time, same bank group */
pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
debug("trrdl_ps %d\n", pdimm->trrdl_ps);
/* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
debug("tccdl_ps %d\n", pdimm->tccdl_ps);
if (pdimm->package_3ds != 0) {
if (pdimm->die_density > 5) {
debug("Unsupported logical rank density 0x%x\n",
pdimm->die_density);
return -EINVAL;
}
pdimm->trfc_slr_ps = (pdimm->die_density <= 4) ?
260000 : 350000;
}
debug("trfc_slr_ps %d\n", pdimm->trfc_slr_ps);
/* 15ns for all speed bins */
pdimm->twr_ps = 15000;
debug("twr_ps %d\n", pdimm->twr_ps);
/*
* Average periodic refresh interval
* tREFI = 7.8 us at normal temperature range
*/
pdimm->refresh_rate_ps = 7800000;
debug("refresh_rate_ps %d\n", pdimm->refresh_rate_ps);
for (i = 0; i < 18; i++) {
pdimm->dq_mapping[i] = spd->mapping[i];
debug("dq_mapping 0x%x\n", pdimm->dq_mapping[i]);
}
pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
debug("dq_mapping_ors %d\n", pdimm->dq_mapping_ors);
return 0;
}
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <common/debug.h>
#include <ddr.h>
#include <lib/utils.h>
static inline unsigned int cal_cwl(const unsigned long clk)
{
const unsigned int mclk_ps = get_memory_clk_ps(clk);
return mclk_ps >= 1250U ? 9U :
(mclk_ps >= 1070U ? 10U :
(mclk_ps >= 935U ? 11U :
(mclk_ps >= 833U ? 12U :
(mclk_ps >= 750U ? 14U :
(mclk_ps >= 625U ? 16U : 18U)))));
}
static void cal_csn_config(int i,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm)
{
unsigned int intlv_en = 0U;
unsigned int intlv_ctl = 0U;
const unsigned int cs_n_en = 1U;
const unsigned int ap_n_en = popts->cs_odt[i].auto_precharge;
const unsigned int odt_rd_cfg = popts->cs_odt[i].odt_rd_cfg;
const unsigned int odt_wr_cfg = popts->cs_odt[i].odt_wr_cfg;
const unsigned int ba_bits_cs_n = pdimm->bank_addr_bits;
const unsigned int row_bits_cs_n = pdimm->n_row_addr - 12U;
const unsigned int col_bits_cs_n = pdimm->n_col_addr - 8U;
const unsigned int bg_bits_cs_n = pdimm->bank_group_bits;
if (i == 0) {
/* These fields only available in CS0_CONFIG */
if (popts->ctlr_intlv != 0) {
switch (popts->ctlr_intlv_mode) {
case DDR_256B_INTLV:
intlv_en = popts->ctlr_intlv;
intlv_ctl = popts->ctlr_intlv_mode;
break;
default:
break;
}
}
}
regs->cs[i].config = ((cs_n_en & 0x1) << 31) |
((intlv_en & 0x3) << 29) |
((intlv_ctl & 0xf) << 24) |
((ap_n_en & 0x1) << 23) |
((odt_rd_cfg & 0x7) << 20) |
((odt_wr_cfg & 0x7) << 16) |
((ba_bits_cs_n & 0x3) << 14) |
((row_bits_cs_n & 0x7) << 8) |
((bg_bits_cs_n & 0x3) << 4) |
((col_bits_cs_n & 0x7) << 0);
debug("cs%d\n", i);
debug(" _config = 0x%x\n", regs->cs[i].config);
}
static inline int avoid_odt_overlap(const struct ddr_conf *conf,
const struct dimm_params *pdimm)
{
if ((conf->cs_in_use == 0xf) != 0) {
return 2;
}
#if DDRC_NUM_DIMM >= 2
if (conf->dimm_in_use[0] != 0 && conf->dimm_in_use[1] != 0) {
return 1;
}
#endif
return 0;
}
/* Requires rcw2 set first */
static void cal_timing_cfg(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm,
const struct ddr_conf *conf,
unsigned int cas_latency,
unsigned int additive_latency)
{
const unsigned int mclk_ps = get_memory_clk_ps(clk);
/* tXP=max(4nCK, 6ns) */
const int txp = max((int)mclk_ps * 4, 6000);
/* DDR4 supports 10, 12, 14, 16, 18, 20, 24 */
static const int wrrec_table[] = {
10, 10, 10, 10, 10,
10, 10, 10, 10, 10,
12, 12, 14, 14, 16,
16, 18, 18, 20, 20,
24, 24, 24, 24,
};
int trwt_mclk = (clk / 1000000 > 1900) ? 3 : 2;
int twrt_mclk;
int trrt_mclk;
int twwt_mclk;
const int act_pd_exit_mclk = picos_to_mclk(clk, txp);
const int pre_pd_exit_mclk = act_pd_exit_mclk;
const int taxpd_mclk = 0;
/*
* MRS_CYC = max(tMRD, tMOD)
* tMRD = 8nCK, tMOD = max(24nCK, 15ns)
*/
const int tmrd_mclk = max(24U, picos_to_mclk(clk, 15000));
const int pretoact_mclk = picos_to_mclk(clk, pdimm->trp_ps);
const int acttopre_mclk = picos_to_mclk(clk, pdimm->tras_ps);
const int acttorw_mclk = picos_to_mclk(clk, pdimm->trcd_ps);
const int caslat_ctrl = (cas_latency - 1) << 1;
const int trfc1_min = pdimm->die_density >= 0x3 ? 16000 :
(pdimm->die_density == 0x4 ? 26000 :
(pdimm->die_density == 0x5 ? 35000 :
55000));
const int refrec_ctrl = picos_to_mclk(clk,
pdimm->trfc1_ps) - 8;
int wrrec_mclk = picos_to_mclk(clk, pdimm->twr_ps);
const int acttoact_mclk = max(picos_to_mclk(clk,
pdimm->trrds_ps),
4U);
int wrtord_mclk = max(2U, picos_to_mclk(clk, 2500));
const unsigned int cpo = 0U;
const int wr_lat = cal_cwl(clk);
int rd_to_pre = picos_to_mclk(clk, 7500);
const int wr_data_delay = popts->wr_data_delay;
const int cke_pls = max(3U, picos_to_mclk(clk, 5000));
#ifdef ERRATA_DDR_A050450
const unsigned short four_act = ((popts->twot_en == 0) &&
(popts->threet_en == 0) &&
(popts->tfaw_ps % 2 == 0)) ?
(picos_to_mclk(clk, popts->tfaw_ps) + 1) :
picos_to_mclk(clk, popts->tfaw_ps);
#else
const unsigned short four_act = picos_to_mclk(clk,
popts->tfaw_ps);
#endif
const unsigned int cntl_adj = 0U;
const unsigned int ext_pretoact = picos_to_mclk(clk,
pdimm->trp_ps) >> 4U;
const unsigned int ext_acttopre = picos_to_mclk(clk,
pdimm->tras_ps) >> 4U;
const unsigned int ext_acttorw = picos_to_mclk(clk,
pdimm->trcd_ps) >> 4U;
const unsigned int ext_caslat = (2U * cas_latency - 1U) >> 4U;
const unsigned int ext_add_lat = additive_latency >> 4U;
const unsigned int ext_refrec = (picos_to_mclk(clk,
pdimm->trfc1_ps) - 8U) >> 4U;
const unsigned int ext_wrrec = (picos_to_mclk(clk, pdimm->twr_ps) +
(popts->otf_burst_chop_en ? 2U : 0U)) >> 4U;
const unsigned int rwt_same_cs = 0U;
const unsigned int wrt_same_cs = 0U;
const unsigned int rrt_same_cs = popts->burst_length == DDR_BL8 ? 0U : 2U;
const unsigned int wwt_same_cs = popts->burst_length == DDR_BL8 ? 0U : 2U;
const unsigned int dll_lock = 2U;
unsigned int rodt_on = 0U;
const unsigned int rodt_off = 4U;
const unsigned int wodt_on = 1U;
const unsigned int wodt_off = 4U;
const unsigned int hs_caslat = 0U;
const unsigned int hs_wrlat = 0U;
const unsigned int hs_wrrec = 0U;
const unsigned int hs_clkadj = 0U;
const unsigned int hs_wrlvl_start = 0U;
const unsigned int txpr = max(5U,
picos_to_mclk(clk,
pdimm->trfc1_ps + 10000U));
const unsigned int tcksre = max(5U, picos_to_mclk(clk, 10000U));
const unsigned int tcksrx = max(5U, picos_to_mclk(clk, 10000U));
const unsigned int cs_to_cmd = 0U;
const unsigned int cke_rst = txpr <= 200U ? 0U :
(txpr <= 256U ? 1U :
(txpr <= 512U ? 2U : 3U));
const unsigned int cksre = tcksre <= 19U ? tcksre - 5U : 15U;
const unsigned int cksrx = tcksrx <= 19U ? tcksrx - 5U : 15U;
unsigned int par_lat = 0U;
const int tccdl = max(5U, picos_to_mclk(clk, pdimm->tccdl_ps));
int rwt_bg = cas_latency + 2 + 4 - wr_lat;
int wrt_bg = wr_lat + 4 + 1 - cas_latency;
const int rrt_bg = popts->burst_length == DDR_BL8 ?
tccdl - 4 : tccdl - 2;
const int wwt_bg = popts->burst_length == DDR_BL8 ?
tccdl - 4 : tccdl - 2;
const unsigned int acttoact_bg = picos_to_mclk(clk, pdimm->trrdl_ps);
const unsigned int wrtord_bg = max(4U, picos_to_mclk(clk, 7500)) +
(popts->otf_burst_chop_en ? 2 : 0);
const unsigned int pre_all_rec = 0;
const unsigned int refrec_cid_mclk = pdimm->package_3ds ?
picos_to_mclk(clk, pdimm->trfc_slr_ps) : 0;
const unsigned int acttoact_cid_mclk = pdimm->package_3ds ? 4U : 0;
/* for two dual-rank DIMMs to avoid ODT overlap */
if (avoid_odt_overlap(conf, pdimm) == 2) {
twrt_mclk = 2;
twwt_mclk = 2;
trrt_mclk = 2;
} else {
twrt_mclk = 1;
twwt_mclk = 1;
trrt_mclk = 0;
}
if (popts->trwt_override != 0) {
trwt_mclk = popts->trwt;
if (popts->twrt != 0) {
twrt_mclk = popts->twrt;
}
if (popts->trrt != 0) {
trrt_mclk = popts->trrt;
}
if (popts->twwt != 0) {
twwt_mclk = popts->twwt;
}
}
regs->timing_cfg[0] = (((trwt_mclk & 0x3) << 30) |
((twrt_mclk & 0x3) << 28) |
((trrt_mclk & 0x3) << 26) |
((twwt_mclk & 0x3) << 24) |
((act_pd_exit_mclk & 0xf) << 20) |
((pre_pd_exit_mclk & 0xF) << 16) |
((taxpd_mclk & 0xf) << 8) |
((tmrd_mclk & 0x1f) << 0));
debug("timing_cfg[0] = 0x%x\n", regs->timing_cfg[0]);
if ((wrrec_mclk < 1) || (wrrec_mclk > 24)) {
ERROR("WRREC doesn't support clock %d\n", wrrec_mclk);
} else {
wrrec_mclk = wrrec_table[wrrec_mclk - 1];
}
if (popts->otf_burst_chop_en != 0) {
wrrec_mclk += 2;
wrtord_mclk += 2;
}
if (pdimm->trfc1_ps < trfc1_min) {
ERROR("trfc1_ps (%d) < %d\n", pdimm->trfc1_ps, trfc1_min);
}
regs->timing_cfg[1] = (((pretoact_mclk & 0x0F) << 28) |
((acttopre_mclk & 0x0F) << 24) |
((acttorw_mclk & 0xF) << 20) |
((caslat_ctrl & 0xF) << 16) |
((refrec_ctrl & 0xF) << 12) |
((wrrec_mclk & 0x0F) << 8) |
((acttoact_mclk & 0x0F) << 4) |
((wrtord_mclk & 0x0F) << 0));
debug("timing_cfg[1] = 0x%x\n", regs->timing_cfg[1]);
if (rd_to_pre < 4) {
rd_to_pre = 4;
}
if (popts->otf_burst_chop_en) {
rd_to_pre += 2;
}
regs->timing_cfg[2] = (((additive_latency & 0xf) << 28) |
((cpo & 0x1f) << 23) |
((wr_lat & 0xf) << 19) |
(((wr_lat & 0x10) >> 4) << 18) |
((rd_to_pre & 0xf) << 13) |
((wr_data_delay & 0xf) << 9) |
((cke_pls & 0x7) << 6) |
((four_act & 0x3f) << 0));
debug("timing_cfg[2] = 0x%x\n", regs->timing_cfg[2]);
regs->timing_cfg[3] = (((ext_pretoact & 0x1) << 28) |
((ext_acttopre & 0x3) << 24) |
((ext_acttorw & 0x1) << 22) |
((ext_refrec & 0x3F) << 16) |
((ext_caslat & 0x3) << 12) |
((ext_add_lat & 0x1) << 10) |
((ext_wrrec & 0x1) << 8) |
((cntl_adj & 0x7) << 0));
debug("timing_cfg[3] = 0x%x\n", regs->timing_cfg[3]);
regs->timing_cfg[4] = (((rwt_same_cs & 0xf) << 28) |
((wrt_same_cs & 0xf) << 24) |
((rrt_same_cs & 0xf) << 20) |
((wwt_same_cs & 0xf) << 16) |
((trwt_mclk & 0xc) << 12) |
((twrt_mclk & 0x4) << 10) |
((trrt_mclk & 0x4) << 8) |
((twwt_mclk & 0x4) << 6) |
(dll_lock & 0x3));
debug("timing_cfg[4] = 0x%x\n", regs->timing_cfg[4]);
/* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */
if (cas_latency >= wr_lat) {
rodt_on = cas_latency - wr_lat + 1;
}
regs->timing_cfg[5] = (((rodt_on & 0x1f) << 24) |
((rodt_off & 0x7) << 20) |
((wodt_on & 0x1f) << 12) |
(wodt_off & 0x7) << 8);
debug("timing_cfg[5] = 0x%x\n", regs->timing_cfg[5]);
regs->timing_cfg[6] = (((hs_caslat & 0x1f) << 24) |
((hs_wrlat & 0x1f) << 19) |
((hs_wrrec & 0x1f) << 12) |
((hs_clkadj & 0x1f) << 6) |
((hs_wrlvl_start & 0x1f) << 0));
debug("timing_cfg[6] = 0x%x\n", regs->timing_cfg[6]);
if (popts->ap_en != 0) {
par_lat = (regs->sdram_rcw[1] & 0xf) + 1;
debug("PAR_LAT = 0x%x\n", par_lat);
}
regs->timing_cfg[7] = (((cke_rst & 0x3) << 28) |
((cksre & 0xf) << 24) |
((cksrx & 0xf) << 20) |
((par_lat & 0xf) << 16) |
((cs_to_cmd & 0xf) << 4));
debug("timing_cfg[7] = 0x%x\n", regs->timing_cfg[7]);
if (rwt_bg < tccdl) {
rwt_bg = tccdl - rwt_bg;
} else {
rwt_bg = 0;
}
if (wrt_bg < tccdl) {
wrt_bg = tccdl - wrt_bg;
} else {
wrt_bg = 0;
}
regs->timing_cfg[8] = (((rwt_bg & 0xf) << 28) |
((wrt_bg & 0xf) << 24) |
((rrt_bg & 0xf) << 20) |
((wwt_bg & 0xf) << 16) |
((acttoact_bg & 0xf) << 12) |
((wrtord_bg & 0xf) << 8) |
((pre_all_rec & 0x1f) << 0));
debug("timing_cfg[8] = 0x%x\n", regs->timing_cfg[8]);
regs->timing_cfg[9] = (refrec_cid_mclk & 0x3ff) << 16 |
(acttoact_cid_mclk & 0xf) << 8;
debug("timing_cfg[9] = 0x%x\n", regs->timing_cfg[9]);
}
static void cal_ddr_sdram_rcw(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm)
{
const unsigned int freq = clk / 1000000U;
unsigned int rc0a, rc0f;
if (pdimm->rdimm == 0) {
return;
}
rc0a = freq > 3200U ? 7U :
(freq > 2933U ? 6U :
(freq > 2666U ? 5U :
(freq > 2400U ? 4U :
(freq > 2133U ? 3U :
(freq > 1866U ? 2U :
(freq > 1600U ? 1U : 0U))))));
rc0f = freq > 3200U ? 3U :
(freq > 2400U ? 2U :
(freq > 2133U ? 1U : 0U));
rc0f = (regs->sdram_cfg[1] & SDRAM_CFG2_AP_EN) ? rc0f : 4;
regs->sdram_rcw[0] =
pdimm->rcw[0] << 28 |
pdimm->rcw[1] << 24 |
pdimm->rcw[2] << 20 |
pdimm->rcw[3] << 16 |
pdimm->rcw[4] << 12 |
pdimm->rcw[5] << 8 |
pdimm->rcw[6] << 4 |
pdimm->rcw[7];
regs->sdram_rcw[1] =
pdimm->rcw[8] << 28 |
pdimm->rcw[9] << 24 |
rc0a << 20 |
pdimm->rcw[11] << 16 |
pdimm->rcw[12] << 12 |
pdimm->rcw[13] << 8 |
pdimm->rcw[14] << 4 |
rc0f;
regs->sdram_rcw[2] =
((freq - 1260 + 19) / 20) << 8;
debug("sdram_rcw[0] = 0x%x\n", regs->sdram_rcw[0]);
debug("sdram_rcw[1] = 0x%x\n", regs->sdram_rcw[1]);
debug("sdram_rcw[2] = 0x%x\n", regs->sdram_rcw[2]);
}
static void cal_ddr_sdram_cfg(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm,
const unsigned int ip_rev)
{
const unsigned int mem_en = 1U;
const unsigned int sren = popts->self_refresh_in_sleep;
const unsigned int ecc_en = popts->ecc_mode;
const unsigned int rd_en = (pdimm->rdimm != 0U) ? 1U : 0U;
const unsigned int dyn_pwr = popts->dynamic_power;
const unsigned int dbw = popts->data_bus_used;
const unsigned int eight_be = (dbw == 1U ||
popts->burst_length == DDR_BL8) ? 1U : 0U;
const unsigned int ncap = 0U;
const unsigned int threet_en = popts->threet_en;
const unsigned int twot_en = pdimm->rdimm ?
0U : popts->twot_en;
const unsigned int ba_intlv = popts->ba_intlv;
const unsigned int x32_en = 0U;
const unsigned int pchb8 = 0U;
const unsigned int hse = popts->half_strength_drive_en;
const unsigned int acc_ecc_en = (dbw != 0U && ecc_en == 1U) ? 1U : 0U;
const unsigned int mem_halt = 0U;
#ifdef PHY_GEN2
const unsigned int bi = 1U;
#else
const unsigned int bi = 0U;
#endif
const unsigned int sdram_type = SDRAM_TYPE_DDR4;
unsigned int odt_cfg = 0U;
const unsigned int frc_sr = 0U;
const unsigned int sr_ie = popts->self_refresh_irq_en;
const unsigned int num_pr = pdimm->package_3ds + 1U;
const unsigned int slow = (clk < 1249000000U) ? 1U : 0U;
const unsigned int x4_en = popts->x4_en;
const unsigned int obc_cfg = popts->otf_burst_chop_en;
const unsigned int ap_en = ip_rev == 0x50500U ? 0U : popts->ap_en;
const unsigned int d_init = popts->ctlr_init_ecc;
const unsigned int rcw_en = popts->rdimm;
const unsigned int md_en = popts->mirrored_dimm;
const unsigned int qd_en = popts->quad_rank_present;
const unsigned int unq_mrs_en = ip_rev < 0x50500U ? 1U : 0U;
const unsigned int rd_pre = popts->quad_rank_present;
int i;
regs->sdram_cfg[0] = ((mem_en & 0x1) << 31) |
((sren & 0x1) << 30) |
((ecc_en & 0x1) << 29) |
((rd_en & 0x1) << 28) |
((sdram_type & 0x7) << 24) |
((dyn_pwr & 0x1) << 21) |
((dbw & 0x3) << 19) |
((eight_be & 0x1) << 18) |
((ncap & 0x1) << 17) |
((threet_en & 0x1) << 16) |
((twot_en & 0x1) << 15) |
((ba_intlv & 0x7F) << 8) |
((x32_en & 0x1) << 5) |
((pchb8 & 0x1) << 4) |
((hse & 0x1) << 3) |
((acc_ecc_en & 0x1) << 2) |
((mem_halt & 0x1) << 1) |
((bi & 0x1) << 0);
debug("sdram_cfg[0] = 0x%x\n", regs->sdram_cfg[0]);
for (i = 0; i < DDRC_NUM_CS; i++) {
if (popts->cs_odt[i].odt_rd_cfg != 0 ||
popts->cs_odt[i].odt_wr_cfg != 0) {
odt_cfg = SDRAM_CFG2_ODT_ONLY_READ;
break;
}
}
regs->sdram_cfg[1] = (0
| ((frc_sr & 0x1) << 31)
| ((sr_ie & 0x1) << 30)
| ((odt_cfg & 0x3) << 21)
| ((num_pr & 0xf) << 12)
| ((slow & 1) << 11)
| (x4_en << 10)
| (qd_en << 9)
| (unq_mrs_en << 8)
| ((obc_cfg & 0x1) << 6)
| ((ap_en & 0x1) << 5)
| ((d_init & 0x1) << 4)
| ((rcw_en & 0x1) << 2)
| ((md_en & 0x1) << 0)
);
debug("sdram_cfg[1] = 0x%x\n", regs->sdram_cfg[1]);
regs->sdram_cfg[2] = (rd_pre & 0x1) << 16 |
(popts->rdimm ? 1 : 0);
if (pdimm->package_3ds != 0) {
if (((pdimm->package_3ds + 1) & 0x1) != 0) {
WARN("Unsupported 3DS DIMM\n");
} else {
regs->sdram_cfg[2] |= ((pdimm->package_3ds + 1) >> 1)
<< 4;
}
}
debug("sdram_cfg[2] = 0x%x\n", regs->sdram_cfg[2]);
}
static void cal_ddr_sdram_interval(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm)
{
const unsigned int refint = picos_to_mclk(clk, pdimm->refresh_rate_ps);
const unsigned int bstopre = popts->bstopre;
regs->interval = ((refint & 0xFFFF) << 16) |
((bstopre & 0x3FFF) << 0);
debug("interval = 0x%x\n", regs->interval);
}
/* Require cs and cfg first */
static void cal_ddr_sdram_mode(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct ddr_conf *conf,
const struct dimm_params *pdimm,
unsigned int cas_latency,
unsigned int additive_latency,
const unsigned int ip_rev)
{
int i;
unsigned short esdmode; /* Extended SDRAM mode */
unsigned short sdmode; /* SDRAM mode */
/* Mode Register - MR1 */
const unsigned int qoff = 0;
const unsigned int tdqs_en = 0;
unsigned int rtt;
const unsigned int wrlvl_en = 0;
unsigned int al = 0;
unsigned int dic = 0;
const unsigned int dll_en = 1;
/* Mode Register - MR0 */
unsigned int wr = 0;
const unsigned int dll_rst = 0;
const unsigned int mode = 0;
unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
/* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
const unsigned int bt = 0;
const unsigned int bl = popts->burst_length == DDR_BL8 ? 0 :
(popts->burst_length == DDR_BC4 ? 2 : 1);
const unsigned int wr_mclk = picos_to_mclk(clk, pdimm->twr_ps);
/* DDR4 support WR 10, 12, 14, 16, 18, 20, 24 */
static const int wr_table[] = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6
};
/* DDR4 support CAS 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24 */
static const int cas_latency_table[] = {
0, 1, 2, 3, 4, 5, 6, 7, 13, 8,
14, 9, 15, 10, 12, 11, 16, 17,
18, 19, 20, 21, 22, 23
};
const unsigned int unq_mrs_en = ip_rev < U(0x50500) ? 1U : 0U;
unsigned short esdmode2 = 0U;
unsigned short esdmode3 = 0U;
const unsigned int wr_crc = 0U;
unsigned int rtt_wr = 0U;
const unsigned int srt = 0U;
unsigned int cwl = cal_cwl(clk);
const unsigned int mpr = 0U;
const unsigned int mclk_ps = get_memory_clk_ps(clk);
const unsigned int wc_lat = 0U;
unsigned short esdmode4 = 0U;
unsigned short esdmode5;
int rtt_park_all = 0;
unsigned int rtt_park;
const bool four_cs = conf->cs_in_use == 0xf ? true : false;
unsigned short esdmode6 = 0U; /* Extended SDRAM mode 6 */
unsigned short esdmode7 = 0U; /* Extended SDRAM mode 7 */
const unsigned int tccdl_min = max(5U,
picos_to_mclk(clk, pdimm->tccdl_ps));
if (popts->rtt_override != 0U) {
rtt = popts->rtt_override_value;
} else {
rtt = popts->cs_odt[0].odt_rtt_norm;
}
if (additive_latency == (cas_latency - 1)) {
al = 1;
}
if (additive_latency == (cas_latency - 2)) {
al = 2;
}
if (popts->quad_rank_present != 0 || popts->output_driver_impedance != 0) {
dic = 1; /* output driver impedance 240/7 ohm */
}
esdmode = (((qoff & 0x1) << 12) |
((tdqs_en & 0x1) << 11) |
((rtt & 0x7) << 8) |
((wrlvl_en & 0x1) << 7) |
((al & 0x3) << 3) |
((dic & 0x3) << 1) |
((dll_en & 0x1) << 0));
if (wr_mclk >= 10 && wr_mclk <= 24) {
wr = wr_table[wr_mclk - 10];
} else {
ERROR("unsupported wc_mclk = %d for mode register\n", wr_mclk);
}
/* look up table to get the cas latency bits */
if (cas_latency >= 9 && cas_latency <= 32) {
caslat = cas_latency_table[cas_latency - 9];
} else {
WARN("Error: unsupported cas latency for mode register\n");
}
sdmode = (((caslat & 0x10) << 8) |
((wr & 0x7) << 9) |
((dll_rst & 0x1) << 8) |
((mode & 0x1) << 7) |
(((caslat >> 1) & 0x7) << 4) |
((bt & 0x1) << 3) |
((caslat & 1) << 2) |
((bl & 0x3) << 0));
regs->sdram_mode[0] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
debug("sdram_mode[0] = 0x%x\n", regs->sdram_mode[0]);
switch (cwl) {
case 9:
case 10:
case 11:
case 12:
cwl -= 9;
break;
case 14:
cwl -= 10;
break;
case 16:
cwl -= 11;
break;
case 18:
cwl -= 12;
break;
case 20:
cwl -= 13;
break;
default:
printf("Error CWL\n");
break;
}
if (popts->rtt_override != 0) {
rtt_wr = popts->rtt_wr_override_value;
} else {
rtt_wr = popts->cs_odt[0].odt_rtt_wr;
}
esdmode2 = ((wr_crc & 0x1) << 12) |
((rtt_wr & 0x7) << 9) |
((srt & 0x3) << 6) |
((cwl & 0x7) << 3);
esdmode3 = ((mpr & 0x3) << 11) | ((wc_lat & 0x3) << 9);
regs->sdram_mode[1] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
debug("sdram_mode[1] = 0x%x\n", regs->sdram_mode[1]);
esdmode6 = ((tccdl_min - 4) & 0x7) << 10;
if (popts->vref_dimm != 0) {
esdmode6 |= popts->vref_dimm & 0x7f;
} else if ((popts->ddr_cdr2 & DDR_CDR2_VREF_RANGE_2) != 0) {
esdmode6 |= 1 << 6; /* Range 2 */
}
regs->sdram_mode[9] = ((esdmode6 & 0xffff) << 16) |
((esdmode7 & 0xffff) << 0);
debug("sdram_mode[9] = 0x%x\n", regs->sdram_mode[9]);
rtt_park = (popts->rtt_park != 0) ? popts->rtt_park : 240;
switch (rtt_park) {
case 240:
rtt_park = 0x4;
break;
case 120:
rtt_park = 0x2;
break;
case 80:
rtt_park = 0x6;
break;
case 60:
rtt_park = 0x1;
break;
case 48:
rtt_park = 0x5;
break;
case 40:
rtt_park = 0x3;
break;
case 34:
rtt_park = 0x7;
break;
default:
rtt_park = 0;
break;
}
for (i = 0; i < DDRC_NUM_CS; i++) {
if (i != 0 && unq_mrs_en == 0) {
break;
}
if (popts->rtt_override != 0) {
rtt = popts->rtt_override_value;
rtt_wr = popts->rtt_wr_override_value;
} else {
rtt = popts->cs_odt[i].odt_rtt_norm;
rtt_wr = popts->cs_odt[i].odt_rtt_wr;
}
esdmode &= 0xF8FF; /* clear bit 10,9,8 for rtt */
esdmode |= (rtt & 0x7) << 8;
esdmode2 &= 0xF9FF; /* clear bit 10, 9 */
esdmode2 |= (rtt_wr & 0x3) << 9;
esdmode5 = (popts->x4_en) ? 0 : 0x400; /* data mask */
if (rtt_park_all == 0 &&
((regs->cs[i].config & SDRAM_CS_CONFIG_EN) != 0)) {
esdmode5 |= rtt_park << 6;
rtt_park_all = four_cs ? 0 : 1;
}
if (((regs->sdram_cfg[1] & SDRAM_CFG2_AP_EN) != 0) &&
(popts->rdimm == 0)) {
if (mclk_ps >= 935) {
esdmode5 |= DDR_MR5_CA_PARITY_LAT_4_CLK;
} else if (mclk_ps >= 833) {
esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
} else {
esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
WARN("mclk_ps not supported %d", mclk_ps);
}
}
switch (i) {
case 0:
regs->sdram_mode[8] = ((esdmode4 & 0xffff) << 16) |
((esdmode5 & 0xffff) << 0);
debug("sdram_mode[8] = 0x%x\n", regs->sdram_mode[8]);
break;
case 1:
regs->sdram_mode[2] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
regs->sdram_mode[3] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
regs->sdram_mode[10] = ((esdmode4 & 0xFFFF) << 16) |
((esdmode5 & 0xFFFF) << 0);
regs->sdram_mode[11] = ((esdmode6 & 0xFFFF) << 16) |
((esdmode7 & 0xFFFF) << 0);
debug("sdram_mode[2] = 0x%x\n", regs->sdram_mode[2]);
debug("sdram_mode[3] = 0x%x\n", regs->sdram_mode[3]);
debug("sdram_mode[10] = 0x%x\n", regs->sdram_mode[10]);
debug("sdram_mode[11] = 0x%x\n", regs->sdram_mode[11]);
break;
case 2:
regs->sdram_mode[4] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
regs->sdram_mode[5] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
regs->sdram_mode[12] = ((esdmode4 & 0xFFFF) << 16) |
((esdmode5 & 0xFFFF) << 0);
regs->sdram_mode[13] = ((esdmode6 & 0xFFFF) << 16) |
((esdmode7 & 0xFFFF) << 0);
debug("sdram_mode[4] = 0x%x\n", regs->sdram_mode[4]);
debug("sdram_mode[5] = 0x%x\n", regs->sdram_mode[5]);
debug("sdram_mode[12] = 0x%x\n", regs->sdram_mode[12]);
debug("sdram_mode[13] = 0x%x\n", regs->sdram_mode[13]);
break;
case 3:
regs->sdram_mode[6] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
regs->sdram_mode[7] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
regs->sdram_mode[14] = ((esdmode4 & 0xFFFF) << 16) |
((esdmode5 & 0xFFFF) << 0);
regs->sdram_mode[15] = ((esdmode6 & 0xFFFF) << 16) |
((esdmode7 & 0xFFFF) << 0);
debug("sdram_mode[6] = 0x%x\n", regs->sdram_mode[6]);
debug("sdram_mode[7] = 0x%x\n", regs->sdram_mode[7]);
debug("sdram_mode[14] = 0x%x\n", regs->sdram_mode[14]);
debug("sdram_mode[15] = 0x%x\n", regs->sdram_mode[15]);
break;
default:
break;
}
}
}
#ifndef CONFIG_MEM_INIT_VALUE
#define CONFIG_MEM_INIT_VALUE 0xDEADBEEF
#endif
static void cal_ddr_data_init(struct ddr_cfg_regs *regs)
{
regs->data_init = CONFIG_MEM_INIT_VALUE;
}
static void cal_ddr_dq_mapping(struct ddr_cfg_regs *regs,
const struct dimm_params *pdimm)
{
const unsigned int acc_ecc_en = (regs->sdram_cfg[0] >> 2) & 0x1;
/* FIXME: revert the dq mapping from DIMM */
regs->dq_map[0] = ((pdimm->dq_mapping[0] & 0x3F) << 26) |
((pdimm->dq_mapping[1] & 0x3F) << 20) |
((pdimm->dq_mapping[2] & 0x3F) << 14) |
((pdimm->dq_mapping[3] & 0x3F) << 8) |
((pdimm->dq_mapping[4] & 0x3F) << 2);
regs->dq_map[1] = ((pdimm->dq_mapping[5] & 0x3F) << 26) |
((pdimm->dq_mapping[6] & 0x3F) << 20) |
((pdimm->dq_mapping[7] & 0x3F) << 14) |
((pdimm->dq_mapping[10] & 0x3F) << 8) |
((pdimm->dq_mapping[11] & 0x3F) << 2);
regs->dq_map[2] = ((pdimm->dq_mapping[12] & 0x3F) << 26) |
((pdimm->dq_mapping[13] & 0x3F) << 20) |
((pdimm->dq_mapping[14] & 0x3F) << 14) |
((pdimm->dq_mapping[15] & 0x3F) << 8) |
((pdimm->dq_mapping[16] & 0x3F) << 2);
/* dq_map for ECC[4:7] is set to 0 if accumulated ECC is enabled */
regs->dq_map[3] = ((pdimm->dq_mapping[17] & 0x3F) << 26) |
((pdimm->dq_mapping[8] & 0x3F) << 20) |
((acc_ecc_en != 0) ? 0 :
(pdimm->dq_mapping[9] & 0x3F) << 14) |
pdimm->dq_mapping_ors;
debug("dq_map[0] = 0x%x\n", regs->dq_map[0]);
debug("dq_map[1] = 0x%x\n", regs->dq_map[1]);
debug("dq_map[2] = 0x%x\n", regs->dq_map[2]);
debug("dq_map[3] = 0x%x\n", regs->dq_map[3]);
}
static void cal_ddr_zq_cntl(struct ddr_cfg_regs *regs)
{
const unsigned int zqinit = 10U; /* 1024 clocks */
const unsigned int zqoper = 9U; /* 512 clocks */
const unsigned int zqcs = 7U; /* 128 clocks */
const unsigned int zqcs_init = 5U; /* 1024 refresh seqences */
const unsigned int zq_en = 1U; /* enabled */
regs->zq_cntl = ((zq_en & 0x1) << 31) |
((zqinit & 0xF) << 24) |
((zqoper & 0xF) << 16) |
((zqcs & 0xF) << 8) |
((zqcs_init & 0xF) << 0);
debug("zq_cntl = 0x%x\n", regs->zq_cntl);
}
static void cal_ddr_sr_cntr(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
const unsigned int sr_it = (popts->auto_self_refresh_en) ?
popts->sr_it : 0;
regs->ddr_sr_cntr = (sr_it & 0xF) << 16;
debug("ddr_sr_cntr = 0x%x\n", regs->ddr_sr_cntr);
}
static void cal_ddr_eor(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
if (popts->addr_hash != 0) {
regs->eor = 0x40000000; /* address hash enable */
debug("eor = 0x%x\n", regs->eor);
}
}
static void cal_ddr_csn_bnds(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct ddr_conf *conf,
const struct dimm_params *pdimm)
{
int i;
unsigned long long ea, sa;
/* Chip Select Memory Bounds (CSn_BNDS) */
for (i = 0;
i < DDRC_NUM_CS && conf->cs_size[i];
i++) {
debug("cs_in_use = 0x%x\n", conf->cs_in_use);
if (conf->cs_in_use != 0) {
sa = conf->cs_base_addr[i];
ea = sa + conf->cs_size[i] - 1;
sa >>= 24;
ea >>= 24;
regs->cs[i].bnds = ((sa & 0xffff) << 16) |
((ea & 0xffff) << 0);
cal_csn_config(i, regs, popts, pdimm);
} else {
/* setting bnds to 0xffffffff for inactive CS */
regs->cs[i].bnds = 0xffffffff;
}
debug("cs[%d].bnds = 0x%x\n", i, regs->cs[i].bnds);
}
}
static void cal_ddr_addr_dec(struct ddr_cfg_regs *regs)
{
#ifdef CONFIG_DDR_ADDR_DEC
unsigned int ba_bits __unused;
char p __unused;
const unsigned int cs0_config = regs->cs[0].config;
const int cacheline = PLATFORM_CACHE_LINE_SHIFT;
unsigned int bg_bits;
unsigned int row_bits;
unsigned int col_bits;
unsigned int cs;
unsigned int map_row[18];
unsigned int map_col[11];
unsigned int map_ba[2];
unsigned int map_cid[2] = {0x3F, 0x3F};
unsigned int map_bg[2] = {0x3F, 0x3F};
unsigned int map_cs[2] = {0x3F, 0x3F};
unsigned int dbw;
unsigned int ba_intlv;
int placement;
int intlv;
int abort = 0;
int i;
int j;
col_bits = (cs0_config >> 0) & 0x7;
if (col_bits < 4) {
col_bits += 8;
} else if (col_bits < 7 || col_bits > 10) {
ERROR("Error %s col_bits = %d\n", __func__, col_bits);
}
row_bits = ((cs0_config >> 8) & 0x7) + 12;
ba_bits = ((cs0_config >> 14) & 0x3) + 2;
bg_bits = ((cs0_config >> 4) & 0x3) + 0;
intlv = (cs0_config >> 24) & 0xf;
ba_intlv = (regs->sdram_cfg[0] >> 8) & 0x7f;
switch (ba_intlv) {
case DDR_BA_INTLV_CS01:
cs = 1;
break;
case DDR_BA_INTLV_CS0123:
cs = 2;
break;
case DDR_BA_NONE:
cs = 0;
break;
default:
ERROR("%s ba_intlv 0x%x\n", __func__, ba_intlv);
return;
}
debug("col %d, row %d, ba %d, bg %d, intlv %d\n",
col_bits, row_bits, ba_bits, bg_bits, intlv);
/*
* Example mapping of 15x2x2x10
* ---- --rr rrrr rrrr rrrr rCBB Gccc cccI cGcc cbbb
*/
dbw = (regs->sdram_cfg[0] >> 19) & 0x3;
switch (dbw) {
case 0: /* 64-bit */
placement = 3;
break;
case 1: /* 32-bit */
placement = 2;
break;
default:
ERROR("%s dbw = %d\n", __func__, dbw);
return;
}
debug("cacheline size %d\n", cacheline);
for (i = 0; placement < cacheline; i++) {
map_col[i] = placement++;
}
map_bg[0] = placement++;
for ( ; i < col_bits; i++) {
map_col[i] = placement++;
if (placement == intlv) {
placement++;
}
}
for ( ; i < 11; i++) {
map_col[i] = 0x3F; /* unused col bits */
}
if (bg_bits >= 2) {
map_bg[1] = placement++;
}
map_ba[0] = placement++;
map_ba[1] = placement++;
if (cs != 0U) {
map_cs[0] = placement++;
if (cs == 2U) {
map_cs[1] = placement++;
}
} else {
map_cs[0] = U(0x3F);
}
for (i = 0; i < row_bits; i++) {
map_row[i] = placement++;
}
for ( ; i < 18; i++) {
map_row[i] = 0x3F; /* unused row bits */
}
for (i = 39; i >= 0 ; i--) {
if (i == intlv) {
placement = 8;
p = 'I';
} else if (i < 3) {
p = 'b';
placement = 0;
} else {
placement = 0;
p = '-';
}
for (j = 0; j < 18; j++) {
if (map_row[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'r';
}
for (j = 0; j < 11; j++) {
if (map_col[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'c';
}
for (j = 0; j < 2; j++) {
if (map_ba[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'B';
}
for (j = 0; j < 2; j++) {
if (map_bg[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'G';
}
for (j = 0; j < 2; j++) {
if (map_cs[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'C';
}
#ifdef DDR_DEBUG
printf("%c", p);
if ((i % 4) == 0) {
printf(" ");
}
#endif
}
#ifdef DDR_DEBUG
puts("\n");
#endif
if (abort != 0) {
return;
}
regs->dec[0] = map_row[17] << 26 |
map_row[16] << 18 |
map_row[15] << 10 |
map_row[14] << 2;
regs->dec[1] = map_row[13] << 26 |
map_row[12] << 18 |
map_row[11] << 10 |
map_row[10] << 2;
regs->dec[2] = map_row[9] << 26 |
map_row[8] << 18 |
map_row[7] << 10 |
map_row[6] << 2;
regs->dec[3] = map_row[5] << 26 |
map_row[4] << 18 |
map_row[3] << 10 |
map_row[2] << 2;
regs->dec[4] = map_row[1] << 26 |
map_row[0] << 18 |
map_col[10] << 10 |
map_col[9] << 2;
regs->dec[5] = map_col[8] << 26 |
map_col[7] << 18 |
map_col[6] << 10 |
map_col[5] << 2;
regs->dec[6] = map_col[4] << 26 |
map_col[3] << 18 |
map_col[2] << 10 |
map_col[1] << 2;
regs->dec[7] = map_col[0] << 26 |
map_ba[1] << 18 |
map_ba[0] << 10 |
map_cid[1] << 2;
regs->dec[8] = map_cid[1] << 26 |
map_cs[1] << 18 |
map_cs[0] << 10 |
map_bg[1] << 2;
regs->dec[9] = map_bg[0] << 26 |
1;
for (i = 0; i < 10; i++) {
debug("dec[%d] = 0x%x\n", i, regs->dec[i]);
}
#endif
}
static unsigned int skip_caslat(unsigned int tckmin_ps,
unsigned int taamin_ps,
unsigned int mclk_ps,
unsigned int package_3ds)
{
int i, j, k;
struct cas {
const unsigned int tckmin_ps;
const unsigned int caslat[4];
};
struct speed {
const struct cas *cl;
const unsigned int taamin_ps[4];
};
const struct cas cl_3200[] = {
{625, {0xa00000, 0xb00000, 0xf000000,} },
{750, { 0x20000, 0x60000, 0xe00000,} },
{833, { 0x8000, 0x18000, 0x38000,} },
{937, { 0x4000, 0x4000, 0xc000,} },
{1071, { 0x1000, 0x1000, 0x3000,} },
{1250, { 0x400, 0x400, 0xc00,} },
{1500, { 0, 0x600, 0x200,} },
};
const struct cas cl_2933[] = {
{682, { 0, 0x80000, 0x180000, 0x380000} },
{750, { 0x20000, 0x60000, 0x60000, 0xe0000} },
{833, { 0x8000, 0x18000, 0x18000, 0x38000} },
{937, { 0x4000, 0x4000, 0x4000, 0xc000} },
{1071, { 0x1000, 0x1000, 0x1000, 0x3000} },
{1250, { 0x400, 0x400, 0x400, 0xc00} },
{1500, { 0, 0x200, 0x200, 0x200} },
};
const struct cas cl_2666[] = {
{750, { 0, 0x20000, 0x60000, 0xe0000} },
{833, { 0x8000, 0x18000, 0x18000, 0x38000} },
{937, { 0x4000, 0x4000, 0x4000, 0xc000} },
{1071, { 0x1000, 0x1000, 0x1000, 0x3000} },
{1250, { 0x400, 0x400, 0x400, 0xc00} },
{1500, { 0, 0, 0x200, 0x200} },
};
const struct cas cl_2400[] = {
{833, { 0, 0x8000, 0x18000, 0x38000} },
{937, { 0xc000, 0x4000, 0x4000, 0xc000} },
{1071, { 0x3000, 0x1000, 0x1000, 0x3000} },
{1250, { 0xc00, 0x400, 0x400, 0xc00} },
{1500, { 0, 0x400, 0x200, 0x200} },
};
const struct cas cl_2133[] = {
{937, { 0, 0x4000, 0xc000,} },
{1071, { 0x2000, 0, 0x2000,} },
{1250, { 0x800, 0, 0x800,} },
{1500, { 0, 0x400, 0x200,} },
};
const struct cas cl_1866[] = {
{1071, { 0, 0x1000, 0x3000,} },
{1250, { 0xc00, 0x400, 0xc00,} },
{1500, { 0, 0x400, 0x200,} },
};
const struct cas cl_1600[] = {
{1250, { 0, 0x400, 0xc00,} },
{1500, { 0, 0x400, 0x200,} },
};
const struct speed bin_0[] = {
{cl_3200, {12500, 13750, 15000,} },
{cl_2933, {12960, 13640, 13750, 15000,} },
{cl_2666, {12750, 13500, 13750, 15000,} },
{cl_2400, {12500, 13320, 13750, 15000,} },
{cl_2133, {13130, 13500, 15000,} },
{cl_1866, {12850, 13500, 15000,} },
{cl_1600, {12500, 13500, 15000,} }
};
const struct cas cl_3200_3ds[] = {
{625, { 0xa000000, 0xb000000, 0xf000000,} },
{750, { 0xaa00000, 0xab00000, 0xef00000,} },
{833, { 0xaac0000, 0xaac0000, 0xebc0000,} },
{937, { 0xaab0000, 0xaab0000, 0xeaf0000,} },
{1071, { 0xaaa4000, 0xaaac000, 0xeaec000,} },
{1250, { 0xaaa0000, 0xaaa2000, 0xeaeb000,} },
};
const struct cas cl_2666_3ds[] = {
{750, { 0xa00000, 0xb00000, 0xf00000,} },
{833, { 0xac0000, 0xac0000, 0xbc0000,} },
{937, { 0xab0000, 0xab0000, 0xaf0000,} },
{1071, { 0xaa4000, 0xaac000, 0xaac000,} },
{1250, { 0xaa0000, 0xaaa000, 0xaaa000,} },
};
const struct cas cl_2400_3ds[] = {
{833, { 0xe00000, 0xe40000, 0xec0000, 0xb00000} },
{937, { 0xe00000, 0xe00000, 0xea0000, 0xae0000} },
{1071, { 0xe00000, 0xe04000, 0xeac000, 0xaec000} },
{1250, { 0xe00000, 0xe00000, 0xeaa000, 0xae2000} },
};
const struct cas cl_2133_3ds[] = {
{937, { 0x90000, 0xb0000, 0xf0000,} },
{1071, { 0x84000, 0xac000, 0xec000,} },
{1250, { 0x80000, 0xa2000, 0xe2000,} },
};
const struct cas cl_1866_3ds[] = {
{1071, { 0, 0x4000, 0xc000,} },
{1250, { 0, 0x1000, 0x3000,} },
};
const struct cas cl_1600_3ds[] = {
{1250, { 0, 0x1000, 0x3000,} },
};
const struct speed bin_3ds[] = {
{cl_3200_3ds, {15000, 16250, 17140,} },
{cl_2666_3ds, {15000, 16500, 17140,} },
{cl_2400_3ds, {15000, 15830, 16670, 17140} },
{cl_2133_3ds, {15950, 16880, 17140,} },
{cl_1866_3ds, {15000, 16070, 17140,} },
{cl_1600_3ds, {15000, 16250, 17500,} },
};
const struct speed *bin;
int size;
unsigned int taamin_max, tck_max;
if (taamin_ps > ((package_3ds != 0) ? 21500 : 18000)) {
ERROR("taamin_ps %u invalid\n", taamin_ps);
return 0;
}
if (package_3ds != 0) {
bin = bin_3ds;
size = ARRAY_SIZE(bin_3ds);
taamin_max = 1250;
tck_max = 1500;
} else {
bin = bin_0;
size = ARRAY_SIZE(bin_0);
taamin_max = 1500;
tck_max = 1600;
}
if (mclk_ps < 625 || mclk_ps > tck_max) {
ERROR("mclk %u invalid\n", mclk_ps);
return 0;
}
for (i = 0; i < size; i++) {
if (bin[i].cl[0].tckmin_ps >= tckmin_ps) {
break;
}
}
if (i >= size) {
ERROR("speed bin not found\n");
return 0;
}
if (bin[i].cl[0].tckmin_ps > tckmin_ps && i > 0) {
i--;
}
for (j = 0; j < 4; j++) {
if ((bin[i].taamin_ps[j] == 0) ||
bin[i].taamin_ps[j] >= taamin_ps) {
break;
}
}
if (j >= 4) {
ERROR("taamin_ps out of range.\n");
return 0;
}
if ((bin[i].taamin_ps[j] == 0) ||
(bin[i].taamin_ps[j] > taamin_ps && j > 0)) {
j--;
}
for (k = 0; bin[i].cl[k].tckmin_ps < mclk_ps &&
bin[i].cl[k].tckmin_ps < taamin_max; k++)
;
if (bin[i].cl[k].tckmin_ps > mclk_ps && k > 0) {
k--;
}
debug("Skip CL mask for this speed 0x%x\n", bin[i].cl[k].caslat[j]);
return bin[i].cl[k].caslat[j];
}
int compute_ddrc(const unsigned long clk,
const struct memctl_opt *popts,
const struct ddr_conf *conf,
struct ddr_cfg_regs *regs,
const struct dimm_params *pdimm,
unsigned int ip_rev)
{
unsigned int cas_latency;
unsigned int caslat_skip;
unsigned int additive_latency;
const unsigned int mclk_ps = get_memory_clk_ps(clk);
int i;
zeromem(regs, sizeof(struct ddr_cfg_regs));
if (mclk_ps < pdimm->tckmin_x_ps) {
ERROR("DDR Clk: MCLK cycle is %u ps.\n", mclk_ps);
ERROR("DDR Clk is faster than DIMM can support.\n");
}
/* calculate cas latency, override first */
cas_latency = (popts->caslat_override != 0) ?
popts->caslat_override_value :
(pdimm->taa_ps + mclk_ps - 1) / mclk_ps;
/* skip unsupported caslat based on speed bin */
caslat_skip = skip_caslat(pdimm->tckmin_x_ps,
pdimm->taa_ps,
mclk_ps,
pdimm->package_3ds);
debug("Skip caslat 0x%x\n", caslat_skip);
/* Check if DIMM supports the cas latency */
i = 24;
while (((pdimm->caslat_x & ~caslat_skip & (1 << cas_latency)) == 0) &&
(i-- > 0)) {
cas_latency++;
}
if (i <= 0) {
ERROR("Failed to find a proper cas latency\n");
return -EINVAL;
}
/* Verify cas latency does not exceed 18ns for DDR4 */
if (cas_latency * mclk_ps > 18000) {
ERROR("cas latency is too large %d\n", cas_latency);
return -EINVAL;
}
additive_latency = (popts->addt_lat_override != 0) ?
popts->addt_lat_override_value : 0;
cal_ddr_csn_bnds(regs, popts, conf, pdimm);
cal_ddr_sdram_cfg(clk, regs, popts, pdimm, ip_rev);
cal_ddr_sdram_rcw(clk, regs, popts, pdimm);
cal_timing_cfg(clk, regs, popts, pdimm, conf, cas_latency,
additive_latency);
cal_ddr_dq_mapping(regs, pdimm);
if (ip_rev >= 0x50500) {
cal_ddr_addr_dec(regs);
}
cal_ddr_sdram_mode(clk, regs, popts, conf, pdimm, cas_latency,
additive_latency, ip_rev);
cal_ddr_eor(regs, popts);
cal_ddr_data_init(regs);
cal_ddr_sdram_interval(clk, regs, popts, pdimm);
cal_ddr_zq_cntl(regs);
cal_ddr_sr_cntr(regs, popts);
return 0;
}
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <common/debug.h>
#include <ddr.h>
#include <immap.h>
#include <lib/mmio.h>
#define UL_5POW12 244140625UL
#define ULL_2E12 2000000000000ULL
#define UL_2POW13 (1UL << 13)
#define ULL_8FS 0xFFFFFFFFULL
#define do_div(n, base) ({ \
unsigned int __base = (base); \
unsigned int __rem; \
__rem = ((unsigned long long)(n)) % __base; \
(n) = ((unsigned long long)(n)) / __base; \
__rem; \
})
#define CCN_HN_F_SAM_NODEID_MASK 0x7f
#ifdef NXP_HAS_CCN504
#define CCN_HN_F_SAM_NODEID_DDR0 0x4
#define CCN_HN_F_SAM_NODEID_DDR1 0xe
#elif defined(NXP_HAS_CCN508)
#define CCN_HN_F_SAM_NODEID_DDR0 0x8
#define CCN_HN_F_SAM_NODEID_DDR1 0x18
#endif
unsigned long get_ddr_freq(struct sysinfo *sys, int ctrl_num)
{
if (sys->freq_ddr_pll0 == 0) {
get_clocks(sys);
}
switch (ctrl_num) {
case 0:
return sys->freq_ddr_pll0;
case 1:
return sys->freq_ddr_pll0;
case 2:
return sys->freq_ddr_pll1;
}
return 0;
}
unsigned int get_memory_clk_ps(const unsigned long data_rate)
{
unsigned int result;
/* Round to nearest 10ps, being careful about 64-bit multiply/divide */
unsigned long long rem, mclk_ps = ULL_2E12;
/* Now perform the big divide, the result fits in 32-bits */
rem = do_div(mclk_ps, data_rate);
result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
return result;
}
unsigned int picos_to_mclk(unsigned long data_rate, unsigned int picos)
{
unsigned long long clks, clks_rem;
/* Short circuit for zero picos */
if ((picos == 0U) || (data_rate == 0UL)) {
return 0U;
}
/* First multiply the time by the data rate (32x32 => 64) */
clks = picos * (unsigned long long)data_rate;
/*
* Now divide by 5^12 and track the 32-bit remainder, then divide
* by 2*(2^12) using shifts (and updating the remainder).
*/
clks_rem = do_div(clks, UL_5POW12);
clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
clks >>= 13U;
/* If we had a remainder greater than the 1ps error, then round up */
if (clks_rem > data_rate) {
clks++;
}
/* Clamp to the maximum representable value */
if (clks > ULL_8FS) {
clks = ULL_8FS;
}
return (unsigned int) clks;
}
/* valid_spd_mask has been checked by parse_spd */
int disable_unused_ddrc(struct ddr_info *priv,
int valid_spd_mask, uintptr_t nxp_ccn_hn_f0_addr)
{
#if defined(NXP_HAS_CCN504) || defined(NXP_HAS_CCN508)
void *hnf_sam_ctrl = (void *)(nxp_ccn_hn_f0_addr + CCN_HN_F_SAM_CTL);
uint32_t val, nodeid;
#ifdef NXP_HAS_CCN504
uint32_t num_hnf_nodes = 4U;
#else
uint32_t num_hnf_nodes = 8U;
#endif
int disable_ddrc = 0;
int i;
if (priv->num_ctlrs < 2) {
debug("%s: nothing to do.\n", __func__);
}
switch (priv->dimm_on_ctlr) {
case 1:
disable_ddrc = ((valid_spd_mask &0x2) == 0) ? 2 : 0;
disable_ddrc = ((valid_spd_mask &0x1) == 0) ? 1 : disable_ddrc;
break;
case 2:
disable_ddrc = ((valid_spd_mask &0x4) == 0) ? 2 : 0;
disable_ddrc = ((valid_spd_mask &0x1) == 0) ? 1 : disable_ddrc;
break;
default:
ERROR("Invalid number of DIMMs %d\n", priv->dimm_on_ctlr);
return -EINVAL;
}
if (disable_ddrc != 0) {
debug("valid_spd_mask = 0x%x\n", valid_spd_mask);
}
switch (disable_ddrc) {
case 1:
priv->num_ctlrs = 1;
priv->spd_addr = &priv->spd_addr[priv->dimm_on_ctlr];
priv->ddr[0] = priv->ddr[1];
priv->ddr[1] = NULL;
priv->phy[0] = priv->phy[0];
priv->phy[1] = NULL;
debug("Disable first DDR controller\n");
break;
case 2:
priv->num_ctlrs = 1;
priv->ddr[1] = NULL;
priv->phy[1] = NULL;
debug("Disable second DDR controller\n");
/* fallthrough */
case 0:
break;
default:
ERROR("Program error.\n");
return -EINVAL;
}
if (disable_ddrc == 0) {
debug("Both controllers in use.\n");
return 0;
}
for (i = 0; i < num_hnf_nodes; i++) {
val = mmio_read_64((uintptr_t)hnf_sam_ctrl);
nodeid = disable_ddrc == 1 ? CCN_HN_F_SAM_NODEID_DDR1 :
(disable_ddrc == 2 ? CCN_HN_F_SAM_NODEID_DDR0 :
(i < 4 ? CCN_HN_F_SAM_NODEID_DDR0
: CCN_HN_F_SAM_NODEID_DDR1));
if (nodeid != (val & CCN_HN_F_SAM_NODEID_MASK)) {
debug("Setting HN-F node %d\n", i);
debug("nodeid = 0x%x\n", nodeid);
val &= ~CCN_HN_F_SAM_NODEID_MASK;
val |= nodeid;
mmio_write_64((uintptr_t)hnf_sam_ctrl, val);
}
hnf_sam_ctrl += CCN_HN_F_REGION_SIZE;
}
#endif
return 0;
}
unsigned int get_ddrc_version(const struct ccsr_ddr *ddr)
{
unsigned int ver;
ver = (ddr_in32(&ddr->ip_rev1) & 0xFFFF) << 8U;
ver |= (ddr_in32(&ddr->ip_rev2) & 0xFF00) >> 8U;
return ver;
}
void print_ddr_info(struct ccsr_ddr *ddr)
{
unsigned int cs0_config = ddr_in32(&ddr->csn_cfg[0]);
unsigned int sdram_cfg = ddr_in32(&ddr->sdram_cfg);
int cas_lat;
if ((sdram_cfg & SDRAM_CFG_MEM_EN) == 0U) {
printf(" (DDR not enabled)\n");
return;
}
printf("DDR");
switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
SDRAM_CFG_SDRAM_TYPE_SHIFT) {
case SDRAM_TYPE_DDR4:
printf("4");
break;
default:
printf("?");
break;
}
switch (sdram_cfg & SDRAM_CFG_DBW_MASK) {
case SDRAM_CFG_32_BW:
printf(", 32-bit");
break;
case SDRAM_CFG_16_BW:
printf(", 16-bit");
break;
case SDRAM_CFG_8_BW:
printf(", 8-bit");
break;
default:
printf(", 64-bit");
break;
}
/* Calculate CAS latency based on timing cfg values */
cas_lat = ((ddr_in32(&ddr->timing_cfg_1) >> 16) & 0xf);
cas_lat += 2; /* for DDRC newer than 4.4 */
cas_lat += ((ddr_in32(&ddr->timing_cfg_3) >> 12) & 3) << 4;
printf(", CL=%d", cas_lat >> 1);
if ((cas_lat & 0x1) != 0) {
printf(".5");
}
if ((sdram_cfg & SDRAM_CFG_ECC_EN) != 0) {
printf(", ECC on");
} else {
printf(", ECC off");
}
if ((cs0_config & 0x20000000) != 0) {
printf(", ");
switch ((cs0_config >> 24) & 0xf) {
case DDR_256B_INTLV:
printf("256B");
break;
default:
printf("invalid");
break;
}
}
if (((sdram_cfg >> 8) & 0x7f) != 0) {
printf(", ");
switch (sdram_cfg >> 8 & 0x7f) {
case DDR_BA_INTLV_CS0123:
printf("CS0+CS1+CS2+CS3");
break;
case DDR_BA_INTLV_CS01:
printf("CS0+CS1");
break;
default:
printf("invalid");
break;
}
}
printf("\n");
}
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <common/debug.h>
#include <ddr.h>
static void cal_ddr_sdram_clk_cntl(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
const unsigned int clk_adj = popts->clk_adj;
const unsigned int ss_en = 0U;
regs->clk_cntl = ((ss_en & U(0x1)) << 31U) |
((clk_adj & U(0x1F)) << 22U);
debug("clk_cntl = 0x%x\n", regs->clk_cntl);
}
static void cal_ddr_cdr(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
regs->cdr[0] = popts->ddr_cdr1;
regs->cdr[1] = popts->ddr_cdr2;
debug("cdr[0] = 0x%x\n", regs->cdr[0]);
debug("cdr[1] = 0x%x\n", regs->cdr[1]);
}
static void cal_ddr_wrlvl_cntl(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
const unsigned int wrlvl_en = 1U; /* enabled */
const unsigned int wrlvl_mrd = U(0x6); /* > 40nCK */
const unsigned int wrlvl_odten = U(0x7); /* 128 */
const unsigned int wrlvl_dqsen = U(0x5); /* > 25nCK */
const unsigned int wrlvl_wlr = U(0x6); /* > tWLO + 6 */
const unsigned int wrlvl_smpl = popts->wrlvl_override ?
popts->wrlvl_sample : U(0xf);
const unsigned int wrlvl_start = popts->wrlvl_start;
regs->wrlvl_cntl[0] = ((wrlvl_en & U(0x1)) << 31U) |
((wrlvl_mrd & U(0x7)) << 24U) |
((wrlvl_odten & U(0x7)) << 20U) |
((wrlvl_dqsen & U(0x7)) << 16U) |
((wrlvl_smpl & U(0xf)) << 12U) |
((wrlvl_wlr & U(0x7)) << 8U) |
((wrlvl_start & U(0x1F)) << 0U);
regs->wrlvl_cntl[1] = popts->wrlvl_ctl_2;
regs->wrlvl_cntl[2] = popts->wrlvl_ctl_3;
debug("wrlvl_cntl[0] = 0x%x\n", regs->wrlvl_cntl[0]);
debug("wrlvl_cntl[1] = 0x%x\n", regs->wrlvl_cntl[1]);
debug("wrlvl_cntl[2] = 0x%x\n", regs->wrlvl_cntl[2]);
}
static void cal_ddr_dbg(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
if (popts->cswl_override != 0) {
regs->debug[18] = popts->cswl_override;
}
#ifdef CONFIG_SYS_FSL_DDR_EMU
/* disable DDR training for emulator */
regs->debug[2] = U(0x00000400);
regs->debug[4] = U(0xff800800);
regs->debug[5] = U(0x08000800);
regs->debug[6] = U(0x08000800);
regs->debug[7] = U(0x08000800);
regs->debug[8] = U(0x08000800);
#endif
if (popts->cpo_sample != 0U) {
regs->debug[28] = popts->cpo_sample;
debug("debug[28] = 0x%x\n", regs->debug[28]);
}
}
int compute_ddr_phy(struct ddr_info *priv)
{
const struct memctl_opt *popts = &priv->opt;
struct ddr_cfg_regs *regs = &priv->ddr_reg;
cal_ddr_sdram_clk_cntl(regs, popts);
cal_ddr_cdr(regs, popts);
cal_ddr_wrlvl_cntl(regs, popts);
cal_ddr_dbg(regs, popts);
return 0;
}
/*
* Copyright 2021 NXP
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef CSR_H
#define CSR_H
#define t_anib 0
#define t_dbyte 0x10000
#define t_master 0x20000
#define t_acsm 0x40000
#define t_initeng 0x90000
#define t_drtub 0xc0000
#define t_apbonly 0xd0000
#define csr_dbyte_misc_mode_addr 0x00
#define csr_micro_cont_mux_sel_addr 0x00
#define csr_uct_shadow_regs 0x04
#define csr_cal_uclk_info_addr 0x08
#define csr_seq0bdly0_addr 0x0b
#define csr_seq0bdly1_addr 0x0c
#define csr_seq0bdly2_addr 0x0d
#define csr_seq0bdly3_addr 0x0e
#define csr_seq0bdisable_flag0_addr 0x0c
#define csr_seq0bdisable_flag1_addr 0x0d
#define csr_seq0bdisable_flag2_addr 0x0e
#define csr_seq0bdisable_flag3_addr 0x0f
#define csr_seq0bdisable_flag4_addr 0x10
#define csr_seq0bdisable_flag5_addr 0x11
#define csr_seq0bdisable_flag6_addr 0x12
#define csr_seq0bdisable_flag7_addr 0x13
#define csr_dfi_mode_addr 0x18
#define csr_tristate_mode_ca_addr 0x19
#define csr_dfiphyupd_addr 0x21
#define csr_dqs_preamble_control_addr 0x24
#define csr_master_x4config_addr 0x25
#define csr_enable_cs_multicast_addr 0x27
#define csr_acx4_anib_dis_addr 0x2c
#define csr_dmipin_present_addr 0x2d
#define csr_ard_ptr_init_val_addr 0x2e
#define csr_dct_write_prot 0x31
#define csr_uct_write_only_shadow 0x32
#define csr_uct_write_prot 0x33
#define csr_uct_dat_write_only_shadow 0x34
#define csr_dbyte_dll_mode_cntrl_addr 0x3a
#define csr_atx_impedance_addr 0x43
#define csr_dq_dqs_rcv_cntrl_addr 0x43
#define csr_cal_offsets_addr 0x45
#define csr_tx_impedance_ctrl1_addr 0x49
#define csr_dq_dqs_rcv_cntrl1_addr 0x4a
#define csr_tx_odt_drv_stren_addr 0x4d
#define csr_cal_drv_str0_addr 0x50
#define csr_atx_slew_rate_addr 0x55
#define csr_proc_odt_time_ctl_addr 0x56
#define csr_mem_alert_control_addr 0x5b
#define csr_mem_alert_control2_addr 0x5c
#define csr_tx_slew_rate_addr 0x5f
#define csr_mem_reset_l_addr 0x60
#define csr_dfi_camode_addr 0x75
#define csr_dll_gain_ctl_addr 0x7c
#define csr_dll_lockparam_addr 0x7d
#define csr_ucclk_hclk_enables_addr 0x80
#define csr_acsm_playback0x0_addr 0x80
#define csr_acsm_playback1x0_addr 0x81
#define csr_cal_rate_addr 0x88
#define csr_cal_zap_addr 0x89
#define csr_cal_misc2_addr 0x98
#define csr_micro_reset_addr 0x99
#define csr_dfi_rd_data_cs_dest_map_addr 0xb0
#define csr_vref_in_global_addr 0xb2
#define csr_dfi_wr_data_cs_dest_map_addr 0xb4
#define csr_pll_pwr_dn_addr 0xc3
#define csr_pll_ctrl2_addr 0xc5
#define csr_pll_ctrl1_addr 0xc7
#define csr_pll_test_mode_addr 0xca
#define csr_pll_ctrl4_addr 0xcc
#define csr_dfi_freq_xlat0_addr 0xf0
#define csr_acsm_ctrl0_addr 0xf0
#define csr_dfi_freq_ratio_addr 0xfa
#define csr_acsm_ctrl13_addr 0xfd
#define csr_tx_pre_drv_mode_lsb 8
#define csr_tx_pre_n_lsb 4
#define csr_tx_pre_p_lsb 0
#define csr_atx_pre_drv_mode_lsb 8
#define csr_atx_pre_n_lsb 4
#define csr_atx_pre_p_lsb 0
#define csr_wdqsextension_lsb 8
#define csr_lp4sttc_pre_bridge_rx_en_lsb 7
#define csr_lp4postamble_ext_lsb 6
#define csr_lp4tgl_two_tck_tx_dqs_pre_lsb 5
#define csr_position_dfe_init_lsb 2
#define csr_two_tck_tx_dqs_pre_lsb 1
#define csr_two_tck_rx_dqs_pre_lsb 0
#define csr_dll_rx_preamble_mode_lsb 1
#define csr_odtstren_n_lsb 6
#define csr_drv_stren_fsdq_n_lsb 6
#define csr_drv_stren_fsdq_p_lsb 0
#define csr_adrv_stren_n_lsb 5
#define csr_adrv_stren_p_lsb 0
#define csr_cal_drv_str_pu50_lsb 4
#define csr_cal_once_lsb 5
#define csr_cal_interval_lsb 0
#define csr_cal_run_lsb 4
#define csr_global_vref_in_dac_lsb 3
#define csr_gain_curr_adj_lsb 7
#define csr_major_mode_dbyte_lsb 4
#define csr_dfe_ctrl_lsb 2
#define csr_ext_vref_range_lsb 1
#define csr_sel_analog_vref_lsb 0
#define csr_malertsync_bypass_lsb 0
#define csr_ck_dis_val_lsb 2
#define csr_ddr2tmode_lsb 1
#define csr_dis_dyn_adr_tri_lsb 0
#define csr_dbyte_disable_lsb 2
#define csr_power_down_rcvr_lsb 0
#define csr_power_down_rcvr_dqs_lsb 9
#define csr_rx_pad_standby_en_lsb 10
#define csr_rx_pad_standby_en_mask 0x400
#define csr_x4tg_lsb 0
#define csr_reset_to_micro_mask 0x8
#define csr_protect_mem_reset_mask 0x2
#define csr_stall_to_micro_mask 0x1
#define uct_write_prot_shadow_mask 0x1
#define csr_acsm_par_mode_mask 0x4000
#define csr_acsm_cke_enb_lsb 0
#define csr_dfiphyupd_threshold_lsb 8
#define csr_dfiphyupd_threshold_msb 11
#define csr_dfiphyupd_threshold_mask 0xf00
#define csr_dfi_rd_destm0_lsb 0
#define csr_dfi_rd_destm1_lsb 2
#define csr_dfi_rd_destm2_lsb 4
#define csr_dfi_rd_destm3_lsb 6
#define csr_dfi_wr_destm0_lsb 0
#define csr_dfi_wr_destm1_lsb 2
#define csr_dfi_wr_destm2_lsb 4
#define csr_dfi_wr_destm3_lsb 6
#define csr_acsm_2t_mode_mask 0x40
#define csr_cal_misc2_err_dis 13
#define csr_cal_offset_pdc_lsb 6
#define csr_cal_offset_pdc_msb 9
#define csr_cal_offset_pdc_mask 0xe0
#define csr_cal_drv_pdth_mask 0x3c0
struct impedance_mapping {
int ohm;
int code;
};
#endif
/*
* Copyright 2021 NXP
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef DDR4FW
#define DDR4FW
#define PHY_GEN2_MAX_IMAGE_SIZE 32768
#define PHY_GEN2_IMEM_ADDR 0x50000
#define PHY_GEN2_DMEM_ADDR 0x54000
struct ddr4u1d {
uint8_t reserved00;
uint8_t msg_misc;
uint16_t pmu_revision;
uint8_t pstate;
uint8_t pll_bypass_en;
uint16_t dramfreq;
uint8_t dfi_freq_ratio;
uint8_t bpznres_val;
uint8_t phy_odt_impedance;
uint8_t phy_drv_impedance;
uint8_t phy_vref;
uint8_t dram_type;
uint8_t disabled_dbyte;
uint8_t enabled_dqs;
uint8_t cs_present;
uint8_t cs_present_d0;
uint8_t cs_present_d1;
uint8_t addr_mirror;
uint8_t cs_test_fail;
uint8_t phy_cfg;
uint16_t sequence_ctrl;
uint8_t hdt_ctrl;
uint8_t reserved19[0x1B - 0x19];
uint8_t share2dvref_result;
uint8_t reserved1c[0x22 - 0x1c];
uint16_t phy_config_override;
uint8_t dfimrlmargin;
int8_t cdd_rr_3_2;
int8_t cdd_rr_3_1;
int8_t cdd_rr_3_0;
int8_t cdd_rr_2_3;
int8_t cdd_rr_2_1;
int8_t cdd_rr_2_0;
int8_t cdd_rr_1_3;
int8_t cdd_rr_1_2;
int8_t cdd_rr_1_0;
int8_t cdd_rr_0_3;
int8_t cdd_rr_0_2;
int8_t cdd_rr_0_1;
int8_t cdd_ww_3_2;
int8_t cdd_ww_3_1;
int8_t cdd_ww_3_0;
int8_t cdd_ww_2_3;
int8_t cdd_ww_2_1;
int8_t cdd_ww_2_0;
int8_t cdd_ww_1_3;
int8_t cdd_ww_1_2;
int8_t cdd_ww_1_0;
int8_t cdd_ww_0_3;
int8_t cdd_ww_0_2;
int8_t cdd_ww_0_1;
int8_t cdd_rw_3_3;
int8_t cdd_rw_3_2;
int8_t cdd_rw_3_1;
int8_t cdd_rw_3_0;
int8_t cdd_rw_2_3;
int8_t cdd_rw_2_2;
int8_t cdd_rw_2_1;
int8_t cdd_rw_2_0;
int8_t cdd_rw_1_3;
int8_t cdd_rw_1_2;
int8_t cdd_rw_1_1;
int8_t cdd_rw_1_0;
int8_t cdd_rw_0_3;
int8_t cdd_rw_0_2;
int8_t cdd_rw_0_1;
int8_t cdd_rw_0_0;
int8_t cdd_wr_3_3;
int8_t cdd_wr_3_2;
int8_t cdd_wr_3_1;
int8_t cdd_wr_3_0;
int8_t cdd_wr_2_3;
int8_t cdd_wr_2_2;
int8_t cdd_wr_2_1;
int8_t cdd_wr_2_0;
int8_t cdd_wr_1_3;
int8_t cdd_wr_1_2;
int8_t cdd_wr_1_1;
int8_t cdd_wr_1_0;
int8_t cdd_wr_0_3;
int8_t cdd_wr_0_2;
int8_t cdd_wr_0_1;
int8_t cdd_wr_0_0;
uint8_t reserved5d;
uint16_t mr0;
uint16_t mr1;
uint16_t mr2;
uint16_t mr3;
uint16_t mr4;
uint16_t mr5;
uint16_t mr6;
uint8_t x16present;
uint8_t cs_setup_gddec;
uint16_t rtt_nom_wr_park0;
uint16_t rtt_nom_wr_park1;
uint16_t rtt_nom_wr_park2;
uint16_t rtt_nom_wr_park3;
uint16_t rtt_nom_wr_park4;
uint16_t rtt_nom_wr_park5;
uint16_t rtt_nom_wr_park6;
uint16_t rtt_nom_wr_park7;
uint8_t acsm_odt_ctrl0;
uint8_t acsm_odt_ctrl1;
uint8_t acsm_odt_ctrl2;
uint8_t acsm_odt_ctrl3;
uint8_t acsm_odt_ctrl4;
uint8_t acsm_odt_ctrl5;
uint8_t acsm_odt_ctrl6;
uint8_t acsm_odt_ctrl7;
uint8_t vref_dq_r0nib0;
uint8_t vref_dq_r0nib1;
uint8_t vref_dq_r0nib2;
uint8_t vref_dq_r0nib3;
uint8_t vref_dq_r0nib4;
uint8_t vref_dq_r0nib5;
uint8_t vref_dq_r0nib6;
uint8_t vref_dq_r0nib7;
uint8_t vref_dq_r0nib8;
uint8_t vref_dq_r0nib9;
uint8_t vref_dq_r0nib10;
uint8_t vref_dq_r0nib11;
uint8_t vref_dq_r0nib12;
uint8_t vref_dq_r0nib13;
uint8_t vref_dq_r0nib14;
uint8_t vref_dq_r0nib15;
uint8_t vref_dq_r0nib16;
uint8_t vref_dq_r0nib17;
uint8_t vref_dq_r0nib18;
uint8_t vref_dq_r0nib19;
uint8_t vref_dq_r1nib0;
uint8_t vref_dq_r1nib1;
uint8_t vref_dq_r1nib2;
uint8_t vref_dq_r1nib3;
uint8_t vref_dq_r1nib4;
uint8_t vref_dq_r1nib5;
uint8_t vref_dq_r1nib6;
uint8_t vref_dq_r1nib7;
uint8_t vref_dq_r1nib8;
uint8_t vref_dq_r1nib9;
uint8_t vref_dq_r1nib10;
uint8_t vref_dq_r1nib11;
uint8_t vref_dq_r1nib12;
uint8_t vref_dq_r1nib13;
uint8_t vref_dq_r1nib14;
uint8_t vref_dq_r1nib15;
uint8_t vref_dq_r1nib16;
uint8_t vref_dq_r1nib17;
uint8_t vref_dq_r1nib18;
uint8_t vref_dq_r1nib19;
uint8_t vref_dq_r2nib0;
uint8_t vref_dq_r2nib1;
uint8_t vref_dq_r2nib2;
uint8_t vref_dq_r2nib3;
uint8_t vref_dq_r2nib4;
uint8_t vref_dq_r2nib5;
uint8_t vref_dq_r2nib6;
uint8_t vref_dq_r2nib7;
uint8_t vref_dq_r2nib8;
uint8_t vref_dq_r2nib9;
uint8_t vref_dq_r2nib10;
uint8_t vref_dq_r2nib11;
uint8_t vref_dq_r2nib12;
uint8_t vref_dq_r2nib13;
uint8_t vref_dq_r2nib14;
uint8_t vref_dq_r2nib15;
uint8_t vref_dq_r2nib16;
uint8_t vref_dq_r2nib17;
uint8_t vref_dq_r2nib18;
uint8_t vref_dq_r2nib19;
uint8_t vref_dq_r3nib0;
uint8_t vref_dq_r3nib1;
uint8_t vref_dq_r3nib2;
uint8_t vref_dq_r3nib3;
uint8_t vref_dq_r3nib4;
uint8_t vref_dq_r3nib5;
uint8_t vref_dq_r3nib6;
uint8_t vref_dq_r3nib7;
uint8_t vref_dq_r3nib8;
uint8_t vref_dq_r3nib9;
uint8_t vref_dq_r3nib10;
uint8_t vref_dq_r3nib11;
uint8_t vref_dq_r3nib12;
uint8_t vref_dq_r3nib13;
uint8_t vref_dq_r3nib14;
uint8_t vref_dq_r3nib15;
uint8_t vref_dq_r3nib16;
uint8_t vref_dq_r3nib17;
uint8_t vref_dq_r3nib18;
uint8_t vref_dq_r3nib19;
uint8_t reserved_d6[0x3f6 - 0xd6];
uint16_t alt_cas_l;
uint8_t alt_wcas_l;
uint8_t d4misc;
} __packed;
struct ddr4u2d {
uint8_t reserved00;
uint8_t msg_misc;
uint16_t pmu_revision;
uint8_t pstate;
uint8_t pll_bypass_en;
uint16_t dramfreq;
uint8_t dfi_freq_ratio;
uint8_t bpznres_val;
uint8_t phy_odt_impedance;
uint8_t phy_drv_impedance;
uint8_t phy_vref;
uint8_t dram_type;
uint8_t disabled_dbyte;
uint8_t enabled_dqs;
uint8_t cs_present;
uint8_t cs_present_d0;
uint8_t cs_present_d1;
uint8_t addr_mirror;
uint8_t cs_test_fail;
uint8_t phy_cfg;
uint16_t sequence_ctrl;
uint8_t hdt_ctrl;
uint8_t rx2d_train_opt;
uint8_t tx2d_train_opt;
uint8_t share2dvref_result;
uint8_t delay_weight2d;
uint8_t voltage_weight2d;
uint8_t reserved1e[0x22 - 0x1e];
uint16_t phy_config_override;
uint8_t dfimrlmargin;
uint8_t r0_rx_clk_dly_margin;
uint8_t r0_vref_dac_margin;
uint8_t r0_tx_dq_dly_margin;
uint8_t r0_device_vref_margin;
uint8_t reserved29[0x33 - 0x29];
uint8_t r1_rx_clk_dly_margin;
uint8_t r1_vref_dac_margin;
uint8_t r1_tx_dq_dly_margin;
uint8_t r1_device_vref_margin;
uint8_t reserved37[0x41 - 0x37];
uint8_t r2_rx_clk_dly_margin;
uint8_t r2_vref_dac_margin;
uint8_t r2_tx_dq_dly_margin;
uint8_t r2_device_vref_margin;
uint8_t reserved45[0x4f - 0x45];
uint8_t r3_rx_clk_dly_margin;
uint8_t r3_vref_dac_margin;
uint8_t r3_tx_dq_dly_margin;
uint8_t r3_device_vref_margin;
uint8_t reserved53[0x5e - 0x53];
uint16_t mr0;
uint16_t mr1;
uint16_t mr2;
uint16_t mr3;
uint16_t mr4;
uint16_t mr5;
uint16_t mr6;
uint8_t x16present;
uint8_t cs_setup_gddec;
uint16_t rtt_nom_wr_park0;
uint16_t rtt_nom_wr_park1;
uint16_t rtt_nom_wr_park2;
uint16_t rtt_nom_wr_park3;
uint16_t rtt_nom_wr_park4;
uint16_t rtt_nom_wr_park5;
uint16_t rtt_nom_wr_park6;
uint16_t rtt_nom_wr_park7;
uint8_t acsm_odt_ctrl0;
uint8_t acsm_odt_ctrl1;
uint8_t acsm_odt_ctrl2;
uint8_t acsm_odt_ctrl3;
uint8_t acsm_odt_ctrl4;
uint8_t acsm_odt_ctrl5;
uint8_t acsm_odt_ctrl6;
uint8_t acsm_odt_ctrl7;
uint8_t vref_dq_r0nib0;
uint8_t vref_dq_r0nib1;
uint8_t vref_dq_r0nib2;
uint8_t vref_dq_r0nib3;
uint8_t vref_dq_r0nib4;
uint8_t vref_dq_r0nib5;
uint8_t vref_dq_r0nib6;
uint8_t vref_dq_r0nib7;
uint8_t vref_dq_r0nib8;
uint8_t vref_dq_r0nib9;
uint8_t vref_dq_r0nib10;
uint8_t vref_dq_r0nib11;
uint8_t vref_dq_r0nib12;
uint8_t vref_dq_r0nib13;
uint8_t vref_dq_r0nib14;
uint8_t vref_dq_r0nib15;
uint8_t vref_dq_r0nib16;
uint8_t vref_dq_r0nib17;
uint8_t vref_dq_r0nib18;
uint8_t vref_dq_r0nib19;
uint8_t vref_dq_r1nib0;
uint8_t vref_dq_r1nib1;
uint8_t vref_dq_r1nib2;
uint8_t vref_dq_r1nib3;
uint8_t vref_dq_r1nib4;
uint8_t vref_dq_r1nib5;
uint8_t vref_dq_r1nib6;
uint8_t vref_dq_r1nib7;
uint8_t vref_dq_r1nib8;
uint8_t vref_dq_r1nib9;
uint8_t vref_dq_r1nib10;
uint8_t vref_dq_r1nib11;
uint8_t vref_dq_r1nib12;
uint8_t vref_dq_r1nib13;
uint8_t vref_dq_r1nib14;
uint8_t vref_dq_r1nib15;
uint8_t vref_dq_r1nib16;
uint8_t vref_dq_r1nib17;
uint8_t vref_dq_r1nib18;
uint8_t vref_dq_r1nib19;
uint8_t vref_dq_r2nib0;
uint8_t vref_dq_r2nib1;
uint8_t vref_dq_r2nib2;
uint8_t vref_dq_r2nib3;
uint8_t vref_dq_r2nib4;
uint8_t vref_dq_r2nib5;
uint8_t vref_dq_r2nib6;
uint8_t vref_dq_r2nib7;
uint8_t vref_dq_r2nib8;
uint8_t vref_dq_r2nib9;
uint8_t vref_dq_r2nib10;
uint8_t vref_dq_r2nib11;
uint8_t vref_dq_r2nib12;
uint8_t vref_dq_r2nib13;
uint8_t vref_dq_r2nib14;
uint8_t vref_dq_r2nib15;
uint8_t vref_dq_r2nib16;
uint8_t vref_dq_r2nib17;
uint8_t vref_dq_r2nib18;
uint8_t vref_dq_r2nib19;
uint8_t vref_dq_r3nib0;
uint8_t vref_dq_r3nib1;
uint8_t vref_dq_r3nib2;
uint8_t vref_dq_r3nib3;
uint8_t vref_dq_r3nib4;
uint8_t vref_dq_r3nib5;
uint8_t vref_dq_r3nib6;
uint8_t vref_dq_r3nib7;
uint8_t vref_dq_r3nib8;
uint8_t vref_dq_r3nib9;
uint8_t vref_dq_r3nib10;
uint8_t vref_dq_r3nib11;
uint8_t vref_dq_r3nib12;
uint8_t vref_dq_r3nib13;
uint8_t vref_dq_r3nib14;
uint8_t vref_dq_r3nib15;
uint8_t vref_dq_r3nib16;
uint8_t vref_dq_r3nib17;
uint8_t vref_dq_r3nib18;
uint8_t vref_dq_r3nib19;
uint8_t reserved_d6[0x3f6 - 0xd6];
uint16_t alt_cas_l;
uint8_t alt_wcas_l;
uint8_t d4misc;
} __packed;
struct ddr4r1d {
uint8_t reserved00;
uint8_t msg_misc;
uint16_t pmu_revision;
uint8_t pstate;
uint8_t pll_bypass_en;
uint16_t dramfreq;
uint8_t dfi_freq_ratio;
uint8_t bpznres_val;
uint8_t phy_odt_impedance;
uint8_t phy_drv_impedance;
uint8_t phy_vref;
uint8_t dram_type;
uint8_t disabled_dbyte;
uint8_t enabled_dqs;
uint8_t cs_present;
uint8_t cs_present_d0;
uint8_t cs_present_d1;
uint8_t addr_mirror;
uint8_t cs_test_fail;
uint8_t phy_cfg;
uint16_t sequence_ctrl;
uint8_t hdt_ctrl;
uint8_t reserved19[0x22 - 0x19];
uint16_t phy_config_override;
uint8_t dfimrlmargin;
int8_t cdd_rr_3_2;
int8_t cdd_rr_3_1;
int8_t cdd_rr_3_0;
int8_t cdd_rr_2_3;
int8_t cdd_rr_2_1;
int8_t cdd_rr_2_0;
int8_t cdd_rr_1_3;
int8_t cdd_rr_1_2;
int8_t cdd_rr_1_0;
int8_t cdd_rr_0_3;
int8_t cdd_rr_0_2;
int8_t cdd_rr_0_1;
int8_t cdd_ww_3_2;
int8_t cdd_ww_3_1;
int8_t cdd_ww_3_0;
int8_t cdd_ww_2_3;
int8_t cdd_ww_2_1;
int8_t cdd_ww_2_0;
int8_t cdd_ww_1_3;
int8_t cdd_ww_1_2;
int8_t cdd_ww_1_0;
int8_t cdd_ww_0_3;
int8_t cdd_ww_0_2;
int8_t cdd_ww_0_1;
int8_t cdd_rw_3_3;
int8_t cdd_rw_3_2;
int8_t cdd_rw_3_1;
int8_t cdd_rw_3_0;
int8_t cdd_rw_2_3;
int8_t cdd_rw_2_2;
int8_t cdd_rw_2_1;
int8_t cdd_rw_2_0;
int8_t cdd_rw_1_3;
int8_t cdd_rw_1_2;
int8_t cdd_rw_1_1;
int8_t cdd_rw_1_0;
int8_t cdd_rw_0_3;
int8_t cdd_rw_0_2;
int8_t cdd_rw_0_1;
int8_t cdd_rw_0_0;
int8_t cdd_wr_3_3;
int8_t cdd_wr_3_2;
int8_t cdd_wr_3_1;
int8_t cdd_wr_3_0;
int8_t cdd_wr_2_3;
int8_t cdd_wr_2_2;
int8_t cdd_wr_2_1;
int8_t cdd_wr_2_0;
int8_t cdd_wr_1_3;
int8_t cdd_wr_1_2;
int8_t cdd_wr_1_1;
int8_t cdd_wr_1_0;
int8_t cdd_wr_0_3;
int8_t cdd_wr_0_2;
int8_t cdd_wr_0_1;
int8_t cdd_wr_0_0;
uint8_t reserved5d;
uint16_t mr0;
uint16_t mr1;
uint16_t mr2;
uint16_t mr3;
uint16_t mr4;
uint16_t mr5;
uint16_t mr6;
uint8_t x16present;
uint8_t cs_setup_gddec;
uint16_t rtt_nom_wr_park0;
uint16_t rtt_nom_wr_park1;
uint16_t rtt_nom_wr_park2;
uint16_t rtt_nom_wr_park3;
uint16_t rtt_nom_wr_park4;
uint16_t rtt_nom_wr_park5;
uint16_t rtt_nom_wr_park6;
uint16_t rtt_nom_wr_park7;
uint8_t acsm_odt_ctrl0;
uint8_t acsm_odt_ctrl1;
uint8_t acsm_odt_ctrl2;
uint8_t acsm_odt_ctrl3;
uint8_t acsm_odt_ctrl4;
uint8_t acsm_odt_ctrl5;
uint8_t acsm_odt_ctrl6;
uint8_t acsm_odt_ctrl7;
uint8_t vref_dq_r0nib0;
uint8_t vref_dq_r0nib1;
uint8_t vref_dq_r0nib2;
uint8_t vref_dq_r0nib3;
uint8_t vref_dq_r0nib4;
uint8_t vref_dq_r0nib5;
uint8_t vref_dq_r0nib6;
uint8_t vref_dq_r0nib7;
uint8_t vref_dq_r0nib8;
uint8_t vref_dq_r0nib9;
uint8_t vref_dq_r0nib10;
uint8_t vref_dq_r0nib11;
uint8_t vref_dq_r0nib12;
uint8_t vref_dq_r0nib13;
uint8_t vref_dq_r0nib14;
uint8_t vref_dq_r0nib15;
uint8_t vref_dq_r0nib16;
uint8_t vref_dq_r0nib17;
uint8_t vref_dq_r0nib18;
uint8_t vref_dq_r0nib19;
uint8_t vref_dq_r1nib0;
uint8_t vref_dq_r1nib1;
uint8_t vref_dq_r1nib2;
uint8_t vref_dq_r1nib3;
uint8_t vref_dq_r1nib4;
uint8_t vref_dq_r1nib5;
uint8_t vref_dq_r1nib6;
uint8_t vref_dq_r1nib7;
uint8_t vref_dq_r1nib8;
uint8_t vref_dq_r1nib9;
uint8_t vref_dq_r1nib10;
uint8_t vref_dq_r1nib11;
uint8_t vref_dq_r1nib12;
uint8_t vref_dq_r1nib13;
uint8_t vref_dq_r1nib14;
uint8_t vref_dq_r1nib15;
uint8_t vref_dq_r1nib16;
uint8_t vref_dq_r1nib17;
uint8_t vref_dq_r1nib18;
uint8_t vref_dq_r1nib19;
uint8_t vref_dq_r2nib0;
uint8_t vref_dq_r2nib1;
uint8_t vref_dq_r2nib2;
uint8_t vref_dq_r2nib3;
uint8_t vref_dq_r2nib4;
uint8_t vref_dq_r2nib5;
uint8_t vref_dq_r2nib6;
uint8_t vref_dq_r2nib7;
uint8_t vref_dq_r2nib8;
uint8_t vref_dq_r2nib9;
uint8_t vref_dq_r2nib10;
uint8_t vref_dq_r2nib11;
uint8_t vref_dq_r2nib12;
uint8_t vref_dq_r2nib13;
uint8_t vref_dq_r2nib14;
uint8_t vref_dq_r2nib15;
uint8_t vref_dq_r2nib16;
uint8_t vref_dq_r2nib17;
uint8_t vref_dq_r2nib18;
uint8_t vref_dq_r2nib19;
uint8_t vref_dq_r3nib0;
uint8_t vref_dq_r3nib1;
uint8_t vref_dq_r3nib2;
uint8_t vref_dq_r3nib3;
uint8_t vref_dq_r3nib4;
uint8_t vref_dq_r3nib5;
uint8_t vref_dq_r3nib6;
uint8_t vref_dq_r3nib7;
uint8_t vref_dq_r3nib8;
uint8_t vref_dq_r3nib9;
uint8_t vref_dq_r3nib10;
uint8_t vref_dq_r3nib11;
uint8_t vref_dq_r3nib12;
uint8_t vref_dq_r3nib13;
uint8_t vref_dq_r3nib14;
uint8_t vref_dq_r3nib15;
uint8_t vref_dq_r3nib16;
uint8_t vref_dq_r3nib17;
uint8_t vref_dq_r3nib18;
uint8_t vref_dq_r3nib19;
uint8_t f0rc00_d0;
uint8_t f0rc01_d0;
uint8_t f0rc02_d0;
uint8_t f0rc03_d0;
uint8_t f0rc04_d0;
uint8_t f0rc05_d0;
uint8_t f0rc06_d0;
uint8_t f0rc07_d0;
uint8_t f0rc08_d0;
uint8_t f0rc09_d0;
uint8_t f0rc0a_d0;
uint8_t f0rc0b_d0;
uint8_t f0rc0c_d0;
uint8_t f0rc0d_d0;
uint8_t f0rc0e_d0;
uint8_t f0rc0f_d0;
uint8_t f0rc1x_d0;
uint8_t f0rc2x_d0;
uint8_t f0rc3x_d0;
uint8_t f0rc4x_d0;
uint8_t f0rc5x_d0;
uint8_t f0rc6x_d0;
uint8_t f0rc7x_d0;
uint8_t f0rc8x_d0;
uint8_t f0rc9x_d0;
uint8_t f0rcax_d0;
uint8_t f0rcbx_d0;
uint8_t f1rc00_d0;
uint8_t f1rc01_d0;
uint8_t f1rc02_d0;
uint8_t f1rc03_d0;
uint8_t f1rc04_d0;
uint8_t f1rc05_d0;
uint8_t f1rc06_d0;
uint8_t f1rc07_d0;
uint8_t f1rc08_d0;
uint8_t f1rc09_d0;
uint8_t f1rc0a_d0;
uint8_t f1rc0b_d0;
uint8_t f1rc0c_d0;
uint8_t f1rc0d_d0;
uint8_t f1rc0e_d0;
uint8_t f1rc0f_d0;
uint8_t f1rc1x_d0;
uint8_t f1rc2x_d0;
uint8_t f1rc3x_d0;
uint8_t f1rc4x_d0;
uint8_t f1rc5x_d0;
uint8_t f1rc6x_d0;
uint8_t f1rc7x_d0;
uint8_t f1rc8x_d0;
uint8_t f1rc9x_d0;
uint8_t f1rcax_d0;
uint8_t f1rcbx_d0;
uint8_t f0rc00_d1;
uint8_t f0rc01_d1;
uint8_t f0rc02_d1;
uint8_t f0rc03_d1;
uint8_t f0rc04_d1;
uint8_t f0rc05_d1;
uint8_t f0rc06_d1;
uint8_t f0rc07_d1;
uint8_t f0rc08_d1;
uint8_t f0rc09_d1;
uint8_t f0rc0a_d1;
uint8_t f0rc0b_d1;
uint8_t f0rc0c_d1;
uint8_t f0rc0d_d1;
uint8_t f0rc0e_d1;
uint8_t f0rc0f_d1;
uint8_t f0rc1x_d1;
uint8_t f0rc2x_d1;
uint8_t f0rc3x_d1;
uint8_t f0rc4x_d1;
uint8_t f0rc5x_d1;
uint8_t f0rc6x_d1;
uint8_t f0rc7x_d1;
uint8_t f0rc8x_d1;
uint8_t f0rc9x_d1;
uint8_t f0rcax_d1;
uint8_t f0rcbx_d1;
uint8_t f1rc00_d1;
uint8_t f1rc01_d1;
uint8_t f1rc02_d1;
uint8_t f1rc03_d1;
uint8_t f1rc04_d1;
uint8_t f1rc05_d1;
uint8_t f1rc06_d1;
uint8_t f1rc07_d1;
uint8_t f1rc08_d1;
uint8_t f1rc09_d1;
uint8_t f1rc0a_d1;
uint8_t f1rc0b_d1;
uint8_t f1rc0c_d1;
uint8_t f1rc0d_d1;
uint8_t f1rc0e_d1;
uint8_t f1rc0f_d1;
uint8_t f1rc1x_d1;
uint8_t f1rc2x_d1;
uint8_t f1rc3x_d1;
uint8_t f1rc4x_d1;
uint8_t f1rc5x_d1;
uint8_t f1rc6x_d1;
uint8_t f1rc7x_d1;
uint8_t f1rc8x_d1;
uint8_t f1rc9x_d1;
uint8_t f1rcax_d1;
uint8_t f1rcbx_d1;
uint8_t reserved142[0x3f6 - 0x142];
uint16_t alt_cas_l;
uint8_t alt_wcas_l;
uint8_t d4misc;
} __packed;
struct ddr4r2d {
uint8_t reserved00;
uint8_t msg_misc;
uint16_t pmu_revision;
uint8_t pstate;
uint8_t pll_bypass_en;
uint16_t dramfreq;
uint8_t dfi_freq_ratio;
uint8_t bpznres_val;
uint8_t phy_odt_impedance;
uint8_t phy_drv_impedance;
uint8_t phy_vref;
uint8_t dram_type;
uint8_t disabled_dbyte;
uint8_t enabled_dqs;
uint8_t cs_present;
uint8_t cs_present_d0;
uint8_t cs_present_d1;
uint8_t addr_mirror;
uint8_t cs_test_fail;
uint8_t phy_cfg;
uint16_t sequence_ctrl;
uint8_t hdt_ctrl;
uint8_t rx2d_train_opt;
uint8_t tx2d_train_opt;
uint8_t share2dvref_result;
uint8_t delay_weight2d;
uint8_t voltage_weight2d;
uint8_t reserved1e[0x22-0x1e];
uint16_t phy_config_override;
uint8_t dfimrlmargin;
uint8_t r0_rx_clk_dly_margin;
uint8_t r0_vref_dac_margin;
uint8_t r0_tx_dq_dly_margin;
uint8_t r0_device_vref_margin;
uint8_t reserved29[0x33-0x29];
uint8_t r1_rx_clk_dly_margin;
uint8_t r1_vref_dac_margin;
uint8_t r1_tx_dq_dly_margin;
uint8_t r1_device_vref_margin;
uint8_t reserved37[0x41-0x37];
uint8_t r2_rx_clk_dly_margin;
uint8_t r2_vref_dac_margin;
uint8_t r2_tx_dq_dly_margin;
uint8_t r2_device_vref_margin;
uint8_t reserved45[0x4f - 0x45];
uint8_t r3_rx_clk_dly_margin;
uint8_t r3_vref_dac_margin;
uint8_t r3_tx_dq_dly_margin;
uint8_t r3_device_vref_margin;
uint8_t reserved53[0x5e - 0x53];
uint16_t mr0;
uint16_t mr1;
uint16_t mr2;
uint16_t mr3;
uint16_t mr4;
uint16_t mr5;
uint16_t mr6;
uint8_t x16present;
uint8_t cs_setup_gddec;
uint16_t rtt_nom_wr_park0;
uint16_t rtt_nom_wr_park1;
uint16_t rtt_nom_wr_park2;
uint16_t rtt_nom_wr_park3;
uint16_t rtt_nom_wr_park4;
uint16_t rtt_nom_wr_park5;
uint16_t rtt_nom_wr_park6;
uint16_t rtt_nom_wr_park7;
uint8_t acsm_odt_ctrl0;
uint8_t acsm_odt_ctrl1;
uint8_t acsm_odt_ctrl2;
uint8_t acsm_odt_ctrl3;
uint8_t acsm_odt_ctrl4;
uint8_t acsm_odt_ctrl5;
uint8_t acsm_odt_ctrl6;
uint8_t acsm_odt_ctrl7;
uint8_t vref_dq_r0nib0;
uint8_t vref_dq_r0nib1;
uint8_t vref_dq_r0nib2;
uint8_t vref_dq_r0nib3;
uint8_t vref_dq_r0nib4;
uint8_t vref_dq_r0nib5;
uint8_t vref_dq_r0nib6;
uint8_t vref_dq_r0nib7;
uint8_t vref_dq_r0nib8;
uint8_t vref_dq_r0nib9;
uint8_t vref_dq_r0nib10;
uint8_t vref_dq_r0nib11;
uint8_t vref_dq_r0nib12;
uint8_t vref_dq_r0nib13;
uint8_t vref_dq_r0nib14;
uint8_t vref_dq_r0nib15;
uint8_t vref_dq_r0nib16;
uint8_t vref_dq_r0nib17;
uint8_t vref_dq_r0nib18;
uint8_t vref_dq_r0nib19;
uint8_t vref_dq_r1nib0;
uint8_t vref_dq_r1nib1;
uint8_t vref_dq_r1nib2;
uint8_t vref_dq_r1nib3;
uint8_t vref_dq_r1nib4;
uint8_t vref_dq_r1nib5;
uint8_t vref_dq_r1nib6;
uint8_t vref_dq_r1nib7;
uint8_t vref_dq_r1nib8;
uint8_t vref_dq_r1nib9;
uint8_t vref_dq_r1nib10;
uint8_t vref_dq_r1nib11;
uint8_t vref_dq_r1nib12;
uint8_t vref_dq_r1nib13;
uint8_t vref_dq_r1nib14;
uint8_t vref_dq_r1nib15;
uint8_t vref_dq_r1nib16;
uint8_t vref_dq_r1nib17;
uint8_t vref_dq_r1nib18;
uint8_t vref_dq_r1nib19;
uint8_t vref_dq_r2nib0;
uint8_t vref_dq_r2nib1;
uint8_t vref_dq_r2nib2;
uint8_t vref_dq_r2nib3;
uint8_t vref_dq_r2nib4;
uint8_t vref_dq_r2nib5;
uint8_t vref_dq_r2nib6;
uint8_t vref_dq_r2nib7;
uint8_t vref_dq_r2nib8;
uint8_t vref_dq_r2nib9;
uint8_t vref_dq_r2nib10;
uint8_t vref_dq_r2nib11;
uint8_t vref_dq_r2nib12;
uint8_t vref_dq_r2nib13;
uint8_t vref_dq_r2nib14;
uint8_t vref_dq_r2nib15;
uint8_t vref_dq_r2nib16;
uint8_t vref_dq_r2nib17;
uint8_t vref_dq_r2nib18;
uint8_t vref_dq_r2nib19;
uint8_t vref_dq_r3nib0;
uint8_t vref_dq_r3nib1;
uint8_t vref_dq_r3nib2;
uint8_t vref_dq_r3nib3;
uint8_t vref_dq_r3nib4;
uint8_t vref_dq_r3nib5;
uint8_t vref_dq_r3nib6;
uint8_t vref_dq_r3nib7;
uint8_t vref_dq_r3nib8;
uint8_t vref_dq_r3nib9;
uint8_t vref_dq_r3nib10;
uint8_t vref_dq_r3nib11;
uint8_t vref_dq_r3nib12;
uint8_t vref_dq_r3nib13;
uint8_t vref_dq_r3nib14;
uint8_t vref_dq_r3nib15;
uint8_t vref_dq_r3nib16;
uint8_t vref_dq_r3nib17;
uint8_t vref_dq_r3nib18;
uint8_t vref_dq_r3nib19;
uint8_t f0rc00_d0;
uint8_t f0rc01_d0;
uint8_t f0rc02_d0;
uint8_t f0rc03_d0;
uint8_t f0rc04_d0;
uint8_t f0rc05_d0;
uint8_t f0rc06_d0;
uint8_t f0rc07_d0;
uint8_t f0rc08_d0;
uint8_t f0rc09_d0;
uint8_t f0rc0a_d0;
uint8_t f0rc0b_d0;
uint8_t f0rc0c_d0;
uint8_t f0rc0d_d0;
uint8_t f0rc0e_d0;
uint8_t f0rc0f_d0;
uint8_t f0rc1x_d0;
uint8_t f0rc2x_d0;
uint8_t f0rc3x_d0;
uint8_t f0rc4x_d0;
uint8_t f0rc5x_d0;
uint8_t f0rc6x_d0;
uint8_t f0rc7x_d0;
uint8_t f0rc8x_d0;
uint8_t f0rc9x_d0;
uint8_t f0rcax_d0;
uint8_t f0rcbx_d0;
uint8_t f1rc00_d0;
uint8_t f1rc01_d0;
uint8_t f1rc02_d0;
uint8_t f1rc03_d0;
uint8_t f1rc04_d0;
uint8_t f1rc05_d0;
uint8_t f1rc06_d0;
uint8_t f1rc07_d0;
uint8_t f1rc08_d0;
uint8_t f1rc09_d0;
uint8_t f1rc0a_d0;
uint8_t f1rc0b_d0;
uint8_t f1rc0c_d0;
uint8_t f1rc0d_d0;
uint8_t f1rc0e_d0;
uint8_t f1rc0f_d0;
uint8_t f1rc1x_d0;
uint8_t f1rc2x_d0;
uint8_t f1rc3x_d0;
uint8_t f1rc4x_d0;
uint8_t f1rc5x_d0;
uint8_t f1rc6x_d0;
uint8_t f1rc7x_d0;
uint8_t f1rc8x_d0;
uint8_t f1rc9x_d0;
uint8_t f1rcax_d0;
uint8_t f1rcbx_d0;
uint8_t f0rc00_d1;
uint8_t f0rc01_d1;
uint8_t f0rc02_d1;
uint8_t f0rc03_d1;
uint8_t f0rc04_d1;
uint8_t f0rc05_d1;
uint8_t f0rc06_d1;
uint8_t f0rc07_d1;
uint8_t f0rc08_d1;
uint8_t f0rc09_d1;
uint8_t f0rc0a_d1;
uint8_t f0rc0b_d1;
uint8_t f0rc0c_d1;
uint8_t f0rc0d_d1;
uint8_t f0rc0e_d1;
uint8_t f0rc0f_d1;
uint8_t f0rc1x_d1;
uint8_t f0rc2x_d1;
uint8_t f0rc3x_d1;
uint8_t f0rc4x_d1;
uint8_t f0rc5x_d1;
uint8_t f0rc6x_d1;
uint8_t f0rc7x_d1;
uint8_t f0rc8x_d1;
uint8_t f0rc9x_d1;
uint8_t f0rcax_d1;
uint8_t f0rcbx_d1;
uint8_t f1rc00_d1;
uint8_t f1rc01_d1;
uint8_t f1rc02_d1;
uint8_t f1rc03_d1;
uint8_t f1rc04_d1;
uint8_t f1rc05_d1;
uint8_t f1rc06_d1;
uint8_t f1rc07_d1;
uint8_t f1rc08_d1;
uint8_t f1rc09_d1;
uint8_t f1rc0a_d1;
uint8_t f1rc0b_d1;
uint8_t f1rc0c_d1;
uint8_t f1rc0d_d1;
uint8_t f1rc0e_d1;
uint8_t f1rc0f_d1;
uint8_t f1rc1x_d1;
uint8_t f1rc2x_d1;
uint8_t f1rc3x_d1;
uint8_t f1rc4x_d1;
uint8_t f1rc5x_d1;
uint8_t f1rc6x_d1;
uint8_t f1rc7x_d1;
uint8_t f1rc8x_d1;
uint8_t f1rc9x_d1;
uint8_t f1rcax_d1;
uint8_t f1rcbx_d1;
uint8_t reserved142[0x3f6 - 0x142];
uint16_t alt_cas_l;
uint8_t alt_wcas_l;
uint8_t d4misc;
} __packed;
struct ddr4lr1d {
uint8_t reserved00;
uint8_t msg_misc;
uint16_t pmu_revision;
uint8_t pstate;
uint8_t pll_bypass_en;
uint16_t dramfreq;
uint8_t dfi_freq_ratio;
uint8_t bpznres_val;
uint8_t phy_odt_impedance;
uint8_t phy_drv_impedance;
uint8_t phy_vref;
uint8_t dram_type;
uint8_t disabled_dbyte;
uint8_t enabled_dqs;
uint8_t cs_present;
uint8_t cs_present_d0;
uint8_t cs_present_d1;
uint8_t addr_mirror;
uint8_t cs_test_fail;
uint8_t phy_cfg;
uint16_t sequence_ctrl;
uint8_t hdt_ctrl;
uint8_t reserved19[0x22 - 0x19];
uint16_t phy_config_override;
uint8_t dfimrlmargin;
int8_t cdd_rr_3_2;
int8_t cdd_rr_3_1;
int8_t cdd_rr_3_0;
int8_t cdd_rr_2_3;
int8_t cdd_rr_2_1;
int8_t cdd_rr_2_0;
int8_t cdd_rr_1_3;
int8_t cdd_rr_1_2;
int8_t cdd_rr_1_0;
int8_t cdd_rr_0_3;
int8_t cdd_rr_0_2;
int8_t cdd_rr_0_1;
int8_t cdd_ww_3_2;
int8_t cdd_ww_3_1;
int8_t cdd_ww_3_0;
int8_t cdd_ww_2_3;
int8_t cdd_ww_2_1;
int8_t cdd_ww_2_0;
int8_t cdd_ww_1_3;
int8_t cdd_ww_1_2;
int8_t cdd_ww_1_0;
int8_t cdd_ww_0_3;
int8_t cdd_ww_0_2;
int8_t cdd_ww_0_1;
int8_t cdd_rw_3_3;
int8_t cdd_rw_3_2;
int8_t cdd_rw_3_1;
int8_t cdd_rw_3_0;
int8_t cdd_rw_2_3;
int8_t cdd_rw_2_2;
int8_t cdd_rw_2_1;
int8_t cdd_rw_2_0;
int8_t cdd_rw_1_3;
int8_t cdd_rw_1_2;
int8_t cdd_rw_1_1;
int8_t cdd_rw_1_0;
int8_t cdd_rw_0_3;
int8_t cdd_rw_0_2;
int8_t cdd_rw_0_1;
int8_t cdd_rw_0_0;
int8_t cdd_wr_3_3;
int8_t cdd_wr_3_2;
int8_t cdd_wr_3_1;
int8_t cdd_wr_3_0;
int8_t cdd_wr_2_3;
int8_t cdd_wr_2_2;
int8_t cdd_wr_2_1;
int8_t cdd_wr_2_0;
int8_t cdd_wr_1_3;
int8_t cdd_wr_1_2;
int8_t cdd_wr_1_1;
int8_t cdd_wr_1_0;
int8_t cdd_wr_0_3;
int8_t cdd_wr_0_2;
int8_t cdd_wr_0_1;
int8_t cdd_wr_0_0;
uint8_t reserved5d;
uint16_t mr0;
uint16_t mr1;
uint16_t mr2;
uint16_t mr3;
uint16_t mr4;
uint16_t mr5;
uint16_t mr6;
uint8_t x16present;
uint8_t cs_setup_gddec;
uint16_t rtt_nom_wr_park0;
uint16_t rtt_nom_wr_park1;
uint16_t rtt_nom_wr_park2;
uint16_t rtt_nom_wr_park3;
uint16_t rtt_nom_wr_park4;
uint16_t rtt_nom_wr_park5;
uint16_t rtt_nom_wr_park6;
uint16_t rtt_nom_wr_park7;
uint8_t acsm_odt_ctrl0;
uint8_t acsm_odt_ctrl1;
uint8_t acsm_odt_ctrl2;
uint8_t acsm_odt_ctrl3;
uint8_t acsm_odt_ctrl4;
uint8_t acsm_odt_ctrl5;
uint8_t acsm_odt_ctrl6;
uint8_t acsm_odt_ctrl7;
uint8_t vref_dq_r0nib0;
uint8_t vref_dq_r0nib1;
uint8_t vref_dq_r0nib2;
uint8_t vref_dq_r0nib3;
uint8_t vref_dq_r0nib4;
uint8_t vref_dq_r0nib5;
uint8_t vref_dq_r0nib6;
uint8_t vref_dq_r0nib7;
uint8_t vref_dq_r0nib8;
uint8_t vref_dq_r0nib9;
uint8_t vref_dq_r0nib10;
uint8_t vref_dq_r0nib11;
uint8_t vref_dq_r0nib12;
uint8_t vref_dq_r0nib13;
uint8_t vref_dq_r0nib14;
uint8_t vref_dq_r0nib15;
uint8_t vref_dq_r0nib16;
uint8_t vref_dq_r0nib17;
uint8_t vref_dq_r0nib18;
uint8_t vref_dq_r0nib19;
uint8_t vref_dq_r1nib0;
uint8_t vref_dq_r1nib1;
uint8_t vref_dq_r1nib2;
uint8_t vref_dq_r1nib3;
uint8_t vref_dq_r1nib4;
uint8_t vref_dq_r1nib5;
uint8_t vref_dq_r1nib6;
uint8_t vref_dq_r1nib7;
uint8_t vref_dq_r1nib8;
uint8_t vref_dq_r1nib9;
uint8_t vref_dq_r1nib10;
uint8_t vref_dq_r1nib11;
uint8_t vref_dq_r1nib12;
uint8_t vref_dq_r1nib13;
uint8_t vref_dq_r1nib14;
uint8_t vref_dq_r1nib15;
uint8_t vref_dq_r1nib16;
uint8_t vref_dq_r1nib17;
uint8_t vref_dq_r1nib18;
uint8_t vref_dq_r1nib19;
uint8_t vref_dq_r2nib0;
uint8_t vref_dq_r2nib1;
uint8_t vref_dq_r2nib2;
uint8_t vref_dq_r2nib3;
uint8_t vref_dq_r2nib4;
uint8_t vref_dq_r2nib5;
uint8_t vref_dq_r2nib6;
uint8_t vref_dq_r2nib7;
uint8_t vref_dq_r2nib8;
uint8_t vref_dq_r2nib9;
uint8_t vref_dq_r2nib10;
uint8_t vref_dq_r2nib11;
uint8_t vref_dq_r2nib12;
uint8_t vref_dq_r2nib13;
uint8_t vref_dq_r2nib14;
uint8_t vref_dq_r2nib15;
uint8_t vref_dq_r2nib16;
uint8_t vref_dq_r2nib17;
uint8_t vref_dq_r2nib18;
uint8_t vref_dq_r2nib19;
uint8_t vref_dq_r3nib0;
uint8_t vref_dq_r3nib1;
uint8_t vref_dq_r3nib2;
uint8_t vref_dq_r3nib3;
uint8_t vref_dq_r3nib4;
uint8_t vref_dq_r3nib5;
uint8_t vref_dq_r3nib6;
uint8_t vref_dq_r3nib7;
uint8_t vref_dq_r3nib8;
uint8_t vref_dq_r3nib9;
uint8_t vref_dq_r3nib10;
uint8_t vref_dq_r3nib11;
uint8_t vref_dq_r3nib12;
uint8_t vref_dq_r3nib13;
uint8_t vref_dq_r3nib14;
uint8_t vref_dq_r3nib15;
uint8_t vref_dq_r3nib16;
uint8_t vref_dq_r3nib17;
uint8_t vref_dq_r3nib18;
uint8_t vref_dq_r3nib19;
uint8_t f0rc00_d0;
uint8_t f0rc01_d0;
uint8_t f0rc02_d0;
uint8_t f0rc03_d0;
uint8_t f0rc04_d0;
uint8_t f0rc05_d0;
uint8_t f0rc06_d0;
uint8_t f0rc07_d0;
uint8_t f0rc08_d0;
uint8_t f0rc09_d0;
uint8_t f0rc0a_d0;
uint8_t f0rc0b_d0;
uint8_t f0rc0c_d0;
uint8_t f0rc0d_d0;
uint8_t f0rc0e_d0;
uint8_t f0rc0f_d0;
uint8_t f0rc1x_d0;
uint8_t f0rc2x_d0;
uint8_t f0rc3x_d0;
uint8_t f0rc4x_d0;
uint8_t f0rc5x_d0;
uint8_t f0rc6x_d0;
uint8_t f0rc7x_d0;
uint8_t f0rc8x_d0;
uint8_t f0rc9x_d0;
uint8_t f0rcax_d0;
uint8_t f0rcbx_d0;
uint8_t f1rc00_d0;
uint8_t f1rc01_d0;
uint8_t f1rc02_d0;
uint8_t f1rc03_d0;
uint8_t f1rc04_d0;
uint8_t f1rc05_d0;
uint8_t f1rc06_d0;
uint8_t f1rc07_d0;
uint8_t f1rc08_d0;
uint8_t f1rc09_d0;
uint8_t f1rc0a_d0;
uint8_t f1rc0b_d0;
uint8_t f1rc0c_d0;
uint8_t f1rc0d_d0;
uint8_t f1rc0e_d0;
uint8_t f1rc0f_d0;
uint8_t f1rc1x_d0;
uint8_t f1rc2x_d0;
uint8_t f1rc3x_d0;
uint8_t f1rc4x_d0;
uint8_t f1rc5x_d0;
uint8_t f1rc6x_d0;
uint8_t f1rc7x_d0;
uint8_t f1rc8x_d0;
uint8_t f1rc9x_d0;
uint8_t f1rcax_d0;
uint8_t f1rcbx_d0;
uint8_t f0rc00_d1;
uint8_t f0rc01_d1;
uint8_t f0rc02_d1;
uint8_t f0rc03_d1;
uint8_t f0rc04_d1;
uint8_t f0rc05_d1;
uint8_t f0rc06_d1;
uint8_t f0rc07_d1;
uint8_t f0rc08_d1;
uint8_t f0rc09_d1;
uint8_t f0rc0a_d1;
uint8_t f0rc0b_d1;
uint8_t f0rc0c_d1;
uint8_t f0rc0d_d1;
uint8_t f0rc0e_d1;
uint8_t f0rc0f_d1;
uint8_t f0rc1x_d1;
uint8_t f0rc2x_d1;
uint8_t f0rc3x_d1;
uint8_t f0rc4x_d1;
uint8_t f0rc5x_d1;
uint8_t f0rc6x_d1;
uint8_t f0rc7x_d1;
uint8_t f0rc8x_d1;
uint8_t f0rc9x_d1;
uint8_t f0rcax_d1;
uint8_t f0rcbx_d1;
uint8_t f1rc00_d1;
uint8_t f1rc01_d1;
uint8_t f1rc02_d1;
uint8_t f1rc03_d1;
uint8_t f1rc04_d1;
uint8_t f1rc05_d1;
uint8_t f1rc06_d1;
uint8_t f1rc07_d1;
uint8_t f1rc08_d1;
uint8_t f1rc09_d1;
uint8_t f1rc0a_d1;
uint8_t f1rc0b_d1;
uint8_t f1rc0c_d1;
uint8_t f1rc0d_d1;
uint8_t f1rc0e_d1;
uint8_t f1rc0f_d1;
uint8_t f1rc1x_d1;
uint8_t f1rc2x_d1;
uint8_t f1rc3x_d1;
uint8_t f1rc4x_d1;
uint8_t f1rc5x_d1;
uint8_t f1rc6x_d1;
uint8_t f1rc7x_d1;
uint8_t f1rc8x_d1;
uint8_t f1rc9x_d1;
uint8_t f1rcax_d1;
uint8_t f1rcbx_d1;
uint8_t bc00_d0;
uint8_t bc01_d0;
uint8_t bc02_d0;
uint8_t bc03_d0;
uint8_t bc04_d0;
uint8_t bc05_d0;
uint8_t bc06_d0;
uint8_t bc07_d0;
uint8_t bc08_d0;
uint8_t bc09_d0;
uint8_t bc0a_d0;
uint8_t bc0b_d0;
uint8_t bc0c_d0;
uint8_t bc0d_d0;
uint8_t bc0e_d0;
uint8_t f0bc6x_d0;
uint8_t f0bccx_d0;
uint8_t f0bcdx_d0;
uint8_t f0bcex_d0;
uint8_t f0bcfx_d0;
uint8_t f1bccx_d0;
uint8_t f1bcdx_d0;
uint8_t f1bcex_d0;
uint8_t f1bcfx_d0;
uint8_t f0bc2x_b0_d0;
uint8_t f0bc3x_b0_d0;
uint8_t f0bc4x_b0_d0;
uint8_t f0bc5x_b0_d0;
uint8_t f0bc8x_b0_d0;
uint8_t f0bc9x_b0_d0;
uint8_t f0bcax_b0_d0;
uint8_t f0bcbx_b0_d0;
uint8_t f1bc2x_b0_d0;
uint8_t f1bc3x_b0_d0;
uint8_t f1bc4x_b0_d0;
uint8_t f1bc5x_b0_d0;
uint8_t f1bc8x_b0_d0;
uint8_t f1bc9x_b0_d0;
uint8_t f1bcax_b0_d0;
uint8_t f1bcbx_b0_d0;
uint8_t f2bc2x_b0_d0;
uint8_t f2bc3x_b0_d0;
uint8_t f2bc4x_b0_d0;
uint8_t f2bc5x_b0_d0;
uint8_t f2bc8x_b0_d0;
uint8_t f2bc9x_b0_d0;
uint8_t f2bcax_b0_d0;
uint8_t f2bcbx_b0_d0;
uint8_t f3bc2x_b0_d0;
uint8_t f3bc3x_b0_d0;
uint8_t f3bc4x_b0_d0;
uint8_t f3bc5x_b0_d0;
uint8_t f3bc8x_b0_d0;
uint8_t f3bc9x_b0_d0;
uint8_t f3bcax_b0_d0;
uint8_t f3bcbx_b0_d0;
uint8_t f0bc2x_b1_d0;
uint8_t f0bc3x_b1_d0;
uint8_t f0bc4x_b1_d0;
uint8_t f0bc5x_b1_d0;
uint8_t f0bc8x_b1_d0;
uint8_t f0bc9x_b1_d0;
uint8_t f0bcax_b1_d0;
uint8_t f0bcbx_b1_d0;
uint8_t f1bc2x_b1_d0;
uint8_t f1bc3x_b1_d0;
uint8_t f1bc4x_b1_d0;
uint8_t f1bc5x_b1_d0;
uint8_t f1bc8x_b1_d0;
uint8_t f1bc9x_b1_d0;
uint8_t f1bcax_b1_d0;
uint8_t f1bcbx_b1_d0;
uint8_t f2bc2x_b1_d0;
uint8_t f2bc3x_b1_d0;
uint8_t f2bc4x_b1_d0;
uint8_t f2bc5x_b1_d0;
uint8_t f2bc8x_b1_d0;
uint8_t f2bc9x_b1_d0;
uint8_t f2bcax_b1_d0;
uint8_t f2bcbx_b1_d0;
uint8_t f3bc2x_b1_d0;
uint8_t f3bc3x_b1_d0;
uint8_t f3bc4x_b1_d0;
uint8_t f3bc5x_b1_d0;
uint8_t f3bc8x_b1_d0;
uint8_t f3bc9x_b1_d0;
uint8_t f3bcax_b1_d0;
uint8_t f3bcbx_b1_d0;
uint8_t f0bc2x_b2_d0;
uint8_t f0bc3x_b2_d0;
uint8_t f0bc4x_b2_d0;
uint8_t f0bc5x_b2_d0;
uint8_t f0bc8x_b2_d0;
uint8_t f0bc9x_b2_d0;
uint8_t f0bcax_b2_d0;
uint8_t f0bcbx_b2_d0;
uint8_t f1bc2x_b2_d0;
uint8_t f1bc3x_b2_d0;
uint8_t f1bc4x_b2_d0;
uint8_t f1bc5x_b2_d0;
uint8_t f1bc8x_b2_d0;
uint8_t f1bc9x_b2_d0;
uint8_t f1bcax_b2_d0;
uint8_t f1bcbx_b2_d0;
uint8_t f2bc2x_b2_d0;
uint8_t f2bc3x_b2_d0;
uint8_t f2bc4x_b2_d0;
uint8_t f2bc5x_b2_d0;
uint8_t f2bc8x_b2_d0;
uint8_t f2bc9x_b2_d0;
uint8_t f2bcax_b2_d0;
uint8_t f2bcbx_b2_d0;
uint8_t f3bc2x_b2_d0;
uint8_t f3bc3x_b2_d0;
uint8_t f3bc4x_b2_d0;
uint8_t f3bc5x_b2_d0;
uint8_t f3bc8x_b2_d0;
uint8_t f3bc9x_b2_d0;
uint8_t f3bcax_b2_d0;
uint8_t f3bcbx_b2_d0;
uint8_t f0bc2x_b3_d0;
uint8_t f0bc3x_b3_d0;
uint8_t f0bc4x_b3_d0;
uint8_t f0bc5x_b3_d0;
uint8_t f0bc8x_b3_d0;
uint8_t f0bc9x_b3_d0;
uint8_t f0bcax_b3_d0;
uint8_t f0bcbx_b3_d0;
uint8_t f1bc2x_b3_d0;
uint8_t f1bc3x_b3_d0;
uint8_t f1bc4x_b3_d0;
uint8_t f1bc5x_b3_d0;
uint8_t f1bc8x_b3_d0;
uint8_t f1bc9x_b3_d0;
uint8_t f1bcax_b3_d0;
uint8_t f1bcbx_b3_d0;
uint8_t f2bc2x_b3_d0;
uint8_t f2bc3x_b3_d0;
uint8_t f2bc4x_b3_d0;
uint8_t f2bc5x_b3_d0;
uint8_t f2bc8x_b3_d0;
uint8_t f2bc9x_b3_d0;
uint8_t f2bcax_b3_d0;
uint8_t f2bcbx_b3_d0;
uint8_t f3bc2x_b3_d0;
uint8_t f3bc3x_b3_d0;
uint8_t f3bc4x_b3_d0;
uint8_t f3bc5x_b3_d0;
uint8_t f3bc8x_b3_d0;
uint8_t f3bc9x_b3_d0;
uint8_t f3bcax_b3_d0;
uint8_t f3bcbx_b3_d0;
uint8_t f0bc2x_b4_d0;
uint8_t f0bc3x_b4_d0;
uint8_t f0bc4x_b4_d0;
uint8_t f0bc5x_b4_d0;
uint8_t f0bc8x_b4_d0;
uint8_t f0bc9x_b4_d0;
uint8_t f0bcax_b4_d0;
uint8_t f0bcbx_b4_d0;
uint8_t f1bc2x_b4_d0;
uint8_t f1bc3x_b4_d0;
uint8_t f1bc4x_b4_d0;
uint8_t f1bc5x_b4_d0;
uint8_t f1bc8x_b4_d0;
uint8_t f1bc9x_b4_d0;
uint8_t f1bcax_b4_d0;
uint8_t f1bcbx_b4_d0;
uint8_t f2bc2x_b4_d0;
uint8_t f2bc3x_b4_d0;
uint8_t f2bc4x_b4_d0;
uint8_t f2bc5x_b4_d0;
uint8_t f2bc8x_b4_d0;
uint8_t f2bc9x_b4_d0;
uint8_t f2bcax_b4_d0;
uint8_t f2bcbx_b4_d0;
uint8_t f3bc2x_b4_d0;
uint8_t f3bc3x_b4_d0;
uint8_t f3bc4x_b4_d0;
uint8_t f3bc5x_b4_d0;
uint8_t f3bc8x_b4_d0;
uint8_t f3bc9x_b4_d0;
uint8_t f3bcax_b4_d0;
uint8_t f3bcbx_b4_d0;
uint8_t f0bc2x_b5_d0;
uint8_t f0bc3x_b5_d0;
uint8_t f0bc4x_b5_d0;
uint8_t f0bc5x_b5_d0;
uint8_t f0bc8x_b5_d0;
uint8_t f0bc9x_b5_d0;
uint8_t f0bcax_b5_d0;
uint8_t f0bcbx_b5_d0;
uint8_t f1bc2x_b5_d0;
uint8_t f1bc3x_b5_d0;
uint8_t f1bc4x_b5_d0;
uint8_t f1bc5x_b5_d0;
uint8_t f1bc8x_b5_d0;
uint8_t f1bc9x_b5_d0;
uint8_t f1bcax_b5_d0;
uint8_t f1bcbx_b5_d0;
uint8_t f2bc2x_b5_d0;
uint8_t f2bc3x_b5_d0;
uint8_t f2bc4x_b5_d0;
uint8_t f2bc5x_b5_d0;
uint8_t f2bc8x_b5_d0;
uint8_t f2bc9x_b5_d0;
uint8_t f2bcax_b5_d0;
uint8_t f2bcbx_b5_d0;
uint8_t f3bc2x_b5_d0;
uint8_t f3bc3x_b5_d0;
uint8_t f3bc4x_b5_d0;
uint8_t f3bc5x_b5_d0;
uint8_t f3bc8x_b5_d0;
uint8_t f3bc9x_b5_d0;
uint8_t f3bcax_b5_d0;
uint8_t f3bcbx_b5_d0;
uint8_t f0bc2x_b6_d0;
uint8_t f0bc3x_b6_d0;
uint8_t f0bc4x_b6_d0;
uint8_t f0bc5x_b6_d0;
uint8_t f0bc8x_b6_d0;
uint8_t f0bc9x_b6_d0;
uint8_t f0bcax_b6_d0;
uint8_t f0bcbx_b6_d0;
uint8_t f1bc2x_b6_d0;
uint8_t f1bc3x_b6_d0;
uint8_t f1bc4x_b6_d0;
uint8_t f1bc5x_b6_d0;
uint8_t f1bc8x_b6_d0;
uint8_t f1bc9x_b6_d0;
uint8_t f1bcax_b6_d0;
uint8_t f1bcbx_b6_d0;
uint8_t f2bc2x_b6_d0;
uint8_t f2bc3x_b6_d0;
uint8_t f2bc4x_b6_d0;
uint8_t f2bc5x_b6_d0;
uint8_t f2bc8x_b6_d0;
uint8_t f2bc9x_b6_d0;
uint8_t f2bcax_b6_d0;
uint8_t f2bcbx_b6_d0;
uint8_t f3bc2x_b6_d0;
uint8_t f3bc3x_b6_d0;
uint8_t f3bc4x_b6_d0;
uint8_t f3bc5x_b6_d0;
uint8_t f3bc8x_b6_d0;
uint8_t f3bc9x_b6_d0;
uint8_t f3bcax_b6_d0;
uint8_t f3bcbx_b6_d0;
uint8_t f0bc2x_b7_d0;
uint8_t f0bc3x_b7_d0;
uint8_t f0bc4x_b7_d0;
uint8_t f0bc5x_b7_d0;
uint8_t f0bc8x_b7_d0;
uint8_t f0bc9x_b7_d0;
uint8_t f0bcax_b7_d0;
uint8_t f0bcbx_b7_d0;
uint8_t f1bc2x_b7_d0;
uint8_t f1bc3x_b7_d0;
uint8_t f1bc4x_b7_d0;
uint8_t f1bc5x_b7_d0;
uint8_t f1bc8x_b7_d0;
uint8_t f1bc9x_b7_d0;
uint8_t f1bcax_b7_d0;
uint8_t f1bcbx_b7_d0;
uint8_t f2bc2x_b7_d0;
uint8_t f2bc3x_b7_d0;
uint8_t f2bc4x_b7_d0;
uint8_t f2bc5x_b7_d0;
uint8_t f2bc8x_b7_d0;
uint8_t f2bc9x_b7_d0;
uint8_t f2bcax_b7_d0;
uint8_t f2bcbx_b7_d0;
uint8_t f3bc2x_b7_d0;
uint8_t f3bc3x_b7_d0;
uint8_t f3bc4x_b7_d0;
uint8_t f3bc5x_b7_d0;
uint8_t f3bc8x_b7_d0;
uint8_t f3bc9x_b7_d0;
uint8_t f3bcax_b7_d0;
uint8_t f3bcbx_b7_d0;
uint8_t f0bc2x_b8_d0;
uint8_t f0bc3x_b8_d0;
uint8_t f0bc4x_b8_d0;
uint8_t f0bc5x_b8_d0;
uint8_t f0bc8x_b8_d0;
uint8_t f0bc9x_b8_d0;
uint8_t f0bcax_b8_d0;
uint8_t f0bcbx_b8_d0;
uint8_t f1bc2x_b8_d0;
uint8_t f1bc3x_b8_d0;
uint8_t f1bc4x_b8_d0;
uint8_t f1bc5x_b8_d0;
uint8_t f1bc8x_b8_d0;
uint8_t f1bc9x_b8_d0;
uint8_t f1bcax_b8_d0;
uint8_t f1bcbx_b8_d0;
uint8_t f2bc2x_b8_d0;
uint8_t f2bc3x_b8_d0;
uint8_t f2bc4x_b8_d0;
uint8_t f2bc5x_b8_d0;
uint8_t f2bc8x_b8_d0;
uint8_t f2bc9x_b8_d0;
uint8_t f2bcax_b8_d0;
uint8_t f2bcbx_b8_d0;
uint8_t f3bc2x_b8_d0;
uint8_t f3bc3x_b8_d0;
uint8_t f3bc4x_b8_d0;
uint8_t f3bc5x_b8_d0;
uint8_t f3bc8x_b8_d0;
uint8_t f3bc9x_b8_d0;
uint8_t f3bcax_b8_d0;
uint8_t f3bcbx_b8_d0;
uint8_t f5bc5x_d0;
uint8_t f5bc6x_d0;
uint8_t f4bc8x_d0;
uint8_t f4bc9x_d0;
uint8_t f4bcax_d0;
uint8_t f4bcbx_d0;
uint8_t f4bccx_d0;
uint8_t f4bcdx_d0;
uint8_t f4bcex_d0;
uint8_t f4bcfx_d0;
uint8_t f5bc8x_d0;
uint8_t f5bc9x_d0;
uint8_t f5bcax_d0;
uint8_t f5bcbx_d0;
uint8_t f5bccx_d0;
uint8_t f5bcdx_d0;
uint8_t f5bcex_d0;
uint8_t f5bcfx_d0;
uint8_t f6bc8x_d0;
uint8_t f6bc9x_d0;
uint8_t f6bcax_d0;
uint8_t f6bcbx_d0;
uint8_t f6bccx_d0;
uint8_t f6bcdx_d0;
uint8_t f6bcex_d0;
uint8_t f6bcfx_d0;
uint8_t f7bc8x_d0;
uint8_t f7bc9x_d0;
uint8_t f7bcax_d0;
uint8_t f7bcbx_d0;
uint8_t f7bccx_d0;
uint8_t f7bcdx_d0;
uint8_t f7bcex_d0;
uint8_t f7bcfx_d0;
uint8_t bc00_d1;
uint8_t bc01_d1;
uint8_t bc02_d1;
uint8_t bc03_d1;
uint8_t bc04_d1;
uint8_t bc05_d1;
uint8_t bc06_d1;
uint8_t bc07_d1;
uint8_t bc08_d1;
uint8_t bc09_d1;
uint8_t bc0a_d1;
uint8_t bc0b_d1;
uint8_t bc0c_d1;
uint8_t bc0d_d1;
uint8_t bc0e_d1;
uint8_t f0bc6x_d1;
uint8_t f0bccx_d1;
uint8_t f0bcdx_d1;
uint8_t f0bcex_d1;
uint8_t f0bcfx_d1;
uint8_t f1bccx_d1;
uint8_t f1bcdx_d1;
uint8_t f1bcex_d1;
uint8_t f1bcfx_d1;
uint8_t f0bc2x_b0_d1;
uint8_t f0bc3x_b0_d1;
uint8_t f0bc4x_b0_d1;
uint8_t f0bc5x_b0_d1;
uint8_t f0bc8x_b0_d1;
uint8_t f0bc9x_b0_d1;
uint8_t f0bcax_b0_d1;
uint8_t f0bcbx_b0_d1;
uint8_t f1bc2x_b0_d1;
uint8_t f1bc3x_b0_d1;
uint8_t f1bc4x_b0_d1;
uint8_t f1bc5x_b0_d1;
uint8_t f1bc8x_b0_d1;
uint8_t f1bc9x_b0_d1;
uint8_t f1bcax_b0_d1;
uint8_t f1bcbx_b0_d1;
uint8_t f2bc2x_b0_d1;
uint8_t f2bc3x_b0_d1;
uint8_t f2bc4x_b0_d1;
uint8_t f2bc5x_b0_d1;
uint8_t f2bc8x_b0_d1;
uint8_t f2bc9x_b0_d1;
uint8_t f2bcax_b0_d1;
uint8_t f2bcbx_b0_d1;
uint8_t f3bc2x_b0_d1;
uint8_t f3bc3x_b0_d1;
uint8_t f3bc4x_b0_d1;
uint8_t f3bc5x_b0_d1;
uint8_t f3bc8x_b0_d1;
uint8_t f3bc9x_b0_d1;
uint8_t f3bcax_b0_d1;
uint8_t f3bcbx_b0_d1;
uint8_t f0bc2x_b1_d1;
uint8_t f0bc3x_b1_d1;
uint8_t f0bc4x_b1_d1;
uint8_t f0bc5x_b1_d1;
uint8_t f0bc8x_b1_d1;
uint8_t f0bc9x_b1_d1;
uint8_t f0bcax_b1_d1;
uint8_t f0bcbx_b1_d1;
uint8_t f1bc2x_b1_d1;
uint8_t f1bc3x_b1_d1;
uint8_t f1bc4x_b1_d1;
uint8_t f1bc5x_b1_d1;
uint8_t f1bc8x_b1_d1;
uint8_t f1bc9x_b1_d1;
uint8_t f1bcax_b1_d1;
uint8_t f1bcbx_b1_d1;
uint8_t f2bc2x_b1_d1;
uint8_t f2bc3x_b1_d1;
uint8_t f2bc4x_b1_d1;
uint8_t f2bc5x_b1_d1;
uint8_t f2bc8x_b1_d1;
uint8_t f2bc9x_b1_d1;
uint8_t f2bcax_b1_d1;
uint8_t f2bcbx_b1_d1;
uint8_t f3bc2x_b1_d1;
uint8_t f3bc3x_b1_d1;
uint8_t f3bc4x_b1_d1;
uint8_t f3bc5x_b1_d1;
uint8_t f3bc8x_b1_d1;
uint8_t f3bc9x_b1_d1;
uint8_t f3bcax_b1_d1;
uint8_t f3bcbx_b1_d1;
uint8_t f0bc2x_b2_d1;
uint8_t f0bc3x_b2_d1;
uint8_t f0bc4x_b2_d1;
uint8_t f0bc5x_b2_d1;
uint8_t f0bc8x_b2_d1;
uint8_t f0bc9x_b2_d1;
uint8_t f0bcax_b2_d1;
uint8_t f0bcbx_b2_d1;
uint8_t f1bc2x_b2_d1;
uint8_t f1bc3x_b2_d1;
uint8_t f1bc4x_b2_d1;
uint8_t f1bc5x_b2_d1;
uint8_t f1bc8x_b2_d1;
uint8_t f1bc9x_b2_d1;
uint8_t f1bcax_b2_d1;
uint8_t f1bcbx_b2_d1;
uint8_t f2bc2x_b2_d1;
uint8_t f2bc3x_b2_d1;
uint8_t f2bc4x_b2_d1;
uint8_t f2bc5x_b2_d1;
uint8_t f2bc8x_b2_d1;
uint8_t f2bc9x_b2_d1;
uint8_t f2bcax_b2_d1;
uint8_t f2bcbx_b2_d1;
uint8_t f3bc2x_b2_d1;
uint8_t f3bc3x_b2_d1;
uint8_t f3bc4x_b2_d1;
uint8_t f3bc5x_b2_d1;
uint8_t f3bc8x_b2_d1;
uint8_t f3bc9x_b2_d1;
uint8_t f3bcax_b2_d1;
uint8_t f3bcbx_b2_d1;
uint8_t f0bc2x_b3_d1;
uint8_t f0bc3x_b3_d1;
uint8_t f0bc4x_b3_d1;
uint8_t f0bc5x_b3_d1;
uint8_t f0bc8x_b3_d1;
uint8_t f0bc9x_b3_d1;
uint8_t f0bcax_b3_d1;
uint8_t f0bcbx_b3_d1;
uint8_t f1bc2x_b3_d1;
uint8_t f1bc3x_b3_d1;
uint8_t f1bc4x_b3_d1;
uint8_t f1bc5x_b3_d1;
uint8_t f1bc8x_b3_d1;
uint8_t f1bc9x_b3_d1;
uint8_t f1bcax_b3_d1;
uint8_t f1bcbx_b3_d1;
uint8_t f2bc2x_b3_d1;
uint8_t f2bc3x_b3_d1;
uint8_t f2bc4x_b3_d1;
uint8_t f2bc5x_b3_d1;
uint8_t f2bc8x_b3_d1;
uint8_t f2bc9x_b3_d1;
uint8_t f2bcax_b3_d1;
uint8_t f2bcbx_b3_d1;
uint8_t f3bc2x_b3_d1;
uint8_t f3bc3x_b3_d1;
uint8_t f3bc4x_b3_d1;
uint8_t f3bc5x_b3_d1;
uint8_t f3bc8x_b3_d1;
uint8_t f3bc9x_b3_d1;
uint8_t f3bcax_b3_d1;
uint8_t f3bcbx_b3_d1;
uint8_t f0bc2x_b4_d1;
uint8_t f0bc3x_b4_d1;
uint8_t f0bc4x_b4_d1;
uint8_t f0bc5x_b4_d1;
uint8_t f0bc8x_b4_d1;
uint8_t f0bc9x_b4_d1;
uint8_t f0bcax_b4_d1;
uint8_t f0bcbx_b4_d1;
uint8_t f1bc2x_b4_d1;
uint8_t f1bc3x_b4_d1;
uint8_t f1bc4x_b4_d1;
uint8_t f1bc5x_b4_d1;
uint8_t f1bc8x_b4_d1;
uint8_t f1bc9x_b4_d1;
uint8_t f1bcax_b4_d1;
uint8_t f1bcbx_b4_d1;
uint8_t f2bc2x_b4_d1;
uint8_t f2bc3x_b4_d1;
uint8_t f2bc4x_b4_d1;
uint8_t f2bc5x_b4_d1;
uint8_t f2bc8x_b4_d1;
uint8_t f2bc9x_b4_d1;
uint8_t f2bcax_b4_d1;
uint8_t f2bcbx_b4_d1;
uint8_t f3bc2x_b4_d1;
uint8_t f3bc3x_b4_d1;
uint8_t f3bc4x_b4_d1;
uint8_t f3bc5x_b4_d1;
uint8_t f3bc8x_b4_d1;
uint8_t f3bc9x_b4_d1;
uint8_t f3bcax_b4_d1;
uint8_t f3bcbx_b4_d1;
uint8_t f0bc2x_b5_d1;
uint8_t f0bc3x_b5_d1;
uint8_t f0bc4x_b5_d1;
uint8_t f0bc5x_b5_d1;
uint8_t f0bc8x_b5_d1;
uint8_t f0bc9x_b5_d1;
uint8_t f0bcax_b5_d1;
uint8_t f0bcbx_b5_d1;
uint8_t f1bc2x_b5_d1;
uint8_t f1bc3x_b5_d1;
uint8_t f1bc4x_b5_d1;
uint8_t f1bc5x_b5_d1;
uint8_t f1bc8x_b5_d1;
uint8_t f1bc9x_b5_d1;
uint8_t f1bcax_b5_d1;
uint8_t f1bcbx_b5_d1;
uint8_t f2bc2x_b5_d1;
uint8_t f2bc3x_b5_d1;
uint8_t f2bc4x_b5_d1;
uint8_t f2bc5x_b5_d1;
uint8_t f2bc8x_b5_d1;
uint8_t f2bc9x_b5_d1;
uint8_t f2bcax_b5_d1;
uint8_t f2bcbx_b5_d1;
uint8_t f3bc2x_b5_d1;
uint8_t f3bc3x_b5_d1;
uint8_t f3bc4x_b5_d1;
uint8_t f3bc5x_b5_d1;
uint8_t f3bc8x_b5_d1;
uint8_t f3bc9x_b5_d1;
uint8_t f3bcax_b5_d1;
uint8_t f3bcbx_b5_d1;
uint8_t f0bc2x_b6_d1;
uint8_t f0bc3x_b6_d1;
uint8_t f0bc4x_b6_d1;
uint8_t f0bc5x_b6_d1;
uint8_t f0bc8x_b6_d1;
uint8_t f0bc9x_b6_d1;
uint8_t f0bcax_b6_d1;
uint8_t f0bcbx_b6_d1;
uint8_t f1bc2x_b6_d1;
uint8_t f1bc3x_b6_d1;
uint8_t f1bc4x_b6_d1;
uint8_t f1bc5x_b6_d1;
uint8_t f1bc8x_b6_d1;
uint8_t f1bc9x_b6_d1;
uint8_t f1bcax_b6_d1;
uint8_t f1bcbx_b6_d1;
uint8_t f2bc2x_b6_d1;
uint8_t f2bc3x_b6_d1;
uint8_t f2bc4x_b6_d1;
uint8_t f2bc5x_b6_d1;
uint8_t f2bc8x_b6_d1;
uint8_t f2bc9x_b6_d1;
uint8_t f2bcax_b6_d1;
uint8_t f2bcbx_b6_d1;
uint8_t f3bc2x_b6_d1;
uint8_t f3bc3x_b6_d1;
uint8_t f3bc4x_b6_d1;
uint8_t f3bc5x_b6_d1;
uint8_t f3bc8x_b6_d1;
uint8_t f3bc9x_b6_d1;
uint8_t f3bcax_b6_d1;
uint8_t f3bcbx_b6_d1;
uint8_t f0bc2x_b7_d1;
uint8_t f0bc3x_b7_d1;
uint8_t f0bc4x_b7_d1;
uint8_t f0bc5x_b7_d1;
uint8_t f0bc8x_b7_d1;
uint8_t f0bc9x_b7_d1;
uint8_t f0bcax_b7_d1;
uint8_t f0bcbx_b7_d1;
uint8_t f1bc2x_b7_d1;
uint8_t f1bc3x_b7_d1;
uint8_t f1bc4x_b7_d1;
uint8_t f1bc5x_b7_d1;
uint8_t f1bc8x_b7_d1;
uint8_t f1bc9x_b7_d1;
uint8_t f1bcax_b7_d1;
uint8_t f1bcbx_b7_d1;
uint8_t f2bc2x_b7_d1;
uint8_t f2bc3x_b7_d1;
uint8_t f2bc4x_b7_d1;
uint8_t f2bc5x_b7_d1;
uint8_t f2bc8x_b7_d1;
uint8_t f2bc9x_b7_d1;
uint8_t f2bcax_b7_d1;
uint8_t f2bcbx_b7_d1;
uint8_t f3bc2x_b7_d1;
uint8_t f3bc3x_b7_d1;
uint8_t f3bc4x_b7_d1;
uint8_t f3bc5x_b7_d1;
uint8_t f3bc8x_b7_d1;
uint8_t f3bc9x_b7_d1;
uint8_t f3bcax_b7_d1;
uint8_t f3bcbx_b7_d1;
uint8_t f0bc2x_b8_d1;
uint8_t f0bc3x_b8_d1;
uint8_t f0bc4x_b8_d1;
uint8_t f0bc5x_b8_d1;
uint8_t f0bc8x_b8_d1;
uint8_t f0bc9x_b8_d1;
uint8_t f0bcax_b8_d1;
uint8_t f0bcbx_b8_d1;
uint8_t f1bc2x_b8_d1;
uint8_t f1bc3x_b8_d1;
uint8_t f1bc4x_b8_d1;
uint8_t f1bc5x_b8_d1;
uint8_t f1bc8x_b8_d1;
uint8_t f1bc9x_b8_d1;
uint8_t f1bcax_b8_d1;
uint8_t f1bcbx_b8_d1;
uint8_t f2bc2x_b8_d1;
uint8_t f2bc3x_b8_d1;
uint8_t f2bc4x_b8_d1;
uint8_t f2bc5x_b8_d1;
uint8_t f2bc8x_b8_d1;
uint8_t f2bc9x_b8_d1;
uint8_t f2bcax_b8_d1;
uint8_t f2bcbx_b8_d1;
uint8_t f3bc2x_b8_d1;
uint8_t f3bc3x_b8_d1;
uint8_t f3bc4x_b8_d1;
uint8_t f3bc5x_b8_d1;
uint8_t f3bc8x_b8_d1;
uint8_t f3bc9x_b8_d1;
uint8_t f3bcax_b8_d1;
uint8_t f3bcbx_b8_d1;
uint8_t f5bc5x_d1;
uint8_t f5bc6x_d1;
uint8_t f4bc8x_d1;
uint8_t f4bc9x_d1;
uint8_t f4bcax_d1;
uint8_t f4bcbx_d1;
uint8_t f4bccx_d1;
uint8_t f4bcdx_d1;
uint8_t f4bcex_d1;
uint8_t f4bcfx_d1;
uint8_t f5bc8x_d1;
uint8_t f5bc9x_d1;
uint8_t f5bcax_d1;
uint8_t f5bcbx_d1;
uint8_t f5bccx_d1;
uint8_t f5bcdx_d1;
uint8_t f5bcex_d1;
uint8_t f5bcfx_d1;
uint8_t f6bc8x_d1;
uint8_t f6bc9x_d1;
uint8_t f6bcax_d1;
uint8_t f6bcbx_d1;
uint8_t f6bccx_d1;
uint8_t f6bcdx_d1;
uint8_t f6bcex_d1;
uint8_t f6bcfx_d1;
uint8_t f7bc8x_d1;
uint8_t f7bc9x_d1;
uint8_t f7bcax_d1;
uint8_t f7bcbx_d1;
uint8_t f7bccx_d1;
uint8_t f7bcdx_d1;
uint8_t f7bcex_d1;
uint8_t f7bcfx_d1;
uint16_t alt_cas_l;
uint8_t alt_wcas_l;
uint8_t d4misc;
} __packed;
struct ddr4lr2d {
uint8_t reserved00;
uint8_t msg_misc;
uint16_t pmu_revision;
uint8_t pstate;
uint8_t pll_bypass_en;
uint16_t dramfreq;
uint8_t dfi_freq_ratio;
uint8_t bpznres_val;
uint8_t phy_odt_impedance;
uint8_t phy_drv_impedance;
uint8_t phy_vref;
uint8_t dram_type;
uint8_t disabled_dbyte;
uint8_t enabled_dqs;
uint8_t cs_present;
uint8_t cs_present_d0;
uint8_t cs_present_d1;
uint8_t addr_mirror;
uint8_t cs_test_fail;
uint8_t phy_cfg;
uint16_t sequence_ctrl;
uint8_t hdt_ctrl;
uint8_t rx2d_train_opt;
uint8_t tx2d_train_opt;
uint8_t share2dvref_result;
uint8_t delay_weight2d;
uint8_t voltage_weight2d;
uint8_t reserved1e[0x22 - 0x1e];
uint16_t phy_config_override;
uint8_t dfimrlmargin;
uint8_t r0_rx_clk_dly_margin;
uint8_t r0_vref_dac_margin;
uint8_t r0_tx_dq_dly_margin;
uint8_t r0_device_vref_margin;
uint8_t reserved29[0x33 - 0x29];
uint8_t r1_rx_clk_dly_margin;
uint8_t r1_vref_dac_margin;
uint8_t r1_tx_dq_dly_margin;
uint8_t r1_device_vref_margin;
uint8_t reserved37[0x41 - 0x37];
uint8_t r2_rx_clk_dly_margin;
uint8_t r2_vref_dac_margin;
uint8_t r2_tx_dq_dly_margin;
uint8_t r2_device_vref_margin;
uint8_t reserved45[0x4f - 0x45];
uint8_t r3_rx_clk_dly_margin;
uint8_t r3_vref_dac_margin;
uint8_t r3_tx_dq_dly_margin;
uint8_t r3_device_vref_margin;
uint8_t reserved53[0x5e - 0x53];
uint16_t mr0;
uint16_t mr1;
uint16_t mr2;
uint16_t mr3;
uint16_t mr4;
uint16_t mr5;
uint16_t mr6;
uint8_t x16present;
uint8_t cs_setup_gddec;
uint16_t rtt_nom_wr_park0;
uint16_t rtt_nom_wr_park1;
uint16_t rtt_nom_wr_park2;
uint16_t rtt_nom_wr_park3;
uint16_t rtt_nom_wr_park4;
uint16_t rtt_nom_wr_park5;
uint16_t rtt_nom_wr_park6;
uint16_t rtt_nom_wr_park7;
uint8_t acsm_odt_ctrl0;
uint8_t acsm_odt_ctrl1;
uint8_t acsm_odt_ctrl2;
uint8_t acsm_odt_ctrl3;
uint8_t acsm_odt_ctrl4;
uint8_t acsm_odt_ctrl5;
uint8_t acsm_odt_ctrl6;
uint8_t acsm_odt_ctrl7;
uint8_t vref_dq_r0nib0;
uint8_t vref_dq_r0nib1;
uint8_t vref_dq_r0nib2;
uint8_t vref_dq_r0nib3;
uint8_t vref_dq_r0nib4;
uint8_t vref_dq_r0nib5;
uint8_t vref_dq_r0nib6;
uint8_t vref_dq_r0nib7;
uint8_t vref_dq_r0nib8;
uint8_t vref_dq_r0nib9;
uint8_t vref_dq_r0nib10;
uint8_t vref_dq_r0nib11;
uint8_t vref_dq_r0nib12;
uint8_t vref_dq_r0nib13;
uint8_t vref_dq_r0nib14;
uint8_t vref_dq_r0nib15;
uint8_t vref_dq_r0nib16;
uint8_t vref_dq_r0nib17;
uint8_t vref_dq_r0nib18;
uint8_t vref_dq_r0nib19;
uint8_t vref_dq_r1nib0;
uint8_t vref_dq_r1nib1;
uint8_t vref_dq_r1nib2;
uint8_t vref_dq_r1nib3;
uint8_t vref_dq_r1nib4;
uint8_t vref_dq_r1nib5;
uint8_t vref_dq_r1nib6;
uint8_t vref_dq_r1nib7;
uint8_t vref_dq_r1nib8;
uint8_t vref_dq_r1nib9;
uint8_t vref_dq_r1nib10;
uint8_t vref_dq_r1nib11;
uint8_t vref_dq_r1nib12;
uint8_t vref_dq_r1nib13;
uint8_t vref_dq_r1nib14;
uint8_t vref_dq_r1nib15;
uint8_t vref_dq_r1nib16;
uint8_t vref_dq_r1nib17;
uint8_t vref_dq_r1nib18;
uint8_t vref_dq_r1nib19;
uint8_t vref_dq_r2nib0;
uint8_t vref_dq_r2nib1;
uint8_t vref_dq_r2nib2;
uint8_t vref_dq_r2nib3;
uint8_t vref_dq_r2nib4;
uint8_t vref_dq_r2nib5;
uint8_t vref_dq_r2nib6;
uint8_t vref_dq_r2nib7;
uint8_t vref_dq_r2nib8;
uint8_t vref_dq_r2nib9;
uint8_t vref_dq_r2nib10;
uint8_t vref_dq_r2nib11;
uint8_t vref_dq_r2nib12;
uint8_t vref_dq_r2nib13;
uint8_t vref_dq_r2nib14;
uint8_t vref_dq_r2nib15;
uint8_t vref_dq_r2nib16;
uint8_t vref_dq_r2nib17;
uint8_t vref_dq_r2nib18;
uint8_t vref_dq_r2nib19;
uint8_t vref_dq_r3nib0;
uint8_t vref_dq_r3nib1;
uint8_t vref_dq_r3nib2;
uint8_t vref_dq_r3nib3;
uint8_t vref_dq_r3nib4;
uint8_t vref_dq_r3nib5;
uint8_t vref_dq_r3nib6;
uint8_t vref_dq_r3nib7;
uint8_t vref_dq_r3nib8;
uint8_t vref_dq_r3nib9;
uint8_t vref_dq_r3nib10;
uint8_t vref_dq_r3nib11;
uint8_t vref_dq_r3nib12;
uint8_t vref_dq_r3nib13;
uint8_t vref_dq_r3nib14;
uint8_t vref_dq_r3nib15;
uint8_t vref_dq_r3nib16;
uint8_t vref_dq_r3nib17;
uint8_t vref_dq_r3nib18;
uint8_t vref_dq_r3nib19;
uint8_t f0rc00_d0;
uint8_t f0rc01_d0;
uint8_t f0rc02_d0;
uint8_t f0rc03_d0;
uint8_t f0rc04_d0;
uint8_t f0rc05_d0;
uint8_t f0rc06_d0;
uint8_t f0rc07_d0;
uint8_t f0rc08_d0;
uint8_t f0rc09_d0;
uint8_t f0rc0a_d0;
uint8_t f0rc0b_d0;
uint8_t f0rc0c_d0;
uint8_t f0rc0d_d0;
uint8_t f0rc0e_d0;
uint8_t f0rc0f_d0;
uint8_t f0rc1x_d0;
uint8_t f0rc2x_d0;
uint8_t f0rc3x_d0;
uint8_t f0rc4x_d0;
uint8_t f0rc5x_d0;
uint8_t f0rc6x_d0;
uint8_t f0rc7x_d0;
uint8_t f0rc8x_d0;
uint8_t f0rc9x_d0;
uint8_t f0rcax_d0;
uint8_t f0rcbx_d0;
uint8_t f1rc00_d0;
uint8_t f1rc01_d0;
uint8_t f1rc02_d0;
uint8_t f1rc03_d0;
uint8_t f1rc04_d0;
uint8_t f1rc05_d0;
uint8_t f1rc06_d0;
uint8_t f1rc07_d0;
uint8_t f1rc08_d0;
uint8_t f1rc09_d0;
uint8_t f1rc0a_d0;
uint8_t f1rc0b_d0;
uint8_t f1rc0c_d0;
uint8_t f1rc0d_d0;
uint8_t f1rc0e_d0;
uint8_t f1rc0f_d0;
uint8_t f1rc1x_d0;
uint8_t f1rc2x_d0;
uint8_t f1rc3x_d0;
uint8_t f1rc4x_d0;
uint8_t f1rc5x_d0;
uint8_t f1rc6x_d0;
uint8_t f1rc7x_d0;
uint8_t f1rc8x_d0;
uint8_t f1rc9x_d0;
uint8_t f1rcax_d0;
uint8_t f1rcbx_d0;
uint8_t f0rc00_d1;
uint8_t f0rc01_d1;
uint8_t f0rc02_d1;
uint8_t f0rc03_d1;
uint8_t f0rc04_d1;
uint8_t f0rc05_d1;
uint8_t f0rc06_d1;
uint8_t f0rc07_d1;
uint8_t f0rc08_d1;
uint8_t f0rc09_d1;
uint8_t f0rc0a_d1;
uint8_t f0rc0b_d1;
uint8_t f0rc0c_d1;
uint8_t f0rc0d_d1;
uint8_t f0rc0e_d1;
uint8_t f0rc0f_d1;
uint8_t f0rc1x_d1;
uint8_t f0rc2x_d1;
uint8_t f0rc3x_d1;
uint8_t f0rc4x_d1;
uint8_t f0rc5x_d1;
uint8_t f0rc6x_d1;
uint8_t f0rc7x_d1;
uint8_t f0rc8x_d1;
uint8_t f0rc9x_d1;
uint8_t f0rcax_d1;
uint8_t f0rcbx_d1;
uint8_t f1rc00_d1;
uint8_t f1rc01_d1;
uint8_t f1rc02_d1;
uint8_t f1rc03_d1;
uint8_t f1rc04_d1;
uint8_t f1rc05_d1;
uint8_t f1rc06_d1;
uint8_t f1rc07_d1;
uint8_t f1rc08_d1;
uint8_t f1rc09_d1;
uint8_t f1rc0a_d1;
uint8_t f1rc0b_d1;
uint8_t f1rc0c_d1;
uint8_t f1rc0d_d1;
uint8_t f1rc0e_d1;
uint8_t f1rc0f_d1;
uint8_t f1rc1x_d1;
uint8_t f1rc2x_d1;
uint8_t f1rc3x_d1;
uint8_t f1rc4x_d1;
uint8_t f1rc5x_d1;
uint8_t f1rc6x_d1;
uint8_t f1rc7x_d1;
uint8_t f1rc8x_d1;
uint8_t f1rc9x_d1;
uint8_t f1rcax_d1;
uint8_t f1rcbx_d1;
uint8_t bc00_d0;
uint8_t bc01_d0;
uint8_t bc02_d0;
uint8_t bc03_d0;
uint8_t bc04_d0;
uint8_t bc05_d0;
uint8_t bc06_d0;
uint8_t bc07_d0;
uint8_t bc08_d0;
uint8_t bc09_d0;
uint8_t bc0a_d0;
uint8_t bc0b_d0;
uint8_t bc0c_d0;
uint8_t bc0d_d0;
uint8_t bc0e_d0;
uint8_t f0bc6x_d0;
uint8_t f0bccx_d0;
uint8_t f0bcdx_d0;
uint8_t f0bcex_d0;
uint8_t f0bcfx_d0;
uint8_t f1bccx_d0;
uint8_t f1bcdx_d0;
uint8_t f1bcex_d0;
uint8_t f1bcfx_d0;
uint8_t f0bc2x_b0_d0;
uint8_t f0bc3x_b0_d0;
uint8_t f0bc4x_b0_d0;
uint8_t f0bc5x_b0_d0;
uint8_t f0bc8x_b0_d0;
uint8_t f0bc9x_b0_d0;
uint8_t f0bcax_b0_d0;
uint8_t f0bcbx_b0_d0;
uint8_t f1bc2x_b0_d0;
uint8_t f1bc3x_b0_d0;
uint8_t f1bc4x_b0_d0;
uint8_t f1bc5x_b0_d0;
uint8_t f1bc8x_b0_d0;
uint8_t f1bc9x_b0_d0;
uint8_t f1bcax_b0_d0;
uint8_t f1bcbx_b0_d0;
uint8_t f2bc2x_b0_d0;
uint8_t f2bc3x_b0_d0;
uint8_t f2bc4x_b0_d0;
uint8_t f2bc5x_b0_d0;
uint8_t f2bc8x_b0_d0;
uint8_t f2bc9x_b0_d0;
uint8_t f2bcax_b0_d0;
uint8_t f2bcbx_b0_d0;
uint8_t f3bc2x_b0_d0;
uint8_t f3bc3x_b0_d0;
uint8_t f3bc4x_b0_d0;
uint8_t f3bc5x_b0_d0;
uint8_t f3bc8x_b0_d0;
uint8_t f3bc9x_b0_d0;
uint8_t f3bcax_b0_d0;
uint8_t f3bcbx_b0_d0;
uint8_t f0bc2x_b1_d0;
uint8_t f0bc3x_b1_d0;
uint8_t f0bc4x_b1_d0;
uint8_t f0bc5x_b1_d0;
uint8_t f0bc8x_b1_d0;
uint8_t f0bc9x_b1_d0;
uint8_t f0bcax_b1_d0;
uint8_t f0bcbx_b1_d0;
uint8_t f1bc2x_b1_d0;
uint8_t f1bc3x_b1_d0;
uint8_t f1bc4x_b1_d0;
uint8_t f1bc5x_b1_d0;
uint8_t f1bc8x_b1_d0;
uint8_t f1bc9x_b1_d0;
uint8_t f1bcax_b1_d0;
uint8_t f1bcbx_b1_d0;
uint8_t f2bc2x_b1_d0;
uint8_t f2bc3x_b1_d0;
uint8_t f2bc4x_b1_d0;
uint8_t f2bc5x_b1_d0;
uint8_t f2bc8x_b1_d0;
uint8_t f2bc9x_b1_d0;
uint8_t f2bcax_b1_d0;
uint8_t f2bcbx_b1_d0;
uint8_t f3bc2x_b1_d0;
uint8_t f3bc3x_b1_d0;
uint8_t f3bc4x_b1_d0;
uint8_t f3bc5x_b1_d0;
uint8_t f3bc8x_b1_d0;
uint8_t f3bc9x_b1_d0;
uint8_t f3bcax_b1_d0;
uint8_t f3bcbx_b1_d0;
uint8_t f0bc2x_b2_d0;
uint8_t f0bc3x_b2_d0;
uint8_t f0bc4x_b2_d0;
uint8_t f0bc5x_b2_d0;
uint8_t f0bc8x_b2_d0;
uint8_t f0bc9x_b2_d0;
uint8_t f0bcax_b2_d0;
uint8_t f0bcbx_b2_d0;
uint8_t f1bc2x_b2_d0;
uint8_t f1bc3x_b2_d0;
uint8_t f1bc4x_b2_d0;
uint8_t f1bc5x_b2_d0;
uint8_t f1bc8x_b2_d0;
uint8_t f1bc9x_b2_d0;
uint8_t f1bcax_b2_d0;
uint8_t f1bcbx_b2_d0;
uint8_t f2bc2x_b2_d0;
uint8_t f2bc3x_b2_d0;
uint8_t f2bc4x_b2_d0;
uint8_t f2bc5x_b2_d0;
uint8_t f2bc8x_b2_d0;
uint8_t f2bc9x_b2_d0;
uint8_t f2bcax_b2_d0;
uint8_t f2bcbx_b2_d0;
uint8_t f3bc2x_b2_d0;
uint8_t f3bc3x_b2_d0;
uint8_t f3bc4x_b2_d0;
uint8_t f3bc5x_b2_d0;
uint8_t f3bc8x_b2_d0;
uint8_t f3bc9x_b2_d0;
uint8_t f3bcax_b2_d0;
uint8_t f3bcbx_b2_d0;
uint8_t f0bc2x_b3_d0;
uint8_t f0bc3x_b3_d0;
uint8_t f0bc4x_b3_d0;
uint8_t f0bc5x_b3_d0;
uint8_t f0bc8x_b3_d0;
uint8_t f0bc9x_b3_d0;
uint8_t f0bcax_b3_d0;
uint8_t f0bcbx_b3_d0;
uint8_t f1bc2x_b3_d0;
uint8_t f1bc3x_b3_d0;
uint8_t f1bc4x_b3_d0;
uint8_t f1bc5x_b3_d0;
uint8_t f1bc8x_b3_d0;
uint8_t f1bc9x_b3_d0;
uint8_t f1bcax_b3_d0;
uint8_t f1bcbx_b3_d0;
uint8_t f2bc2x_b3_d0;
uint8_t f2bc3x_b3_d0;
uint8_t f2bc4x_b3_d0;
uint8_t f2bc5x_b3_d0;
uint8_t f2bc8x_b3_d0;
uint8_t f2bc9x_b3_d0;
uint8_t f2bcax_b3_d0;
uint8_t f2bcbx_b3_d0;
uint8_t f3bc2x_b3_d0;
uint8_t f3bc3x_b3_d0;
uint8_t f3bc4x_b3_d0;
uint8_t f3bc5x_b3_d0;
uint8_t f3bc8x_b3_d0;
uint8_t f3bc9x_b3_d0;
uint8_t f3bcax_b3_d0;
uint8_t f3bcbx_b3_d0;
uint8_t f0bc2x_b4_d0;
uint8_t f0bc3x_b4_d0;
uint8_t f0bc4x_b4_d0;
uint8_t f0bc5x_b4_d0;
uint8_t f0bc8x_b4_d0;
uint8_t f0bc9x_b4_d0;
uint8_t f0bcax_b4_d0;
uint8_t f0bcbx_b4_d0;
uint8_t f1bc2x_b4_d0;
uint8_t f1bc3x_b4_d0;
uint8_t f1bc4x_b4_d0;
uint8_t f1bc5x_b4_d0;
uint8_t f1bc8x_b4_d0;
uint8_t f1bc9x_b4_d0;
uint8_t f1bcax_b4_d0;
uint8_t f1bcbx_b4_d0;
uint8_t f2bc2x_b4_d0;
uint8_t f2bc3x_b4_d0;
uint8_t f2bc4x_b4_d0;
uint8_t f2bc5x_b4_d0;
uint8_t f2bc8x_b4_d0;
uint8_t f2bc9x_b4_d0;
uint8_t f2bcax_b4_d0;
uint8_t f2bcbx_b4_d0;
uint8_t f3bc2x_b4_d0;
uint8_t f3bc3x_b4_d0;
uint8_t f3bc4x_b4_d0;
uint8_t f3bc5x_b4_d0;
uint8_t f3bc8x_b4_d0;
uint8_t f3bc9x_b4_d0;
uint8_t f3bcax_b4_d0;
uint8_t f3bcbx_b4_d0;
uint8_t f0bc2x_b5_d0;
uint8_t f0bc3x_b5_d0;
uint8_t f0bc4x_b5_d0;
uint8_t f0bc5x_b5_d0;
uint8_t f0bc8x_b5_d0;
uint8_t f0bc9x_b5_d0;
uint8_t f0bcax_b5_d0;
uint8_t f0bcbx_b5_d0;
uint8_t f1bc2x_b5_d0;
uint8_t f1bc3x_b5_d0;
uint8_t f1bc4x_b5_d0;
uint8_t f1bc5x_b5_d0;
uint8_t f1bc8x_b5_d0;
uint8_t f1bc9x_b5_d0;
uint8_t f1bcax_b5_d0;
uint8_t f1bcbx_b5_d0;
uint8_t f2bc2x_b5_d0;
uint8_t f2bc3x_b5_d0;
uint8_t f2bc4x_b5_d0;
uint8_t f2bc5x_b5_d0;
uint8_t f2bc8x_b5_d0;
uint8_t f2bc9x_b5_d0;
uint8_t f2bcax_b5_d0;
uint8_t f2bcbx_b5_d0;
uint8_t f3bc2x_b5_d0;
uint8_t f3bc3x_b5_d0;
uint8_t f3bc4x_b5_d0;
uint8_t f3bc5x_b5_d0;
uint8_t f3bc8x_b5_d0;
uint8_t f3bc9x_b5_d0;
uint8_t f3bcax_b5_d0;
uint8_t f3bcbx_b5_d0;
uint8_t f0bc2x_b6_d0;
uint8_t f0bc3x_b6_d0;
uint8_t f0bc4x_b6_d0;
uint8_t f0bc5x_b6_d0;
uint8_t f0bc8x_b6_d0;
uint8_t f0bc9x_b6_d0;
uint8_t f0bcax_b6_d0;
uint8_t f0bcbx_b6_d0;
uint8_t f1bc2x_b6_d0;
uint8_t f1bc3x_b6_d0;
uint8_t f1bc4x_b6_d0;
uint8_t f1bc5x_b6_d0;
uint8_t f1bc8x_b6_d0;
uint8_t f1bc9x_b6_d0;
uint8_t f1bcax_b6_d0;
uint8_t f1bcbx_b6_d0;
uint8_t f2bc2x_b6_d0;
uint8_t f2bc3x_b6_d0;
uint8_t f2bc4x_b6_d0;
uint8_t f2bc5x_b6_d0;
uint8_t f2bc8x_b6_d0;
uint8_t f2bc9x_b6_d0;
uint8_t f2bcax_b6_d0;
uint8_t f2bcbx_b6_d0;
uint8_t f3bc2x_b6_d0;
uint8_t f3bc3x_b6_d0;
uint8_t f3bc4x_b6_d0;
uint8_t f3bc5x_b6_d0;
uint8_t f3bc8x_b6_d0;
uint8_t f3bc9x_b6_d0;
uint8_t f3bcax_b6_d0;
uint8_t f3bcbx_b6_d0;
uint8_t f0bc2x_b7_d0;
uint8_t f0bc3x_b7_d0;
uint8_t f0bc4x_b7_d0;
uint8_t f0bc5x_b7_d0;
uint8_t f0bc8x_b7_d0;
uint8_t f0bc9x_b7_d0;
uint8_t f0bcax_b7_d0;
uint8_t f0bcbx_b7_d0;
uint8_t f1bc2x_b7_d0;
uint8_t f1bc3x_b7_d0;
uint8_t f1bc4x_b7_d0;
uint8_t f1bc5x_b7_d0;
uint8_t f1bc8x_b7_d0;
uint8_t f1bc9x_b7_d0;
uint8_t f1bcax_b7_d0;
uint8_t f1bcbx_b7_d0;
uint8_t f2bc2x_b7_d0;
uint8_t f2bc3x_b7_d0;
uint8_t f2bc4x_b7_d0;
uint8_t f2bc5x_b7_d0;
uint8_t f2bc8x_b7_d0;
uint8_t f2bc9x_b7_d0;
uint8_t f2bcax_b7_d0;
uint8_t f2bcbx_b7_d0;
uint8_t f3bc2x_b7_d0;
uint8_t f3bc3x_b7_d0;
uint8_t f3bc4x_b7_d0;
uint8_t f3bc5x_b7_d0;
uint8_t f3bc8x_b7_d0;
uint8_t f3bc9x_b7_d0;
uint8_t f3bcax_b7_d0;
uint8_t f3bcbx_b7_d0;
uint8_t f0bc2x_b8_d0;
uint8_t f0bc3x_b8_d0;
uint8_t f0bc4x_b8_d0;
uint8_t f0bc5x_b8_d0;
uint8_t f0bc8x_b8_d0;
uint8_t f0bc9x_b8_d0;
uint8_t f0bcax_b8_d0;
uint8_t f0bcbx_b8_d0;
uint8_t f1bc2x_b8_d0;
uint8_t f1bc3x_b8_d0;
uint8_t f1bc4x_b8_d0;
uint8_t f1bc5x_b8_d0;
uint8_t f1bc8x_b8_d0;
uint8_t f1bc9x_b8_d0;
uint8_t f1bcax_b8_d0;
uint8_t f1bcbx_b8_d0;
uint8_t f2bc2x_b8_d0;
uint8_t f2bc3x_b8_d0;
uint8_t f2bc4x_b8_d0;
uint8_t f2bc5x_b8_d0;
uint8_t f2bc8x_b8_d0;
uint8_t f2bc9x_b8_d0;
uint8_t f2bcax_b8_d0;
uint8_t f2bcbx_b8_d0;
uint8_t f3bc2x_b8_d0;
uint8_t f3bc3x_b8_d0;
uint8_t f3bc4x_b8_d0;
uint8_t f3bc5x_b8_d0;
uint8_t f3bc8x_b8_d0;
uint8_t f3bc9x_b8_d0;
uint8_t f3bcax_b8_d0;
uint8_t f3bcbx_b8_d0;
uint8_t f5bc5x_d0;
uint8_t f5bc6x_d0;
uint8_t f4bc8x_d0;
uint8_t f4bc9x_d0;
uint8_t f4bcax_d0;
uint8_t f4bcbx_d0;
uint8_t f4bccx_d0;
uint8_t f4bcdx_d0;
uint8_t f4bcex_d0;
uint8_t f4bcfx_d0;
uint8_t f5bc8x_d0;
uint8_t f5bc9x_d0;
uint8_t f5bcax_d0;
uint8_t f5bcbx_d0;
uint8_t f5bccx_d0;
uint8_t f5bcdx_d0;
uint8_t f5bcex_d0;
uint8_t f5bcfx_d0;
uint8_t f6bc8x_d0;
uint8_t f6bc9x_d0;
uint8_t f6bcax_d0;
uint8_t f6bcbx_d0;
uint8_t f6bccx_d0;
uint8_t f6bcdx_d0;
uint8_t f6bcex_d0;
uint8_t f6bcfx_d0;
uint8_t f7bc8x_d0;
uint8_t f7bc9x_d0;
uint8_t f7bcax_d0;
uint8_t f7bcbx_d0;
uint8_t f7bccx_d0;
uint8_t f7bcdx_d0;
uint8_t f7bcex_d0;
uint8_t f7bcfx_d0;
uint8_t bc00_d1;
uint8_t bc01_d1;
uint8_t bc02_d1;
uint8_t bc03_d1;
uint8_t bc04_d1;
uint8_t bc05_d1;
uint8_t bc06_d1;
uint8_t bc07_d1;
uint8_t bc08_d1;
uint8_t bc09_d1;
uint8_t bc0a_d1;
uint8_t bc0b_d1;
uint8_t bc0c_d1;
uint8_t bc0d_d1;
uint8_t bc0e_d1;
uint8_t f0bc6x_d1;
uint8_t f0bccx_d1;
uint8_t f0bcdx_d1;
uint8_t f0bcex_d1;
uint8_t f0bcfx_d1;
uint8_t f1bccx_d1;
uint8_t f1bcdx_d1;
uint8_t f1bcex_d1;
uint8_t f1bcfx_d1;
uint8_t f0bc2x_b0_d1;
uint8_t f0bc3x_b0_d1;
uint8_t f0bc4x_b0_d1;
uint8_t f0bc5x_b0_d1;
uint8_t f0bc8x_b0_d1;
uint8_t f0bc9x_b0_d1;
uint8_t f0bcax_b0_d1;
uint8_t f0bcbx_b0_d1;
uint8_t f1bc2x_b0_d1;
uint8_t f1bc3x_b0_d1;
uint8_t f1bc4x_b0_d1;
uint8_t f1bc5x_b0_d1;
uint8_t f1bc8x_b0_d1;
uint8_t f1bc9x_b0_d1;
uint8_t f1bcax_b0_d1;
uint8_t f1bcbx_b0_d1;
uint8_t f2bc2x_b0_d1;
uint8_t f2bc3x_b0_d1;
uint8_t f2bc4x_b0_d1;
uint8_t f2bc5x_b0_d1;
uint8_t f2bc8x_b0_d1;
uint8_t f2bc9x_b0_d1;
uint8_t f2bcax_b0_d1;
uint8_t f2bcbx_b0_d1;
uint8_t f3bc2x_b0_d1;
uint8_t f3bc3x_b0_d1;
uint8_t f3bc4x_b0_d1;
uint8_t f3bc5x_b0_d1;
uint8_t f3bc8x_b0_d1;
uint8_t f3bc9x_b0_d1;
uint8_t f3bcax_b0_d1;
uint8_t f3bcbx_b0_d1;
uint8_t f0bc2x_b1_d1;
uint8_t f0bc3x_b1_d1;
uint8_t f0bc4x_b1_d1;
uint8_t f0bc5x_b1_d1;
uint8_t f0bc8x_b1_d1;
uint8_t f0bc9x_b1_d1;
uint8_t f0bcax_b1_d1;
uint8_t f0bcbx_b1_d1;
uint8_t f1bc2x_b1_d1;
uint8_t f1bc3x_b1_d1;
uint8_t f1bc4x_b1_d1;
uint8_t f1bc5x_b1_d1;
uint8_t f1bc8x_b1_d1;
uint8_t f1bc9x_b1_d1;
uint8_t f1bcax_b1_d1;
uint8_t f1bcbx_b1_d1;
uint8_t f2bc2x_b1_d1;
uint8_t f2bc3x_b1_d1;
uint8_t f2bc4x_b1_d1;
uint8_t f2bc5x_b1_d1;
uint8_t f2bc8x_b1_d1;
uint8_t f2bc9x_b1_d1;
uint8_t f2bcax_b1_d1;
uint8_t f2bcbx_b1_d1;
uint8_t f3bc2x_b1_d1;
uint8_t f3bc3x_b1_d1;
uint8_t f3bc4x_b1_d1;
uint8_t f3bc5x_b1_d1;
uint8_t f3bc8x_b1_d1;
uint8_t f3bc9x_b1_d1;
uint8_t f3bcax_b1_d1;
uint8_t f3bcbx_b1_d1;
uint8_t f0bc2x_b2_d1;
uint8_t f0bc3x_b2_d1;
uint8_t f0bc4x_b2_d1;
uint8_t f0bc5x_b2_d1;
uint8_t f0bc8x_b2_d1;
uint8_t f0bc9x_b2_d1;
uint8_t f0bcax_b2_d1;
uint8_t f0bcbx_b2_d1;
uint8_t f1bc2x_b2_d1;
uint8_t f1bc3x_b2_d1;
uint8_t f1bc4x_b2_d1;
uint8_t f1bc5x_b2_d1;
uint8_t f1bc8x_b2_d1;
uint8_t f1bc9x_b2_d1;
uint8_t f1bcax_b2_d1;
uint8_t f1bcbx_b2_d1;
uint8_t f2bc2x_b2_d1;
uint8_t f2bc3x_b2_d1;
uint8_t f2bc4x_b2_d1;
uint8_t f2bc5x_b2_d1;
uint8_t f2bc8x_b2_d1;
uint8_t f2bc9x_b2_d1;
uint8_t f2bcax_b2_d1;
uint8_t f2bcbx_b2_d1;
uint8_t f3bc2x_b2_d1;
uint8_t f3bc3x_b2_d1;
uint8_t f3bc4x_b2_d1;
uint8_t f3bc5x_b2_d1;
uint8_t f3bc8x_b2_d1;
uint8_t f3bc9x_b2_d1;
uint8_t f3bcax_b2_d1;
uint8_t f3bcbx_b2_d1;
uint8_t f0bc2x_b3_d1;
uint8_t f0bc3x_b3_d1;
uint8_t f0bc4x_b3_d1;
uint8_t f0bc5x_b3_d1;
uint8_t f0bc8x_b3_d1;
uint8_t f0bc9x_b3_d1;
uint8_t f0bcax_b3_d1;
uint8_t f0bcbx_b3_d1;
uint8_t f1bc2x_b3_d1;
uint8_t f1bc3x_b3_d1;
uint8_t f1bc4x_b3_d1;
uint8_t f1bc5x_b3_d1;
uint8_t f1bc8x_b3_d1;
uint8_t f1bc9x_b3_d1;
uint8_t f1bcax_b3_d1;
uint8_t f1bcbx_b3_d1;
uint8_t f2bc2x_b3_d1;
uint8_t f2bc3x_b3_d1;
uint8_t f2bc4x_b3_d1;
uint8_t f2bc5x_b3_d1;
uint8_t f2bc8x_b3_d1;
uint8_t f2bc9x_b3_d1;
uint8_t f2bcax_b3_d1;
uint8_t f2bcbx_b3_d1;
uint8_t f3bc2x_b3_d1;
uint8_t f3bc3x_b3_d1;
uint8_t f3bc4x_b3_d1;
uint8_t f3bc5x_b3_d1;
uint8_t f3bc8x_b3_d1;
uint8_t f3bc9x_b3_d1;
uint8_t f3bcax_b3_d1;
uint8_t f3bcbx_b3_d1;
uint8_t f0bc2x_b4_d1;
uint8_t f0bc3x_b4_d1;
uint8_t f0bc4x_b4_d1;
uint8_t f0bc5x_b4_d1;
uint8_t f0bc8x_b4_d1;
uint8_t f0bc9x_b4_d1;
uint8_t f0bcax_b4_d1;
uint8_t f0bcbx_b4_d1;
uint8_t f1bc2x_b4_d1;
uint8_t f1bc3x_b4_d1;
uint8_t f1bc4x_b4_d1;
uint8_t f1bc5x_b4_d1;
uint8_t f1bc8x_b4_d1;
uint8_t f1bc9x_b4_d1;
uint8_t f1bcax_b4_d1;
uint8_t f1bcbx_b4_d1;
uint8_t f2bc2x_b4_d1;
uint8_t f2bc3x_b4_d1;
uint8_t f2bc4x_b4_d1;
uint8_t f2bc5x_b4_d1;
uint8_t f2bc8x_b4_d1;
uint8_t f2bc9x_b4_d1;
uint8_t f2bcax_b4_d1;
uint8_t f2bcbx_b4_d1;
uint8_t f3bc2x_b4_d1;
uint8_t f3bc3x_b4_d1;
uint8_t f3bc4x_b4_d1;
uint8_t f3bc5x_b4_d1;
uint8_t f3bc8x_b4_d1;
uint8_t f3bc9x_b4_d1;
uint8_t f3bcax_b4_d1;
uint8_t f3bcbx_b4_d1;
uint8_t f0bc2x_b5_d1;
uint8_t f0bc3x_b5_d1;
uint8_t f0bc4x_b5_d1;
uint8_t f0bc5x_b5_d1;
uint8_t f0bc8x_b5_d1;
uint8_t f0bc9x_b5_d1;
uint8_t f0bcax_b5_d1;
uint8_t f0bcbx_b5_d1;
uint8_t f1bc2x_b5_d1;
uint8_t f1bc3x_b5_d1;
uint8_t f1bc4x_b5_d1;
uint8_t f1bc5x_b5_d1;
uint8_t f1bc8x_b5_d1;
uint8_t f1bc9x_b5_d1;
uint8_t f1bcax_b5_d1;
uint8_t f1bcbx_b5_d1;
uint8_t f2bc2x_b5_d1;
uint8_t f2bc3x_b5_d1;
uint8_t f2bc4x_b5_d1;
uint8_t f2bc5x_b5_d1;
uint8_t f2bc8x_b5_d1;
uint8_t f2bc9x_b5_d1;
uint8_t f2bcax_b5_d1;
uint8_t f2bcbx_b5_d1;
uint8_t f3bc2x_b5_d1;
uint8_t f3bc3x_b5_d1;
uint8_t f3bc4x_b5_d1;
uint8_t f3bc5x_b5_d1;
uint8_t f3bc8x_b5_d1;
uint8_t f3bc9x_b5_d1;
uint8_t f3bcax_b5_d1;
uint8_t f3bcbx_b5_d1;
uint8_t f0bc2x_b6_d1;
uint8_t f0bc3x_b6_d1;
uint8_t f0bc4x_b6_d1;
uint8_t f0bc5x_b6_d1;
uint8_t f0bc8x_b6_d1;
uint8_t f0bc9x_b6_d1;
uint8_t f0bcax_b6_d1;
uint8_t f0bcbx_b6_d1;
uint8_t f1bc2x_b6_d1;
uint8_t f1bc3x_b6_d1;
uint8_t f1bc4x_b6_d1;
uint8_t f1bc5x_b6_d1;
uint8_t f1bc8x_b6_d1;
uint8_t f1bc9x_b6_d1;
uint8_t f1bcax_b6_d1;
uint8_t f1bcbx_b6_d1;
uint8_t f2bc2x_b6_d1;
uint8_t f2bc3x_b6_d1;
uint8_t f2bc4x_b6_d1;
uint8_t f2bc5x_b6_d1;
uint8_t f2bc8x_b6_d1;
uint8_t f2bc9x_b6_d1;
uint8_t f2bcax_b6_d1;
uint8_t f2bcbx_b6_d1;
uint8_t f3bc2x_b6_d1;
uint8_t f3bc3x_b6_d1;
uint8_t f3bc4x_b6_d1;
uint8_t f3bc5x_b6_d1;
uint8_t f3bc8x_b6_d1;
uint8_t f3bc9x_b6_d1;
uint8_t f3bcax_b6_d1;
uint8_t f3bcbx_b6_d1;
uint8_t f0bc2x_b7_d1;
uint8_t f0bc3x_b7_d1;
uint8_t f0bc4x_b7_d1;
uint8_t f0bc5x_b7_d1;
uint8_t f0bc8x_b7_d1;
uint8_t f0bc9x_b7_d1;
uint8_t f0bcax_b7_d1;
uint8_t f0bcbx_b7_d1;
uint8_t f1bc2x_b7_d1;
uint8_t f1bc3x_b7_d1;
uint8_t f1bc4x_b7_d1;
uint8_t f1bc5x_b7_d1;
uint8_t f1bc8x_b7_d1;
uint8_t f1bc9x_b7_d1;
uint8_t f1bcax_b7_d1;
uint8_t f1bcbx_b7_d1;
uint8_t f2bc2x_b7_d1;
uint8_t f2bc3x_b7_d1;
uint8_t f2bc4x_b7_d1;
uint8_t f2bc5x_b7_d1;
uint8_t f2bc8x_b7_d1;
uint8_t f2bc9x_b7_d1;
uint8_t f2bcax_b7_d1;
uint8_t f2bcbx_b7_d1;
uint8_t f3bc2x_b7_d1;
uint8_t f3bc3x_b7_d1;
uint8_t f3bc4x_b7_d1;
uint8_t f3bc5x_b7_d1;
uint8_t f3bc8x_b7_d1;
uint8_t f3bc9x_b7_d1;
uint8_t f3bcax_b7_d1;
uint8_t f3bcbx_b7_d1;
uint8_t f0bc2x_b8_d1;
uint8_t f0bc3x_b8_d1;
uint8_t f0bc4x_b8_d1;
uint8_t f0bc5x_b8_d1;
uint8_t f0bc8x_b8_d1;
uint8_t f0bc9x_b8_d1;
uint8_t f0bcax_b8_d1;
uint8_t f0bcbx_b8_d1;
uint8_t f1bc2x_b8_d1;
uint8_t f1bc3x_b8_d1;
uint8_t f1bc4x_b8_d1;
uint8_t f1bc5x_b8_d1;
uint8_t f1bc8x_b8_d1;
uint8_t f1bc9x_b8_d1;
uint8_t f1bcax_b8_d1;
uint8_t f1bcbx_b8_d1;
uint8_t f2bc2x_b8_d1;
uint8_t f2bc3x_b8_d1;
uint8_t f2bc4x_b8_d1;
uint8_t f2bc5x_b8_d1;
uint8_t f2bc8x_b8_d1;
uint8_t f2bc9x_b8_d1;
uint8_t f2bcax_b8_d1;
uint8_t f2bcbx_b8_d1;
uint8_t f3bc2x_b8_d1;
uint8_t f3bc3x_b8_d1;
uint8_t f3bc4x_b8_d1;
uint8_t f3bc5x_b8_d1;
uint8_t f3bc8x_b8_d1;
uint8_t f3bc9x_b8_d1;
uint8_t f3bcax_b8_d1;
uint8_t f3bcbx_b8_d1;
uint8_t f5bc5x_d1;
uint8_t f5bc6x_d1;
uint8_t f4bc8x_d1;
uint8_t f4bc9x_d1;
uint8_t f4bcax_d1;
uint8_t f4bcbx_d1;
uint8_t f4bccx_d1;
uint8_t f4bcdx_d1;
uint8_t f4bcex_d1;
uint8_t f4bcfx_d1;
uint8_t f5bc8x_d1;
uint8_t f5bc9x_d1;
uint8_t f5bcax_d1;
uint8_t f5bcbx_d1;
uint8_t f5bccx_d1;
uint8_t f5bcdx_d1;
uint8_t f5bcex_d1;
uint8_t f5bcfx_d1;
uint8_t f6bc8x_d1;
uint8_t f6bc9x_d1;
uint8_t f6bcax_d1;
uint8_t f6bcbx_d1;
uint8_t f6bccx_d1;
uint8_t f6bcdx_d1;
uint8_t f6bcex_d1;
uint8_t f6bcfx_d1;
uint8_t f7bc8x_d1;
uint8_t f7bc9x_d1;
uint8_t f7bcax_d1;
uint8_t f7bcbx_d1;
uint8_t f7bccx_d1;
uint8_t f7bcdx_d1;
uint8_t f7bcex_d1;
uint8_t f7bcfx_d1;
uint16_t alt_cas_l;
uint8_t alt_wcas_l;
uint8_t d4misc;
} __packed;
#endif
#
# Copyright 2021 NXP
#
# SPDX-License-Identifier: BSD-3-Clause
#
#
#-----------------------------------------------------------------------------
# SNPS ddr phy driver files
DDR_PHY_C =
DDR_PHY_H =
$(DDR_PHY_C): $(DDR_PHY_H) $(COMMON_HDRS) src
@cp -r "$(DDR_PHY_PATH)/$@" "$(SRC_DIR)/$@"
$(DDR_PHY_H): src
@cp -r "$(DDR_PHY_PATH)/$@" "$(SRC_DIR)/$@"
#------------------------------------------------
/*
* Copyright 2021 NXP
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef _INPUT_H_
#define _INPUT_H_
enum dram_types {
DDR4,
DDR3,
LPDDR4,
LPDDR3,
LPDDR2,
DDR5,
};
enum dimm_types {
UDIMM,
SODIMM,
RDIMM,
LRDIMM,
NODIMM,
};
struct input_basic {
enum dram_types dram_type;
enum dimm_types dimm_type;
int lp4x_mode; /* 0x1 = lpddr4x mode, when dram_type is lpddr4
*/
/* not used for protocols other than lpddr4 */
int num_dbyte; /* number of dbytes physically instantiated */
int num_active_dbyte_dfi0; /* number of active dbytes to be
* controlled by dfi0
*/
int num_active_dbyte_dfi1; /* number of active dbytes to be
* controlled by dfi1. Not used for
* protocols other than lpddr3 and
* lpddr4
*/
int num_anib; /* number of anibs physically instantiated */
int num_rank_dfi0; /* number of ranks in dfi0 channel */
int num_rank_dfi1; /* number of ranks in dfi1 channel */
int dram_data_width; /* 4,8,16 or 32 depending on protocol and dram
* type
*/
int num_pstates;
int frequency; /* memclk frequency in mhz -- round up */
int pll_bypass; /* pll bypass enable */
int dfi_freq_ratio; /* selected dfi frequency ratio */
int dfi1exists; /* whether they phy config has dfi1 channel */
int train2d;
int hard_macro_ver;
int read_dbienable;
int dfi_mode; /* no longer used */
};
struct input_advanced {
int d4rx_preamble_length;
int d4tx_preamble_length;
int ext_cal_res_val; /* external pull-down resistor */
int is2ttiming;
int odtimpedance;
int tx_impedance;
int atx_impedance;
int mem_alert_en;
int mem_alert_puimp;
int mem_alert_vref_level;
int mem_alert_sync_bypass;
int dis_dyn_adr_tri;
int phy_mstr_train_interval;
int phy_mstr_max_req_to_ack;
int wdqsext;
int cal_interval;
int cal_once;
int dram_byte_swap;
int rx_en_back_off;
int train_sequence_ctrl;
int phy_gen2_umctl_opt;
int phy_gen2_umctl_f0rc5x;
int tx_slew_rise_dq;
int tx_slew_fall_dq;
int tx_slew_rise_ac;
int tx_slew_fall_ac;
int enable_high_clk_skew_fix;
int disable_unused_addr_lns;
int phy_init_sequence_num;
int cs_mode; /* rdimm */
int cast_cs_to_cid; /* rdimm */
};
struct input {
struct input_basic basic;
struct input_advanced adv;
unsigned int mr[7];
unsigned int cs_d0;
unsigned int cs_d1;
unsigned int mirror;
unsigned int odt[4];
unsigned int rcw[16];
unsigned int rcw3x;
unsigned int vref;
};
#endif
/*
* Copyright 2021 NXP
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef MESSAGE_H
#define MESSAGE_H
#ifdef DEBUG
struct phy_msg {
uint32_t index;
const char *msg;
};
const static struct phy_msg messages_1d[] = {
{0x00000001,
"PMU1:prbsGenCtl:%x\n"
},
{0x00010000,
"PMU1: loading 2D acsm sequence\n"
},
{0x00020000,
"PMU1: loading 1D acsm sequence\n"
},
{0x00030002,
"PMU3: %d memclocks @ %d to get half of 300ns\n"
},
{0x00040000,
"PMU: Error: User requested MPR read pattern for read DQS training in DDR3 Mode\n"
},
{0x00050000,
"PMU3: Running 1D search for left eye edge\n"
},
{0x00060001,
"PMU1: In Phase Left Edge Search cs %d\n"
},
{0x00070001,
"PMU1: Out of Phase Left Edge Search cs %d\n"
},
{0x00080000,
"PMU3: Running 1D search for right eye edge\n"
},
{0x00090001,
"PMU1: In Phase Right Edge Search cs %d\n"
},
{0x000a0001,
"PMU1: Out of Phase Right Edge Search cs %d\n"
},
{0x000b0001,
"PMU1: mxRdLat training pstate %d\n"
},
{0x000c0001,
"PMU1: mxRdLat search for cs %d\n"
},
{0x000d0001,
"PMU0: MaxRdLat non consistent DtsmLoThldXingInd 0x%03x\n"
},
{0x000e0003,
"PMU4: CS %d Dbyte %d worked with DFIMRL = %d DFICLKs\n"
},
{0x000f0004,
"PMU3: MaxRdLat Read Lane err mask for csn %d, DFIMRL %2d DFIClks, dbyte %d = 0x%03x\n"
},
{0x00100003,
"PMU3: MaxRdLat Read Lane err mask for csn %d DFIMRL %2d, All dbytes = 0x%03x\n"
},
{0x00110001,
"PMU: Error: CS%d failed to find a DFIMRL setting that worked for all bytes during MaxRdLat training\n"
},
{0x00120002,
"PMU3: Smallest passing DFIMRL for all dbytes in CS%d = %d DFIClks\n"
},
{0x00130000,
"PMU: Error: No passing DFIMRL value found for any chip select during MaxRdLat training\n"
},
{0x00140003,
"PMU: Error: Dbyte %d lane %d txDqDly passing region is too small (width = %d)\n"
},
{0x00150006,
"PMU10: Adjusting rxclkdly db %d nib %d from %d+%d=%d->%d\n"
},
{0x00160000,
"PMU4: TxDqDly Passing Regions (EyeLeft EyeRight -> EyeCenter) Units=1/32 UI\n"
},
{0x00170005,
"PMU4: DB %d Lane %d: %3d %3d -> %3d\n"
},
{0x00180002,
"PMU2: TXDQ delayLeft[%2d] = %3d (DISCONNECTED)\n"
},
{0x00190004,
"PMU2: TXDQ delayLeft[%2d] = %3d oopScaled = %3d selectOop %d\n"
},
{0x001a0002,
"PMU2: TXDQ delayRight[%2d] = %3d (DISCONNECTED)\n"
},
{0x001b0004,
"PMU2: TXDQ delayRight[%2d] = %3d oopScaled = %3d selectOop %d\n"
},
{0x001c0003,
"PMU: Error: Dbyte %d lane %d txDqDly passing region is too small (width = %d)\n"
},
{0x001d0000,
"PMU4: TxDqDly Passing Regions (EyeLeft EyeRight -> EyeCenter) Units=1/32 UI\n"
},
{0x001e0002,
"PMU4: DB %d Lane %d: (DISCONNECTED)\n"
},
{0x001f0005,
"PMU4: DB %d Lane %d: %3d %3d -> %3d\n"
},
{0x00200002,
"PMU3: Running 1D search csn %d for DM Right/NotLeft(%d) eye edge\n"
},
{0x00210002,
"PMU3: WrDq DM byte%2d with Errcnt %d\n"
},
{0x00220002,
"PMU3: WrDq DM byte%2d avgDly 0x%04x\n"
},
{0x00230002,
"PMU1: WrDq DM byte%2d with Errcnt %d\n"
},
{0x00240001,
"PMU: Error: Dbyte %d txDqDly DM training did not start inside the eye\n"
},
{0x00250000,
"PMU4: DM TxDqDly Passing Regions (EyeLeft EyeRight -> EyeCenter) Units=1/32 UI\n"
},
{0x00260002,
"PMU4: DB %d Lane %d: (DISCONNECTED)\n"
},
{0x00270005,
"PMU4: DB %d Lane %d: %3d %3d -> %3d\n"
},
{0x00280003,
"PMU: Error: Dbyte %d lane %d txDqDly DM passing region is too small (width = %d)\n"
},
{0x00290004,
"PMU3: Errcnt for MRD/MWD search nib %2d delay = (%d, 0x%02x) = %d\n"
},
{0x002a0000,
"PMU3: Precharge all open banks\n"
},
{0x002b0002,
"PMU: Error: Dbyte %d nibble %d found mutliple working coarse delay setting for MRD/MWD\n"
},
{0x002c0000,
"PMU4: MRD Passing Regions (coarseVal, fineLeft fineRight -> fineCenter)\n"
},
{0x002d0000,
"PMU4: MWD Passing Regions (coarseVal, fineLeft fineRight -> fineCenter)\n"
},
{0x002e0004,
"PMU10: Warning: DB %d nibble %d has multiple working coarse delays, %d and %d, choosing the smaller delay\n"
},
{0x002f0003,
"PMU: Error: Dbyte %d nibble %d MRD/MWD passing region is too small (width = %d)\n"
},
{0x00300006,
"PMU4: DB %d nibble %d: %3d, %3d %3d -> %3d\n"
},
{0x00310002,
"PMU1: Start MRD/nMWD %d for csn %d\n"
},
{0x00320002,
"PMU2: RXDQS delayLeft[%2d] = %3d (DISCONNECTED)\n"
},
{0x00330006,
"PMU2: RXDQS delayLeft[%2d] = %3d delayOop[%2d] = %3d OopScaled %4d, selectOop %d\n"
},
{0x00340002,
"PMU2: RXDQS delayRight[%2d] = %3d (DISCONNECTED)\n"
},
{0x00350006,
"PMU2: RXDQS delayRight[%2d] = %3d delayOop[%2d] = %4d OopScaled %4d, selectOop %d\n"
},
{0x00360000,
"PMU4: RxClkDly Passing Regions (EyeLeft EyeRight -> EyeCenter)\n"
},
{0x00370002,
"PMU4: DB %d nibble %d: (DISCONNECTED)\n"
},
{0x00380005,
"PMU4: DB %d nibble %d: %3d %3d -> %3d\n"
},
{0x00390003,
"PMU: Error: Dbyte %d nibble %d rxClkDly passing region is too small (width = %d)\n"
},
{0x003a0002,
"PMU0: goodbar = %d for RDWR_BLEN %d\n"
},
{0x003b0001,
"PMU3: RxClkDly = %d\n"
},
{0x003c0005,
"PMU0: db %d l %d absLane %d -> bottom %d top %d\n"
},
{0x003d0009,
"PMU3: BYTE %d - %3d %3d %3d %3d %3d %3d %3d %3d\n"
},
{0x003e0002,
"PMU: Error: dbyte %d lane %d's per-lane vrefDAC's had no passing region\n"
},
{0x003f0004,
"PMU0: db%d l%d - %d %d\n"
},
{0x00400002,
"PMU0: goodbar = %d for RDWR_BLEN %d\n"
},
{0x00410004,
"PMU3: db%d l%d saw %d issues at rxClkDly %d\n"
},
{0x00420003,
"PMU3: db%d l%d first saw a pass->fail edge at rxClkDly %d\n"
},
{0x00430002,
"PMU3: lane %d PBD = %d\n"
},
{0x00440003,
"PMU3: db%d l%d first saw a DBI pass->fail edge at rxClkDly %d\n"
},
{0x00450003,
"PMU2: db%d l%d already passed rxPBD = %d\n"
},
{0x00460003,
"PMU0: db%d l%d, PBD = %d\n"
},
{0x00470002,
"PMU: Error: dbyte %d lane %d failed read deskew\n"
},
{0x00480003,
"PMU0: db%d l%d, inc PBD = %d\n"
},
{0x00490003,
"PMU1: Running lane deskew on pstate %d csn %d rdDBIEn %d\n"
},
{0x004a0000,
"PMU: Error: Read deskew training has been requested, but csrMajorModeDbyte[2] is set\n"
},
{0x004b0002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x004c0002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x004d0001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D3U Type\n"
},
{0x004e0001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D3R Type\n"
},
{0x004f0001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D4U Type\n"
},
{0x00500001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D4R Type\n"
},
{0x00510001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D4LR Type\n"
},
{0x00520000,
"PMU: Error: Both 2t timing mode and ddr4 geardown mode specified in the messageblock's PhyCfg and MR3 fields. Only one can be enabled\n"
},
{0x00530003,
"PMU10: PHY TOTALS - NUM_DBYTES %d NUM_NIBBLES %d NUM_ANIBS %d\n"
},
{0x00540006,
"PMU10: CSA=0x%02x, CSB=0x%02x, TSTAGES=0x%04x, HDTOUT=%d, MMISC=%d DRAMFreq=%dMT DramType=LPDDR3\n"
},
{0x00550006,
"PMU10: CSA=0x%02x, CSB=0x%02x, TSTAGES=0x%04x, HDTOUT=%d, MMISC=%d DRAMFreq=%dMT DramType=LPDDR4\n"
},
{0x00560008,
"PMU10: CS=0x%02x, TSTAGES=0x%04x, HDTOUT=%d, 2T=%d, MMISC=%d AddrMirror=%d DRAMFreq=%dMT DramType=%d\n"
},
{0x00570004,
"PMU10: Pstate%d MR0=0x%04x MR1=0x%04x MR2=0x%04x\n"
},
{0x00580008,
"PMU10: Pstate%d MRS MR0=0x%04x MR1=0x%04x MR2=0x%04x MR3=0x%04x MR4=0x%04x MR5=0x%04x MR6=0x%04x\n"
},
{0x00590005,
"PMU10: Pstate%d MRS MR1_A0=0x%04x MR2_A0=0x%04x MR3_A0=0x%04x MR11_A0=0x%04x\n"
},
{0x005a0000,
"PMU10: UseBroadcastMR set. All ranks and channels use MRXX_A0 for MR settings.\n"
},
{0x005b0005,
"PMU10: Pstate%d MRS MR01_A0=0x%02x MR02_A0=0x%02x MR03_A0=0x%02x MR11_A0=0x%02x\n"
},
{0x005c0005,
"PMU10: Pstate%d MRS MR12_A0=0x%02x MR13_A0=0x%02x MR14_A0=0x%02x MR22_A0=0x%02x\n"
},
{0x005d0005,
"PMU10: Pstate%d MRS MR01_A1=0x%02x MR02_A1=0x%02x MR03_A1=0x%02x MR11_A1=0x%02x\n"
},
{0x005e0005,
"PMU10: Pstate%d MRS MR12_A1=0x%02x MR13_A1=0x%02x MR14_A1=0x%02x MR22_A1=0x%02x\n"
},
{0x005f0005,
"PMU10: Pstate%d MRS MR01_B0=0x%02x MR02_B0=0x%02x MR03_B0=0x%02x MR11_B0=0x%02x\n"
},
{0x00600005,
"PMU10: Pstate%d MRS MR12_B0=0x%02x MR13_B0=0x%02x MR14_B0=0x%02x MR22_B0=0x%02x\n"
},
{0x00610005,
"PMU10: Pstate%d MRS MR01_B1=0x%02x MR02_B1=0x%02x MR03_B1=0x%02x MR11_B1=0x%02x\n"
},
{0x00620005,
"PMU10: Pstate%d MRS MR12_B1=0x%02x MR13_B1=0x%02x MR14_B1=0x%02x MR22_B1=0x%02x\n"
},
{0x00630002,
"PMU1: AcsmOdtCtrl%02d 0x%02x\n"
},
{0x00640002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x00650002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x00660000,
"PMU1: HwtCAMode set\n"
},
{0x00670001,
"PMU3: DDR4 infinite preamble enter/exit mode %d\n"
},
{0x00680002,
"PMU1: In rxenb_train() csn=%d pstate=%d\n"
},
{0x00690000,
"PMU3: Finding DQS falling edge\n"
},
{0x006a0000,
"PMU3: Searching for DDR3/LPDDR3/LPDDR4 read preamble\n"
},
{0x006b0009,
"PMU3: dtsm fails Even Nibbles : %2x %2x %2x %2x %2x %2x %2x %2x %2x\n"
},
{0x006c0009,
"PMU3: dtsm fails Odd Nibbles : %2x %2x %2x %2x %2x %2x %2x %2x %2x\n"
},
{0x006d0002,
"PMU3: Preamble search pass=%d anyfail=%d\n"
},
{0x006e0000,
"PMU: Error: RxEn training preamble not found\n"
},
{0x006f0000,
"PMU3: Found DQS pre-amble\n"
},
{0x00700001,
"PMU: Error: Dbyte %d couldn't find the rising edge of DQS during RxEn Training\n"
},
{0x00710000,
"PMU3: RxEn aligning to first rising edge of burst\n"
},
{0x00720001,
"PMU3: Decreasing RxEn delay by %d fine step to allow full capture of reads\n"
},
{0x00730001,
"PMU3: MREP Delay = %d\n"
},
{0x00740003,
"PMU3: Errcnt for MREP nib %2d delay = %2d is %d\n"
},
{0x00750002,
"PMU3: MREP nibble %d sampled a 1 at data buffer delay %d\n"
},
{0x00760002,
"PMU3: MREP nibble %d saw a 0 to 1 transition at data buffer delay %d\n"
},
{0x00770000,
"PMU2: MREP did not find a 0 to 1 transition for all nibbles. Failing nibbles assumed to have rising edge close to fine delay 63\n"
},
{0x00780002,
"PMU2: Rising edge found in alias window, setting rxDly for nibble %d = %d\n"
},
{0x00790002,
"PMU: Error: Failed MREP for nib %d with %d one\n"
},
{0x007a0003,
"PMU2: Rising edge not found in alias window with %d one, leaving rxDly for nibble %d = %d\n"
},
{0x007b0002,
"PMU3: Training DIMM %d CSn %d\n"
},
{0x007c0001,
"PMU3: exitCAtrain_lp3 cs 0x%x\n"
},
{0x007d0001,
"PMU3: enterCAtrain_lp3 cs 0x%x\n"
},
{0x007e0001,
"PMU3: CAtrain_switchmsb_lp3 cs 0x%x\n"
},
{0x007f0001,
"PMU3: CATrain_rdwr_lp3 looking for pattern %x\n"
},
{0x00800000,
"PMU3: exitCAtrain_lp4\n"
},
{0x00810001,
"PMU3: DEBUG enterCAtrain_lp4 1: cs 0x%x\n"
},
{0x00820001,
"PMU3: DEBUG enterCAtrain_lp4 3: Put dbyte %d in async mode\n"
},
{0x00830000,
"PMU3: DEBUG enterCAtrain_lp4 5: Send MR13 to turn on CA training\n"
},
{0x00840003,
"PMU3: DEBUG enterCAtrain_lp4 7: idx = %d vref = %x mr12 = %x\n"
},
{0x00850001,
"PMU3: CATrain_rdwr_lp4 looking for pattern %x\n"
},
{0x00860004,
"PMU3: Phase %d CAreadbackA db:%d %x xo:%x\n"
},
{0x00870005,
"PMU3: DEBUG lp4SetCatrVref 1: cs=%d chan=%d mr12=%x vref=%d.%d%%\n"
},
{0x00880003,
"PMU3: DEBUG lp4SetCatrVref 3: mr12 = %x send vref= %x to db=%d\n"
},
{0x00890000,
"PMU10:Optimizing vref\n"
},
{0x008a0004,
"PMU4:mr12:%2x cs:%d chan %d r:%4x\n"
},
{0x008b0005,
"PMU3: i:%2d bstr:%2d bsto:%2d st:%d r:%d\n"
},
{0x008c0002,
"Failed to find sufficient CA Vref Passing Region for CS %d ch. %d\n"
},
{0x008d0005,
"PMU3:Found %d.%d%% MR12:%x for cs:%d chan %d\n"
},
{0x008e0002,
"PMU3:Calculated %d for AtxImpedence from acx %d.\n"
},
{0x008f0000,
"PMU3:CA Odt impedence ==0. Use default vref.\n"
},
{0x00900003,
"PMU3:Calculated %d.%d%% for Vref MR12=0x%x.\n"
},
{0x00910000,
"PMU3: CAtrain_lp\n"
},
{0x00920000,
"PMU3: CAtrain Begins.\n"
},
{0x00930001,
"PMU3: CAtrain_lp testing dly %d\n"
},
{0x00940001,
"PMU5: CA bitmap dump for cs %x\n"
},
{0x00950001,
"PMU5: CAA%d "
},
{0x00960001, "%02x"
},
{0x00970000, "\n"
},
{0x00980001,
"PMU5: CAB%d "
},
{0x00990001, "%02x"
},
{0x009a0000, "\n"
},
{0x009b0003,
"PMU3: anibi=%d, anibichan[anibi]=%d ,chan=%d\n"
},
{0x009c0001, "%02x"
},
{0x009d0001, "\nPMU3:Raw CA setting :%x"
},
{0x009e0002, "\nPMU3:ATxDly setting:%x margin:%d\n"
},
{0x009f0002, "\nPMU3:InvClk ATxDly setting:%x margin:%d\n"
},
{0x00a00000, "\nPMU3:No Range found!\n"
},
{0x00a10003,
"PMU3: 2 anibi=%d, anibichan[anibi]=%d ,chan=%d"
},
{0x00a20002, "\nPMU3: no neg clock => CA setting anib=%d, :%d\n"
},
{0x00a30001,
"PMU3:Normal margin:%d\n"
},
{0x00a40001,
"PMU3:Inverted margin:%d\n"
},
{0x00a50000,
"PMU3:Using Inverted clock\n"
},
{0x00a60000,
"PMU3:Using normal clk\n"
},
{0x00a70003,
"PMU3: 3 anibi=%d, anibichan[anibi]=%d ,chan=%d\n"
},
{0x00a80002,
"PMU3: Setting ATxDly for anib %x to %x\n"
},
{0x00a90000,
"PMU: Error: CA Training Failed.\n"
},
{0x00aa0000,
"PMU1: Writing MRs\n"
},
{0x00ab0000,
"PMU4:Using MR12 values from 1D CA VREF training.\n"
},
{0x00ac0000,
"PMU3:Writing all MRs to fsp 1\n"
},
{0x00ad0000,
"PMU10:Lp4Quickboot mode.\n"
},
{0x00ae0000,
"PMU3: Writing MRs\n"
},
{0x00af0001,
"PMU10: Setting boot clock divider to %d\n"
},
{0x00b00000,
"PMU3: Resetting DRAM\n"
},
{0x00b10000,
"PMU3: setup for RCD initalization\n"
},
{0x00b20000,
"PMU3: pmu_exit_SR from dev_init()\n"
},
{0x00b30000,
"PMU3: initializing RCD\n"
},
{0x00b40000,
"PMU10: **** Executing 2D Image ****\n"
},
{0x00b50001,
"PMU10: **** Start DDR4 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x00b60001,
"PMU10: **** Start DDR3 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x00b70001,
"PMU10: **** Start LPDDR3 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x00b80001,
"PMU10: **** Start LPDDR4 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x00b90000,
"PMU: Error: Mismatched internal revision between DCCM and ICCM images\n"
},
{0x00ba0001,
"PMU10: **** Testchip %d Specific Firmware ****\n"
},
{0x00bb0000,
"PMU1: LRDIMM with EncodedCS mode, one DIMM\n"
},
{0x00bc0000,
"PMU1: LRDIMM with EncodedCS mode, two DIMMs\n"
},
{0x00bd0000,
"PMU1: RDIMM with EncodedCS mode, one DIMM\n"
},
{0x00be0000,
"PMU2: Starting LRDIMM MREP training for all ranks\n"
},
{0x00bf0000,
"PMU199: LRDIMM MREP training for all ranks completed\n"
},
{0x00c00000,
"PMU2: Starting LRDIMM DWL training for all ranks\n"
},
{0x00c10000,
"PMU199: LRDIMM DWL training for all ranks completed\n"
},
{0x00c20000,
"PMU2: Starting LRDIMM MRD training for all ranks\n"
},
{0x00c30000,
"PMU199: LRDIMM MRD training for all ranks completed\n"
},
{0x00c40000,
"PMU2: Starting RXEN training for all ranks\n"
},
{0x00c50000,
"PMU2: Starting write leveling fine delay training for all ranks\n"
},
{0x00c60000,
"PMU2: Starting LRDIMM MWD training for all ranks\n"
},
{0x00c70000,
"PMU199: LRDIMM MWD training for all ranks completed\n"
},
{0x00c80000,
"PMU2: Starting write leveling fine delay training for all ranks\n"
},
{0x00c90000,
"PMU2: Starting read deskew training\n"
},
{0x00ca0000,
"PMU2: Starting SI friendly 1d RdDqs training for all ranks\n"
},
{0x00cb0000,
"PMU2: Starting write leveling coarse delay training for all ranks\n"
},
{0x00cc0000,
"PMU2: Starting 1d WrDq training for all ranks\n"
},
{0x00cd0000,
"PMU2: Running DQS2DQ Oscillator for all ranks\n"
},
{0x00ce0000,
"PMU2: Starting again read deskew training but with PRBS\n"
},
{0x00cf0000,
"PMU2: Starting 1d RdDqs training for all ranks\n"
},
{0x00d00000,
"PMU2: Starting again 1d WrDq training for all ranks\n"
},
{0x00d10000,
"PMU2: Starting MaxRdLat training\n"
},
{0x00d20000,
"PMU2: Starting 2d WrDq training for all ranks\n"
},
{0x00d30000,
"PMU2: Starting 2d RdDqs training for all ranks\n"
},
{0x00d40002,
"PMU3:read_fifo %x %x\n"
},
{0x00d50001,
"PMU: Error: Invalid PhyDrvImpedance of 0x%x specified in message block.\n"
},
{0x00d60001,
"PMU: Error: Invalid PhyOdtImpedance of 0x%x specified in message block.\n"
},
{0x00d70001,
"PMU: Error: Invalid BPZNResVal of 0x%x specified in message block.\n"
},
{0x00d80005,
"PMU3: fixRxEnBackOff csn:%d db:%d dn:%d bo:%d dly:%x\n"
},
{0x00d90001,
"PMU3: fixRxEnBackOff dly:%x\n"
},
{0x00da0000,
"PMU3: Entering setupPpt\n"
},
{0x00db0000,
"PMU3: Start lp4PopulateHighLowBytes\n"
},
{0x00dc0002,
"PMU3:Dbyte Detect: db%d received %x\n"
},
{0x00dd0002,
"PMU3:getDqs2Dq read %x from dbyte %d\n"
},
{0x00de0002,
"PMU3:getDqs2Dq(2) read %x from dbyte %d\n"
},
{0x00df0001,
"PMU: Error: Dbyte %d read 0 from the DQS oscillator it is connected to\n"
},
{0x00e00002,
"PMU4: Dbyte %d dqs2dq = %d/32 UI\n"
},
{0x00e10003,
"PMU3:getDqs2Dq set dqs2dq:%d/32 ui (%d ps) from dbyte %d\n"
},
{0x00e20003,
"PMU3: Setting coarse delay in AtxDly chiplet %d from 0x%02x to 0x%02x\n"
},
{0x00e30003,
"PMU3: Clearing coarse delay in AtxDly chiplet %d from 0x%02x to 0x%02x\n"
},
{0x00e40000,
"PMU3: Performing DDR4 geardown sync sequence\n"
},
{0x00e50000,
"PMU1: Enter self refresh\n"
},
{0x00e60000,
"PMU1: Exit self refresh\n"
},
{0x00e70000,
"PMU: Error: No dbiEnable with lp4\n"
},
{0x00e80000,
"PMU: Error: No dbiDisable with lp4\n"
},
{0x00e90001,
"PMU1: DDR4 update Rx DBI Setting disable %d\n"
},
{0x00ea0001,
"PMU1: DDR4 update 2nCk WPre Setting disable %d\n"
},
{0x00eb0005,
"PMU1: read_delay: db%d lane%d delays[%2d] = 0x%02x (max 0x%02x)\n"
},
{0x00ec0004,
"PMU1: write_delay: db%d lane%d delays[%2d] = 0x%04x\n"
},
{0x00ed0001,
"PMU5: ID=%d -- db0 db1 db2 db3 db4 db5 db6 db7 db8 db9 --\n"
},
{0x00ee000b,
"PMU5: [%d]:0x %04x %04x %04x %04x %04x %04x %04x %04x %04x %04x\n"
},
{0x00ef0003,
"PMU2: dump delays - pstate=%d dimm=%d csn=%d\n"
},
{0x00f00000,
"PMU3: Printing Mid-Training Delay Information\n"
},
{0x00f10001,
"PMU5: CS%d <<KEY>> 0 TrainingCntr <<KEY>> coarse(15:10) fine(9:0)\n"
},
{0x00f20001,
"PMU5: CS%d <<KEY>> 0 RxEnDly, 1 RxClkDly <<KEY>> coarse(10:6) fine(5:0)\n"
},
{0x00f30001,
"PMU5: CS%d <<KEY>> 0 TxDqsDly, 1 TxDqDly <<KEY>> coarse(9:6) fine(5:0)\n"
},
{0x00f40001,
"PMU5: CS%d <<KEY>> 0 RxPBDly <<KEY>> 1 Delay Unit ~= 7ps\n"
},
{0x00f50000,
"PMU5: all CS <<KEY>> 0 DFIMRL <<KEY>> Units = DFI clocks\n"
},
{0x00f60000,
"PMU5: all CS <<KEY>> VrefDACs <<KEY>> DAC(6:0)\n"
},
{0x00f70000,
"PMU1: Set DMD in MR13 and wrDBI in MR3 for training\n"
},
{0x00f80000,
"PMU: Error: getMaxRxen() failed to find largest rxen nibble delay\n"
},
{0x00f90003,
"PMU2: getMaxRxen(): maxDly %d maxTg %d maxNib %d\n"
},
{0x00fa0003,
"PMU2: getRankMaxRxen(): maxDly %d Tg %d maxNib %d\n"
},
{0x00fb0000,
"PMU1: skipping CDD calculation in 2D image\n"
},
{0x00fc0001,
"PMU3: Calculating CDDs for pstate %d\n"
},
{0x00fd0003,
"PMU3: rxFromDly[%d][%d] = %d\n"
},
{0x00fe0003,
"PMU3: rxToDly [%d][%d] = %d\n"
},
{0x00ff0003,
"PMU3: rxDly [%d][%d] = %d\n"
},
{0x01000003,
"PMU3: txDly [%d][%d] = %d\n"
},
{0x01010003,
"PMU3: allFine CDD_RR_%d_%d = %d\n"
},
{0x01020003,
"PMU3: allFine CDD_WW_%d_%d = %d\n"
},
{0x01030003,
"PMU3: CDD_RR_%d_%d = %d\n"
},
{0x01040003,
"PMU3: CDD_WW_%d_%d = %d\n"
},
{0x01050003,
"PMU3: allFine CDD_RW_%d_%d = %d\n"
},
{0x01060003,
"PMU3: allFine CDD_WR_%d_%d = %d\n"
},
{0x01070003,
"PMU3: CDD_RW_%d_%d = %d\n"
},
{0x01080003,
"PMU3: CDD_WR_%d_%d = %d\n"
},
{0x01090004,
"PMU3: F%dBC2x_B%d_D%d = 0x%02x\n"
},
{0x010a0004,
"PMU3: F%dBC3x_B%d_D%d = 0x%02x\n"
},
{0x010b0004,
"PMU3: F%dBC4x_B%d_D%d = 0x%02x\n"
},
{0x010c0004,
"PMU3: F%dBC5x_B%d_D%d = 0x%02x\n"
},
{0x010d0004,
"PMU3: F%dBC8x_B%d_D%d = 0x%02x\n"
},
{0x010e0004,
"PMU3: F%dBC9x_B%d_D%d = 0x%02x\n"
},
{0x010f0004,
"PMU3: F%dBCAx_B%d_D%d = 0x%02x\n"
},
{0x01100004,
"PMU3: F%dBCBx_B%d_D%d = 0x%02x\n"
},
{0x01110000,
"PMU10: Entering context_switch_postamble\n"
},
{0x01120003,
"PMU10: context_switch_postamble is enabled for DIMM %d, RC0A=0x%x, RC3x=0x%x\n"
},
{0x01130000,
"PMU10: Setting bcw fspace 0\n"
},
{0x01140001,
"PMU10: Sending BC0A = 0x%x\n"
},
{0x01150001,
"PMU10: Sending BC6x = 0x%x\n"
},
{0x01160001,
"PMU10: Sending RC0A = 0x%x\n"
},
{0x01170001,
"PMU10: Sending RC3x = 0x%x\n"
},
{0x01180001,
"PMU10: Sending RC0A = 0x%x\n"
},
{0x01190001,
"PMU1: enter_lp3: DEBUG: pstate = %d\n"
},
{0x011a0001,
"PMU1: enter_lp3: DEBUG: dfifreqxlat_pstate = %d\n"
},
{0x011b0001,
"PMU1: enter_lp3: DEBUG: pllbypass = %d\n"
},
{0x011c0001,
"PMU1: enter_lp3: DEBUG: forcecal = %d\n"
},
{0x011d0001,
"PMU1: enter_lp3: DEBUG: pllmaxrange = 0x%x\n"
},
{0x011e0001,
"PMU1: enter_lp3: DEBUG: dacval_out = 0x%x\n"
},
{0x011f0001,
"PMU1: enter_lp3: DEBUG: pllctrl3 = 0x%x\n"
},
{0x01200000,
"PMU3: Loading DRAM with BIOS supplied MR values and entering self refresh prior to exiting PMU code.\n"
},
{0x01210002,
"PMU3: Setting DataBuffer function space of dimmcs 0x%02x to %d\n"
},
{0x01220002,
"PMU4: Setting RCW FxRC%Xx = 0x%02x\n"
},
{0x01230002,
"PMU4: Setting RCW FxRC%02x = 0x%02x\n"
},
{0x01240001,
"PMU1: DDR4 update Rd Pre Setting disable %d\n"
},
{0x01250002,
"PMU2: Setting BCW FxBC%Xx = 0x%02x\n"
},
{0x01260002,
"PMU2: Setting BCW BC%02x = 0x%02x\n"
},
{0x01270002,
"PMU2: Setting BCW PBA mode FxBC%Xx = 0x%02x\n"
},
{0x01280002,
"PMU2: Setting BCW PBA mode BC%02x = 0x%02x\n"
},
{0x01290003,
"PMU4: BCW value for dimm %d, fspace %d, addr 0x%04x\n"
},
{0x012a0002,
"PMU4: DB %d, value 0x%02x\n"
},
{0x012b0000,
"PMU6: WARNING MREP underflow, set to min value -2 coarse, 0 fine\n"
},
{0x012c0004,
"PMU6: LRDIMM Writing final data buffer fine delay value nib %2d, trainDly %3d, fineDly code %2d, new MREP fine %2d\n"
},
{0x012d0003,
"PMU6: LRDIMM Writing final data buffer fine delay value nib %2d, trainDly %3d, fineDly code %2d\n"
},
{0x012e0003,
"PMU6: LRDIMM Writing data buffer fine delay type %d nib %2d, code %2d\n"
},
{0x012f0002,
"PMU6: Writing final data buffer coarse delay value dbyte %2d, coarse = 0x%02x\n"
},
{0x01300003,
"PMU4: data 0x%04x at MB addr 0x%08x saved at CSR addr 0x%08x\n"
},
{0x01310003,
"PMU4: data 0x%04x at MB addr 0x%08x restored from CSR addr 0x%08x\n"
},
{0x01320003,
"PMU4: data 0x%04x at MB addr 0x%08x saved at CSR addr 0x%08x\n"
},
{0x01330003,
"PMU4: data 0x%04x at MB addr 0x%08x restored from CSR addr 0x%08x\n"
},
{0x01340001,
"PMU3: Update BC00, BC01, BC02 for rank-dimm 0x%02x\n"
},
{0x01350000,
"PMU3: Writing D4 RDIMM RCD Control words F0RC00 -> F0RC0F\n"
},
{0x01360000,
"PMU3: Disable parity in F0RC0E\n"
},
{0x01370000,
"PMU3: Writing D4 RDIMM RCD Control words F1RC00 -> F1RC05\n"
},
{0x01380000,
"PMU3: Writing D4 RDIMM RCD Control words F1RC1x -> F1RC9x\n"
},
{0x01390000,
"PMU3: Writing D4 Data buffer Control words BC00 -> BC0E\n"
},
{0x013a0002,
"PMU1: setAltCL Sending MR0 0x%x cl=%d\n"
},
{0x013b0002,
"PMU1: restoreFromAltCL Sending MR0 0x%x cl=%d\n"
},
{0x013c0002,
"PMU1: restoreAcsmFromAltCL Sending MR0 0x%x cl=%d\n"
},
{0x013d0002,
"PMU2: Setting D3R RC%d = 0x%01x\n"
},
{0x013e0000,
"PMU3: Writing D3 RDIMM RCD Control words RC0 -> RC11\n"
},
{0x013f0002,
"PMU0: VrefDAC0/1 vddqStart %d dacToVddq %d\n"
},
{0x01400001,
"PMU: Error: Messageblock phyVref=0x%x is above the limit for TSMC28's attenuated LPDDR4 receivers. Please see the pub databook\n"
},
{0x01410001,
"PMU: Error: Messageblock phyVref=0x%x is above the limit for TSMC28's attenuated DDR4 receivers. Please see the pub databook\n"
},
{0x01420001,
"PMU0: PHY VREF @ (%d/1000) VDDQ\n"
},
{0x01430002,
"PMU0: initalizing phy vrefDacs to %d ExtVrefRange %x\n"
},
{0x01440002,
"PMU0: initalizing global vref to %d range %d\n"
},
{0x01450002,
"PMU4: Setting initial device vrefDQ for CS%d to MR6 = 0x%04x\n"
},
{0x01460003,
"PMU1: In write_level_fine() csn=%d dimm=%d pstate=%d\n"
},
{0x01470000,
"PMU3: Fine write leveling hardware search increasing TxDqsDly until full bursts are seen\n"
},
{0x01480000,
"PMU4: WL normalized pos : ........................|........................\n"
},
{0x01490007,
"PMU4: WL margin for nib %2d: %08x%08x%08x%08x%08x%08x\n"
},
{0x014a0000,
"PMU4: WL normalized pos : ........................|........................\n"
},
{0x014b0000,
"PMU3: Exiting write leveling mode\n"
},
{0x014c0001,
"PMU3: got %d for cl in load_wrlvl_acsm\n"
},
{0x014d0003,
"PMU1: In write_level_coarse() csn=%d dimm=%d pstate=%d\n"
},
{0x014e0003,
"PMU3: left eye edge search db:%d ln:%d dly:0x%x\n"
},
{0x014f0003,
"PMU3: right eye edge search db:%d ln:%d dly:0x%x\n"
},
{0x01500004,
"PMU3: eye center db:%d ln:%d dly:0x%x (maxdq:%x)\n"
},
{0x01510003,
"PMU3: Wrote to TxDqDly db:%d ln:%d dly:0x%x\n"
},
{0x01520003,
"PMU3: Wrote to TxDqDly db:%d ln:%d dly:0x%x\n"
},
{0x01530002,
"PMU3: Coarse write leveling dbyte%2d is still failing for TxDqsDly=0x%04x\n"
},
{0x01540002,
"PMU4: Coarse write leveling iteration %d saw %d data miscompares across the entire phy\n"
},
{0x01550000,
"PMU: Error: Failed write leveling coarse\n"
},
{0x01560001,
"PMU3: got %d for cl in load_wrlvl_acsm\n"
},
{0x01570003,
"PMU3: In write_level_coarse() csn=%d dimm=%d pstate=%d\n"
},
{0x01580003,
"PMU3: left eye edge search db:%d ln:%d dly:0x%x\n"
},
{0x01590003,
"PMU3: right eye edge search db: %d ln: %d dly: 0x%x\n"
},
{0x015a0004,
"PMU3: eye center db: %d ln: %d dly: 0x%x (maxdq: 0x%x)\n"
},
{0x015b0003,
"PMU3: Wrote to TxDqDly db: %d ln: %d dly: 0x%x\n"
},
{0x015c0003,
"PMU3: Wrote to TxDqDly db: %d ln: %d dly: 0x%x\n"
},
{0x015d0002,
"PMU3: Coarse write leveling nibble%2d is still failing for TxDqsDly=0x%04x\n"
},
{0x015e0002,
"PMU4: Coarse write leveling iteration %d saw %d data miscompares across the entire phy\n"
},
{0x015f0000,
"PMU: Error: Failed write leveling coarse\n"
},
{0x01600000,
"PMU4: WL normalized pos : ................................|................................\n"
},
{0x01610009,
"PMU4: WL margin for nib %2d: %08x%08x%08x%08x%08x%08x%08x%08x\n"
},
{0x01620000,
"PMU4: WL normalized pos : ................................|................................\n"
},
{0x01630001,
"PMU8: Adjust margin after WL coarse to be larger than %d\n"
},
{0x01640001,
"PMU: Error: All margin after write leveling coarse are smaller than minMargin %d\n"
},
{0x01650002,
"PMU8: Decrement nib %d TxDqsDly by %d fine step\n"
},
{0x01660003,
"PMU3: In write_level_coarse() csn=%d dimm=%d pstate=%d\n"
},
{0x01670005,
"PMU2: Write level: dbyte %d nib%d dq/dmbi %2d dqsfine 0x%04x dqDly 0x%04x\n"
},
{0x01680002,
"PMU3: Coarse write leveling nibble%2d is still failing for TxDqsDly=0x%04x\n"
},
{0x01690002,
"PMU4: Coarse write leveling iteration %d saw %d data miscompares across the entire phy\n"
},
{0x016a0000,
"PMU: Error: Failed write leveling coarse\n"
},
{0x016b0001,
"PMU3: DWL delay = %d\n"
},
{0x016c0003,
"PMU3: Errcnt for DWL nib %2d delay = %2d is %d\n"
},
{0x016d0002,
"PMU3: DWL nibble %d sampled a 1 at delay %d\n"
},
{0x016e0003,
"PMU3: DWL nibble %d passed at delay %d. Rising edge was at %d\n"
},
{0x016f0000,
"PMU2: DWL did nto find a rising edge of memclk for all nibbles. Failing nibbles assumed to have rising edge close to fine delay 63\n"
},
{0x01700002,
"PMU2: Rising edge found in alias window, setting wrlvlDly for nibble %d = %d\n"
},
{0x01710002,
"PMU: Error: Failed DWL for nib %d with %d one\n"
},
{0x01720003,
"PMU2: Rising edge not found in alias window with %d one, leaving wrlvlDly for nibble %d = %d\n"
},
{0x04000000,
"PMU: Error:Mailbox Buffer Overflowed.\n"
},
{0x04010000,
"PMU: Error:Mailbox Buffer Overflowed.\n"
},
{0x04020000,
"PMU: ***** Assertion Error - terminating *****\n"
},
{0x04030002,
"PMU1: swapByte db %d by %d\n"
},
{0x04040003,
"PMU3: get_cmd_dly max(%d ps, %d memclk) = %d\n"
},
{0x04050002,
"PMU0: Write CSR 0x%06x 0x%04x\n"
},
{0x04060002,
"PMU0: hwt_init_ppgc_prbs(): Polynomial: %x, Deg: %d\n"
},
{0x04070001,
"PMU: Error: acsm_set_cmd to non existent instruction address %d\n"
},
{0x04080001,
"PMU: Error: acsm_set_cmd with unknown ddr cmd 0x%x\n"
},
{0x0409000c,
"PMU1: acsm_addr %02x, acsm_flgs %04x, ddr_cmd %02x, cmd_dly %02x, ddr_addr %04x, ddr_bnk %02x, ddr_cs %02x, cmd_rcnt %02x, AcsmSeq0/1/2/3 %04x %04x %04x %04x\n"
},
{0x040a0000,
"PMU: Error: Polling on ACSM done failed to complete in acsm_poll_done()...\n"
},
{0x040b0000,
"PMU1: acsm RUN\n"
},
{0x040c0000,
"PMU1: acsm STOPPED\n"
},
{0x040d0002,
"PMU1: acsm_init: acsm_mode %04x mxrdlat %04x\n"
},
{0x040e0002,
"PMU: Error: setAcsmCLCWL: cl and cwl must be each >= 2 and 5, resp. CL=%d CWL=%d\n"
},
{0x040f0002,
"PMU: Error: setAcsmCLCWL: cl and cwl must be each >= 5. CL=%d CWL=%d\n"
},
{0x04100002,
"PMU1: setAcsmCLCWL: CASL %04d WCASL %04d\n"
},
{0x04110001,
"PMU: Error: Reserved value of register F0RC0F found in message block: 0x%04x\n"
},
{0x04120001,
"PMU3: Written MRS to CS=0x%02x\n"
},
{0x04130001,
"PMU3: Written MRS to CS=0x%02x\n"
},
{0x04140000,
"PMU3: Entering Boot Freq Mode.\n"
},
{0x04150001,
"PMU: Error: Boot clock divider setting of %d is too small\n"
},
{0x04160000,
"PMU3: Exiting Boot Freq Mode.\n"
},
{0x04170002,
"PMU3: Writing MR%d OP=%x\n"
},
{0x04180000,
"PMU: Error: Delay too large in slomo\n"
},
{0x04190001,
"PMU3: Written MRS to CS=0x%02x\n"
},
{0x041a0000,
"PMU3: Enable Channel A\n"
},
{0x041b0000,
"PMU3: Enable Channel B\n"
},
{0x041c0000,
"PMU3: Enable All Channels\n"
},
{0x041d0002,
"PMU2: Use PDA mode to set MR%d with value 0x%02x\n"
},
{0x041e0001,
"PMU3: Written Vref with PDA to CS=0x%02x\n"
},
{0x041f0000,
"PMU1: start_cal: DEBUG: setting CalRun to 1\n"
},
{0x04200000,
"PMU1: start_cal: DEBUG: setting CalRun to 0\n"
},
{0x04210001,
"PMU1: lock_pll_dll: DEBUG: pstate = %d\n"
},
{0x04220001,
"PMU1: lock_pll_dll: DEBUG: dfifreqxlat_pstate = %d\n"
},
{0x04230001,
"PMU1: lock_pll_dll: DEBUG: pllbypass = %d\n"
},
{0x04240001,
"PMU3: SaveLcdlSeed: Saving seed %d\n"
},
{0x04250000,
"PMU1: in phy_defaults()\n"
},
{0x04260003,
"PMU3: ACXConf:%d MaxNumDbytes:%d NumDfi:%d\n"
},
{0x04270005,
"PMU1: setAltAcsmCLCWL setting cl=%d cwl=%d\n"
},
};
const static struct phy_msg messages_2d[] = {
{0x00000001,
"PMU0: Converting %d into an MR\n"
},
{0x00010003,
"PMU DEBUG: vref_idx %d -= %d, range_idx = %d\n"
},
{0x00020002,
"PMU0: vrefIdx. Passing range %d, remaining vrefidx = %d\n"
},
{0x00030002,
"PMU0: VrefIdx %d -> MR[6:0] 0x%02x\n"
},
{0x00040001,
"PMU0: Converting MR 0x%04x to vrefIdx\n"
},
{0x00050002,
"PMU0: DAC %d Range %d\n"
},
{0x00060003,
"PMU0: Range %d, Range_idx %d, vref_idx offset %d\n"
},
{0x00070002,
"PMU0: MR 0x%04x -> VrefIdx %d\n"
},
{0x00080001,
"PMU: Error: Illegal timing group number ,%d, in getPtrVrefDq\n"
},
{0x00090003,
"PMU1: VrefDqR%dNib%d = %d\n"
},
{0x000a0003,
"PMU0: VrefDqR%dNib%d = %d\n"
},
{0x000b0000,
"PMU0: ----------------MARGINS-------\n"
},
{0x000c0002,
"PMU0: R%d_RxClkDly_Margin = %d\n"
},
{0x000d0002,
"PMU0: R%d_VrefDac_Margin = %d\n"
},
{0x000e0002,
"PMU0: R%d_TxDqDly_Margin = %d\n"
},
{0x000f0002,
"PMU0: R%d_DeviceVref_Margin = %d\n"
},
{0x00100000,
"PMU0: -----------------------\n"
},
{0x00110003,
"PMU0: eye %d's for all TG's is [%d ... %d]\n"
},
{0x00120000,
"PMU0: ------- settingWeight -----\n"
},
{0x00130002,
"PMU0: Weight %d @ Setting %d\n"
},
{0x0014001f,
"PMU4: %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d >%3d< %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d %3d\n"
},
{0x00150002,
"PMU3: Voltage Range = [%d, %d]\n"
},
{0x00160004,
"PMU4: -- DB%d L%d -- centers: delay = %d, voltage = %d\n"
},
{0x00170001,
"PMU5: <<KEY>> 0 TxDqDlyTg%d <<KEY>> coarse(6:6) fine(5:0)\n"
},
{0x00180001,
"PMU5: <<KEY>> 0 messageBlock VrefDqR%d <<KEY>> MR6(6:0)\n"
},
{0x00190001,
"PMU5: <<KEY>> 0 RxClkDlyTg%d <<KEY>> fine(5:0)\n"
},
{0x001a0003,
"PMU0: tgToCsn: tg %d + 0x%04x -> csn %d\n"
},
{0x001b0002,
"PMU: Error: LP4 rank %d cannot be mapped on tg %d\n"
},
{0x001c0002,
"PMU3: Sending vref %d, Mr = 0X%05x, to all devices\n"
},
{0x001d0004,
"PMU4: -------- %dD Write Scanning TG %d (CS 0x%x) Lanes 0x%03x --------\n"
},
{0x001e0002,
"PMU0: training lanes 0x%03x using lanes 0x%03x\n"
},
{0x001f0003,
"PMU4: ------- 2D-DFE Read Scanning TG %d (CS 0x%x) Lanes 0x%03x -------\n"
},
{0x00200004,
"PMU4: ------- %dD Read Scanning TG %d (CS 0x%x) Lanes 0x%03x -------\n"
},
{0x00210003,
"PMU4: TG%d MR1[13,6,5]=0x%x MR6[13,9,8]=0x%x\n"
},
{0x00220002,
"PMU0: training lanes 0x%03x using lanes 0x%03x\n"
},
{0x00230003,
"PMU4: ------- 2D-DFE Read Scanning TG %d (CS 0x%x) Lanes 0x%03x -------\n"
},
{0x00240004,
"PMU4: ------- %dD Read Scanning TG %d (CS 0x%x) Lanes 0x%03x -------\n"
},
{0x00250002,
"PMU0: training lanes 0x%03x using lanes 0x%03x\n"
},
{0x00260002,
"PMU3: Sending vref %d, Mr = 0X%05x, to all devices\n"
},
{0x00270004,
"PMU4: -------- %dD Write Scanning TG %d (CS 0x%x) Lanes 0x%03x --------\n"
},
{0x00280001,
"PMU0: input %d\n"
},
{0x00290002,
"PMU4: Programmed Voltage Search Range [%d, %d]\n"
},
{0x002a0002,
"PMU3: Delay Stepsize = %d Fine, Voltage Stepsize = %d DAC\n"
},
{0x002b0002,
"PMU4: Delay Weight = %d, Voltage Weight = %d\n"
},
{0x002c0003,
"PMU0: raw 0x%x allFine %d incDec %d"
},
{0x002d0008,
"PMU0: db%d l%d, voltage 0x%x (u_r %d) delay 0x%x (u_r %d) - lcdl %d mask 0x%x\n"
},
{0x002e0005,
"PMU0: DB%d L%d, Eye %d, Seed = (0x%x, 0x%x)\n"
},
{0x002f0002,
"PMU3: 2D Enables : %d, 1, %d\n"
},
{0x00300006,
"PMU3: 2D Delay Ranges: OOPL[0x%04x,0x%04x], IP[0x%04x,0x%04x], OOPR[0x%04x,0x%04x]\n"
},
{0x00310002,
"PMU3: 2D Voltage Search Range : [%d, %d]\n"
},
{0x00320002,
"PMU4: Found Voltage Search Range [%d, %d]\n"
},
{0x00330002,
"PMU0: User Weight = %d, Voltage Weight = %d\n"
},
{0x00340005,
"PMU0: D(%d,%d) V(%d,%d | %d)\n"
},
{0x00350002,
"PMU0: Norm Weight = %d, Voltage Weight = %d\n"
},
{0x00360002,
"PMU0: seed 0 = (%d,%d) (center)\n"
},
{0x00370003,
"PMU0: seed 1 = (%d,%d).min edge at idx %d\n"
},
{0x00380003,
"PMU0: seed 2 = (%d,%d) max edge at idx %d\n"
},
{0x00390003,
"PMU0: Search point %d = (%d,%d)\n"
},
{0x003a0005,
"PMU0: YMARGIN: ^ %d, - %d, v %d. rate %d = %d\n"
},
{0x003b0003,
"PMU0: XMARGIN: center %d, edge %d. = %d\n"
},
{0x003c0002,
"PMU0: ----------- weighting (%d,%d) ----------------\n"
},
{0x003d0003,
"PMU0: X margin - L %d R %d - Min %d\n"
},
{0x003e0003,
"PMU0: Y margin - L %d R %d - Min %d\n"
},
{0x003f0003,
"PMU0: center (%d,%d) weight = %d\n"
},
{0x00400003,
"PMU4: Eye argest blob area %d from %d to %d\n"
},
{0x00410002,
"PMU0: Compute centroid min_x %d max_x %d\n"
},
{0x00420003,
"PMU0: Compute centroid sumLnDlyWidth %d sumLnVrefWidth %d sumLnWidht %d\n"
},
{0x00430000,
"PMU: Error: No passing region found for 1 or more lanes. Set hdtCtrl=4 to see passing regions\n"
},
{0x00440003,
"PMU0: Centroid ( %d, %d ) found with sumLnWidht %d\n"
},
{0x00450003,
"PMU0: Optimal allFine Center ( %d + %d ,%d )\n"
},
{0x00460003,
"PMU3: point %d starting at (%d,%d)\n"
},
{0x00470002,
"PMU0: picking left (%d > %d)\n"
},
{0x00480002,
"PMU0: picking right (%d > %d)\n"
},
{0x00490002,
"PMU0: picking down (%d > %d)\n"
},
{0x004a0002,
"PMU0: picking up (%d > %d)\n"
},
{0x004b0009,
"PMU3: new center @ (%3d, %3d). Moved (%2i, %2i) -- L %d, R %d, C %d, U %d, D %d\n"
},
{0x004c0003,
"PMU3: cordNum %d imporved %d to %d\n"
},
{0x004d0000,
"PMU: Error: No passing region found for 1 or more lanes. Set hdtCtrl=4 to see passing regions\n"
},
{0x004e0004,
"PMU0: Optimal allFine Center ( %d + %d ,%d ), found with weight %d.\n"
},
{0x004f0003,
"PMU0: merging lanes=%d..%d, centerMerge_t %d\n"
},
{0x00500001,
"PMU0: laneVal %d is disable\n"
},
{0x00510002,
"PMU0: checking common center %d against current center %d\n"
},
{0x00520001,
"PMU: Error: getCompoundEye Called on lane%d eye with non-compatible centers\n"
},
{0x00530001,
"PMU0: laneItr %d is disable\n"
},
{0x00540005,
"PMU0: lane %d, data_idx %d, offset_idx %d, = [%d..%d]\n"
},
{0x00550003,
"PMU0: lane %d, data_idx %d, offset_idx %d, offset_idx out of range!\n"
},
{0x00560003,
"PMU0: mergeData[%d] = max_v_low %d, min_v_high %d\n"
},
{0x00570005,
"PMU1: writing merged center (%d,%d) back to dataBlock[%d]. doDelay %d, doVoltage %d\n"
},
{0x00580005,
"PMU0: applying relative (%i,%i) back to dataBlock[%d]. doDelay %d, doVoltage %d\n"
},
{0x00590002,
"PMU0: drvstren %x is idx %d in the table\n"
},
{0x005a0000,
"PMU4: truncating FFE drive strength search range. Out of drive strengths to check.\n"
},
{0x005b0002,
"PMU5: Weak 1 changed to pull-up %5d ohms, pull-down %5d ohms\n"
},
{0x005c0002,
"PMU5: Weak 0 changed to pull-up %5d ohms, pull-down %5d ohms\n"
},
{0x005d0003,
"PMU0: dlyMargin L %02d R %02d, min %02d\n"
},
{0x005e0003,
"PMU0: vrefMargin T %02d B %02d, min %02d\n"
},
{0x005f0002,
"PMU3: new minimum VrefMargin (%d < %d) recorded\n"
},
{0x00600002,
"PMU3: new minimum DlyMargin (%d < %d) recorded\n"
},
{0x00610000,
"PMU0: RX finding the per-nibble, per-tg rxClkDly values\n"
},
{0x00620003,
"PMU0: Merging collected eyes [%d..%d) and analyzing for nibble %d's optimal rxClkDly\n"
},
{0x00630002,
"PMU0: -- centers: delay = %d, voltage = %d\n"
},
{0x00640003,
"PMU0: dumping optimized eye -- centers: delay = %d (%d), voltage = %d\n"
},
{0x00650000,
"PMU0: TX optimizing txDqDelays\n"
},
{0x00660001,
"PMU3: Analyzing collected eye %d for a lane's optimal TxDqDly\n"
},
{0x00670001,
"PMU0: eye-lane %d is disable\n"
},
{0x00680000,
"PMU0: TX optimizing device voltages\n"
},
{0x00690002,
"PMU0: Merging collected eyes [%d..%d) and analyzing for optimal device txVref\n"
},
{0x006a0002,
"PMU0: -- centers: delay = %d, voltage = %d\n"
},
{0x006b0003,
"PMU0: dumping optimized eye -- centers: delay = %d (%d), voltage = %d\n"
},
{0x006c0000,
"PMU4: VrefDac (compound all TG) Bottom Top -> Center\n"
},
{0x006d0005,
"PMU4: DB%d L%d %3d %3d -> %3d (DISCONNECTED)\n"
},
{0x006e0005,
"PMU4: DB%d L%d %3d %3d -> %3d\n"
},
{0x006f0005,
"PMU0: writing rxClkDelay for tg%d db%1d nib%1d to 0x%02x from eye[%02d] (DISCONNECTED)\n"
},
{0x00700003,
"PMU: Error: Dbyte %d nibble %d's optimal rxClkDly of 0x%x is out of bounds\n"
},
{0x00710005,
"PMU0: writing rxClkDelay for tg%d db%1d nib%1d to 0x%02x from eye[%02d]\n"
},
{0x00720005,
"PMU0: tx voltage for tg%2d nib%2d to %3d (%d) from eye[%02d]\n"
},
{0x00730001,
"PMU0: vref Sum = %d\n"
},
{0x00740004,
"PMU0: tx voltage total is %d/%d -> %d -> %d\n"
},
{0x00750007,
"PMU0: writing txDqDelay for tg%1d db%1d ln%1d to 0x%02x (%d coarse, %d fine) from eye[%02d] (DISCONNECTED)\n"
},
{0x00760003,
"PMU: Error: Dbyte %d lane %d's optimal txDqDly of 0x%x is out of bounds\n"
},
{0x00770007,
"PMU0: writing txDqDelay for tg%1d db%1d l%1d to 0x%02x (%d coarse, %d fine) from eye[%02d]\n"
},
{0x00780002,
"PMU0: %d (0=tx, 1=rx) TgMask for this simulation: %x\n"
},
{0x00790001,
"PMU0: eye-byte %d is disable\n"
},
{0x007a0001,
"PMU0: eye-lane %d is disable\n"
},
{0x007b0003,
"PMU10: Start d4_2d_lrdimm_rx_dfe dimm %d nbTap %d biasStepMode %d\n"
},
{0x007c0001,
"PMU10: DB DFE feature not fully supported, F2BCEx value is 0x%02x\n"
},
{0x007d0001,
"PMU10: DB DFE feature fully supported, F2BCEx value is 0x%02x\n"
},
{0x007e0002,
"PMU8: Start d4_2d_lrdimm_rx_dfe for tap %d biasStepInc %d\n"
},
{0x007f0001,
"PMU7: Start d4_2d_lrdimm_rx_dfe tapCoff 0x%0x\n"
},
{0x00800003,
"PMU6: d4_2d_lrdimm_rx_dfe db %d lane %d area %d\n"
},
{0x00810004,
"PMU7: d4_2d_lrdimm_rx_dfe db %d lane %d max area %d best bias 0x%0x\n"
},
{0x00820001,
"PMU0: eye-lane %d is disable\n"
},
{0x00830003,
"PMU5: Setting 0x%x improved rank weight (%4d < %4d)\n"
},
{0x00840001,
"PMU4: Setting 0x%x still optimal\n"
},
{0x00850002,
"PMU5: ---- Training CS%d MR%d DRAM Equalization ----\n"
},
{0x00860001,
"PMU0: eye-lane %d is disable\n"
},
{0x00870003,
"PMU0: eye %d weight %d allTgWeight %d\n"
},
{0x00880002,
"PMU5: FFE figure of merit improved from %d to %d\n"
},
{0x00890002,
"PMU: Error: LP4 rank %d cannot be mapped on tg %d\n"
},
{0x008a0000,
"PMU4: Adjusting vrefDac0 for just 1->x transitions\n"
},
{0x008b0000,
"PMU4: Adjusting vrefDac1 for just 0->x transitions\n"
},
{0x008c0001,
"PMU5: Strong 1, pull-up %d ohms\n"
},
{0x008d0001,
"PMU5: Strong 0, pull-down %d ohms\n"
},
{0x008e0000,
"PMU4: Enabling weak drive strengths (FFE)\n"
},
{0x008f0000,
"PMU5: Changing all weak driver strengths\n"
},
{0x00900000,
"PMU5: Finalizing weak drive strengths\n"
},
{0x00910000,
"PMU4: retraining with optimal drive strength settings\n"
},
{0x00920002,
"PMU0: targeting CsX = %d and CsY = %d\n"
},
{0x00930001,
"PMU1:prbsGenCtl:%x\n"
},
{0x00940000,
"PMU1: loading 2D acsm sequence\n"
},
{0x00950000,
"PMU1: loading 1D acsm sequence\n"
},
{0x00960002,
"PMU3: %d memclocks @ %d to get half of 300ns\n"
},
{0x00970000,
"PMU: Error: User requested MPR read pattern for read DQS training in DDR3 Mode\n"
},
{0x00980000,
"PMU3: Running 1D search for left eye edge\n"
},
{0x00990001,
"PMU1: In Phase Left Edge Search cs %d\n"
},
{0x009a0001,
"PMU1: Out of Phase Left Edge Search cs %d\n"
},
{0x009b0000,
"PMU3: Running 1D search for right eye edge\n"
},
{0x009c0001,
"PMU1: In Phase Right Edge Search cs %d\n"
},
{0x009d0001,
"PMU1: Out of Phase Right Edge Search cs %d\n"
},
{0x009e0001,
"PMU1: mxRdLat training pstate %d\n"
},
{0x009f0001,
"PMU1: mxRdLat search for cs %d\n"
},
{0x00a00001,
"PMU0: MaxRdLat non consistent DtsmLoThldXingInd 0x%03x\n"
},
{0x00a10003,
"PMU4: CS %d Dbyte %d worked with DFIMRL = %d DFICLKs\n"
},
{0x00a20004,
"PMU3: MaxRdLat Read Lane err mask for csn %d, DFIMRL %2d DFIClks, dbyte %d = 0x%03x\n"
},
{0x00a30003,
"PMU3: MaxRdLat Read Lane err mask for csn %d DFIMRL %2d, All dbytes = 0x%03x\n"
},
{0x00a40001,
"PMU: Error: CS%d failed to find a DFIMRL setting that worked for all bytes during MaxRdLat training\n"
},
{0x00a50002,
"PMU3: Smallest passing DFIMRL for all dbytes in CS%d = %d DFIClks\n"
},
{0x00a60000,
"PMU: Error: No passing DFIMRL value found for any chip select during MaxRdLat training\n"
},
{0x00a70003,
"PMU: Error: Dbyte %d lane %d txDqDly passing region is too small (width = %d)\n"
},
{0x00a80006,
"PMU10: Adjusting rxclkdly db %d nib %d from %d+%d=%d->%d\n"
},
{0x00a90000,
"PMU4: TxDqDly Passing Regions (EyeLeft EyeRight -> EyeCenter) Units=1/32 UI\n"
},
{0x00aa0005,
"PMU4: DB %d Lane %d: %3d %3d -> %3d\n"
},
{0x00ab0002,
"PMU2: TXDQ delayLeft[%2d] = %3d (DISCONNECTED)\n"
},
{0x00ac0004,
"PMU2: TXDQ delayLeft[%2d] = %3d oopScaled = %3d selectOop %d\n"
},
{0x00ad0002,
"PMU2: TXDQ delayRight[%2d] = %3d (DISCONNECTED)\n"
},
{0x00ae0004,
"PMU2: TXDQ delayRight[%2d] = %3d oopScaled = %3d selectOop %d\n"
},
{0x00af0003,
"PMU: Error: Dbyte %d lane %d txDqDly passing region is too small (width = %d)\n"
},
{0x00b00000,
"PMU4: TxDqDly Passing Regions (EyeLeft EyeRight -> EyeCenter) Units=1/32 UI\n"
},
{0x00b10002,
"PMU4: DB %d Lane %d: (DISCONNECTED)\n"
},
{0x00b20005,
"PMU4: DB %d Lane %d: %3d %3d -> %3d\n"
},
{0x00b30002,
"PMU3: Running 1D search csn %d for DM Right/NotLeft(%d) eye edge\n"
},
{0x00b40002,
"PMU3: WrDq DM byte%2d with Errcnt %d\n"
},
{0x00b50002,
"PMU3: WrDq DM byte%2d avgDly 0x%04x\n"
},
{0x00b60002,
"PMU1: WrDq DM byte%2d with Errcnt %d\n"
},
{0x00b70001,
"PMU: Error: Dbyte %d txDqDly DM training did not start inside the eye\n"
},
{0x00b80000,
"PMU4: DM TxDqDly Passing Regions (EyeLeft EyeRight -> EyeCenter) Units=1/32 UI\n"
},
{0x00b90002,
"PMU4: DB %d Lane %d: (DISCONNECTED)\n"
},
{0x00ba0005,
"PMU4: DB %d Lane %d: %3d %3d -> %3d\n"
},
{0x00bb0003,
"PMU: Error: Dbyte %d lane %d txDqDly DM passing region is too small (width = %d)\n"
},
{0x00bc0004,
"PMU3: Errcnt for MRD/MWD search nib %2d delay = (%d, 0x%02x) = %d\n"
},
{0x00bd0000,
"PMU3: Precharge all open banks\n"
},
{0x00be0002,
"PMU: Error: Dbyte %d nibble %d found mutliple working coarse delay setting for MRD/MWD\n"
},
{0x00bf0000,
"PMU4: MRD Passing Regions (coarseVal, fineLeft fineRight -> fineCenter)\n"
},
{0x00c00000,
"PMU4: MWD Passing Regions (coarseVal, fineLeft fineRight -> fineCenter)\n"
},
{0x00c10004,
"PMU10: Warning: DB %d nibble %d has multiple working coarse delays, %d and %d, choosing the smaller delay\n"
},
{0x00c20003,
"PMU: Error: Dbyte %d nibble %d MRD/MWD passing region is too small (width = %d)\n"
},
{0x00c30006,
"PMU4: DB %d nibble %d: %3d, %3d %3d -> %3d\n"
},
{0x00c40002,
"PMU1: Start MRD/nMWD %d for csn %d\n"
},
{0x00c50002,
"PMU2: RXDQS delayLeft[%2d] = %3d (DISCONNECTED)\n"
},
{0x00c60006,
"PMU2: RXDQS delayLeft[%2d] = %3d delayOop[%2d] = %3d OopScaled %4d, selectOop %d\n"
},
{0x00c70002,
"PMU2: RXDQS delayRight[%2d] = %3d (DISCONNECTED)\n"
},
{0x00c80006,
"PMU2: RXDQS delayRight[%2d] = %3d delayOop[%2d] = %4d OopScaled %4d, selectOop %d\n"
},
{0x00c90000,
"PMU4: RxClkDly Passing Regions (EyeLeft EyeRight -> EyeCenter)\n"
},
{0x00ca0002,
"PMU4: DB %d nibble %d: (DISCONNECTED)\n"
},
{0x00cb0005,
"PMU4: DB %d nibble %d: %3d %3d -> %3d\n"
},
{0x00cc0003,
"PMU: Error: Dbyte %d nibble %d rxClkDly passing region is too small (width = %d)\n"
},
{0x00cd0002,
"PMU0: goodbar = %d for RDWR_BLEN %d\n"
},
{0x00ce0001,
"PMU3: RxClkDly = %d\n"
},
{0x00cf0005,
"PMU0: db %d l %d absLane %d -> bottom %d top %d\n"
},
{0x00d00009,
"PMU3: BYTE %d - %3d %3d %3d %3d %3d %3d %3d %3d\n"
},
{0x00d10002,
"PMU: Error: dbyte %d lane %d's per-lane vrefDAC's had no passing region\n"
},
{0x00d20004,
"PMU0: db%d l%d - %d %d\n"
},
{0x00d30002,
"PMU0: goodbar = %d for RDWR_BLEN %d\n"
},
{0x00d40004,
"PMU3: db%d l%d saw %d issues at rxClkDly %d\n"
},
{0x00d50003,
"PMU3: db%d l%d first saw a pass->fail edge at rxClkDly %d\n"
},
{0x00d60002,
"PMU3: lane %d PBD = %d\n"
},
{0x00d70003,
"PMU3: db%d l%d first saw a DBI pass->fail edge at rxClkDly %d\n"
},
{0x00d80003,
"PMU2: db%d l%d already passed rxPBD = %d\n"
},
{0x00d90003,
"PMU0: db%d l%d, PBD = %d\n"
},
{0x00da0002,
"PMU: Error: dbyte %d lane %d failed read deskew\n"
},
{0x00db0003,
"PMU0: db%d l%d, inc PBD = %d\n"
},
{0x00dc0003,
"PMU1: Running lane deskew on pstate %d csn %d rdDBIEn %d\n"
},
{0x00dd0000,
"PMU: Error: Read deskew training has been requested, but csrMajorModeDbyte[2] is set\n"
},
{0x00de0002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x00df0002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x00e00001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D3U Type\n"
},
{0x00e10001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D3R Type\n"
},
{0x00e20001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D4U Type\n"
},
{0x00e30001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D4R Type\n"
},
{0x00e40001,
"PMU: Error: Wrong PMU image loaded. message Block DramType = 0x%02x, but image built for D4LR Type\n"
},
{0x00e50000,
"PMU: Error: Both 2t timing mode and ddr4 geardown mode specified in the messageblock's PhyCfg and MR3 fields. Only one can be enabled\n"
},
{0x00e60003,
"PMU10: PHY TOTALS - NUM_DBYTES %d NUM_NIBBLES %d NUM_ANIBS %d\n"
},
{0x00e70006,
"PMU10: CSA=0x%02x, CSB=0x%02x, TSTAGES=0x%04x, HDTOUT=%d, MMISC=%d DRAMFreq=%dMT DramType=LPDDR3\n"
},
{0x00e80006,
"PMU10: CSA=0x%02x, CSB=0x%02x, TSTAGES=0x%04x, HDTOUT=%d, MMISC=%d DRAMFreq=%dMT DramType=LPDDR4\n"
},
{0x00e90008,
"PMU10: CS=0x%02x, TSTAGES=0x%04x, HDTOUT=%d, 2T=%d, MMISC=%d AddrMirror=%d DRAMFreq=%dMT DramType=%d\n"
},
{0x00ea0004,
"PMU10: Pstate%d MR0=0x%04x MR1=0x%04x MR2=0x%04x\n"
},
{0x00eb0008,
"PMU10: Pstate%d MRS MR0=0x%04x MR1=0x%04x MR2=0x%04x MR3=0x%04x MR4=0x%04x MR5=0x%04x MR6=0x%04x\n"
},
{0x00ec0005,
"PMU10: Pstate%d MRS MR1_A0=0x%04x MR2_A0=0x%04x MR3_A0=0x%04x MR11_A0=0x%04x\n"
},
{0x00ed0000,
"PMU10: UseBroadcastMR set. All ranks and channels use MRXX_A0 for MR settings.\n"
},
{0x00ee0005,
"PMU10: Pstate%d MRS MR01_A0=0x%02x MR02_A0=0x%02x MR03_A0=0x%02x MR11_A0=0x%02x\n"
},
{0x00ef0005,
"PMU10: Pstate%d MRS MR12_A0=0x%02x MR13_A0=0x%02x MR14_A0=0x%02x MR22_A0=0x%02x\n"
},
{0x00f00005,
"PMU10: Pstate%d MRS MR01_A1=0x%02x MR02_A1=0x%02x MR03_A1=0x%02x MR11_A1=0x%02x\n"
},
{0x00f10005,
"PMU10: Pstate%d MRS MR12_A1=0x%02x MR13_A1=0x%02x MR14_A1=0x%02x MR22_A1=0x%02x\n"
},
{0x00f20005,
"PMU10: Pstate%d MRS MR01_B0=0x%02x MR02_B0=0x%02x MR03_B0=0x%02x MR11_B0=0x%02x\n"
},
{0x00f30005,
"PMU10: Pstate%d MRS MR12_B0=0x%02x MR13_B0=0x%02x MR14_B0=0x%02x MR22_B0=0x%02x\n"
},
{0x00f40005,
"PMU10: Pstate%d MRS MR01_B1=0x%02x MR02_B1=0x%02x MR03_B1=0x%02x MR11_B1=0x%02x\n"
},
{0x00f50005,
"PMU10: Pstate%d MRS MR12_B1=0x%02x MR13_B1=0x%02x MR14_B1=0x%02x MR22_B1=0x%02x\n"
},
{0x00f60002,
"PMU1: AcsmOdtCtrl%02d 0x%02x\n"
},
{0x00f70002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x00f80002,
"PMU1: AcsmCsMapCtrl%02d 0x%04x\n"
},
{0x00f90000,
"PMU1: HwtCAMode set\n"
},
{0x00fa0001,
"PMU3: DDR4 infinite preamble enter/exit mode %d\n"
},
{0x00fb0002,
"PMU1: In rxenb_train() csn=%d pstate=%d\n"
},
{0x00fc0000,
"PMU3: Finding DQS falling edge\n"
},
{0x00fd0000,
"PMU3: Searching for DDR3/LPDDR3/LPDDR4 read preamble\n"
},
{0x00fe0009,
"PMU3: dtsm fails Even Nibbles : %2x %2x %2x %2x %2x %2x %2x %2x %2x\n"
},
{0x00ff0009,
"PMU3: dtsm fails Odd Nibbles : %2x %2x %2x %2x %2x %2x %2x %2x %2x\n"
},
{0x01000002,
"PMU3: Preamble search pass=%d anyfail=%d\n"
},
{0x01010000,
"PMU: Error: RxEn training preamble not found\n"
},
{0x01020000,
"PMU3: Found DQS pre-amble\n"
},
{0x01030001,
"PMU: Error: Dbyte %d couldn't find the rising edge of DQS during RxEn Training\n"
},
{0x01040000,
"PMU3: RxEn aligning to first rising edge of burst\n"
},
{0x01050001,
"PMU3: Decreasing RxEn delay by %d fine step to allow full capture of reads\n"
},
{0x01060001,
"PMU3: MREP Delay = %d\n"
},
{0x01070003,
"PMU3: Errcnt for MREP nib %2d delay = %2d is %d\n"
},
{0x01080002,
"PMU3: MREP nibble %d sampled a 1 at data buffer delay %d\n"
},
{0x01090002,
"PMU3: MREP nibble %d saw a 0 to 1 transition at data buffer delay %d\n"
},
{0x010a0000,
"PMU2: MREP did not find a 0 to 1 transition for all nibbles. Failing nibbles assumed to have rising edge close to fine delay 63\n"
},
{0x010b0002,
"PMU2: Rising edge found in alias window, setting rxDly for nibble %d = %d\n"
},
{0x010c0002,
"PMU: Error: Failed MREP for nib %d with %d one\n"
},
{0x010d0003,
"PMU2: Rising edge not found in alias window with %d one, leaving rxDly for nibble %d = %d\n"
},
{0x010e0002,
"PMU3: Training DIMM %d CSn %d\n"
},
{0x010f0001,
"PMU3: exitCAtrain_lp3 cs 0x%x\n"
},
{0x01100001,
"PMU3: enterCAtrain_lp3 cs 0x%x\n"
},
{0x01110001,
"PMU3: CAtrain_switchmsb_lp3 cs 0x%x\n"
},
{0x01120001,
"PMU3: CATrain_rdwr_lp3 looking for pattern %x\n"
},
{0x01130000,
"PMU3: exitCAtrain_lp4\n"
},
{0x01140001,
"PMU3: DEBUG enterCAtrain_lp4 1: cs 0x%x\n"
},
{0x01150001,
"PMU3: DEBUG enterCAtrain_lp4 3: Put dbyte %d in async mode\n"
},
{0x01160000,
"PMU3: DEBUG enterCAtrain_lp4 5: Send MR13 to turn on CA training\n"
},
{0x01170003,
"PMU3: DEBUG enterCAtrain_lp4 7: idx = %d vref = %x mr12 = %x\n"
},
{0x01180001,
"PMU3: CATrain_rdwr_lp4 looking for pattern %x\n"
},
{0x01190004,
"PMU3: Phase %d CAreadbackA db:%d %x xo:%x\n"
},
{0x011a0005,
"PMU3: DEBUG lp4SetCatrVref 1: cs=%d chan=%d mr12=%x vref=%d.%d%%\n"
},
{0x011b0003,
"PMU3: DEBUG lp4SetCatrVref 3: mr12 = %x send vref= %x to db=%d\n"
},
{0x011c0000,
"PMU10:Optimizing vref\n"
},
{0x011d0004,
"PMU4:mr12:%2x cs:%d chan %d r:%4x\n"
},
{0x011e0005,
"PMU3: i:%2d bstr:%2d bsto:%2d st:%d r:%d\n"
},
{0x011f0002,
"Failed to find sufficient CA Vref Passing Region for CS %d ch. %d\n"
},
{0x01200005,
"PMU3:Found %d.%d%% MR12:%x for cs:%d chan %d\n"
},
{0x01210002,
"PMU3:Calculated %d for AtxImpedence from acx %d.\n"
},
{0x01220000,
"PMU3:CA Odt impedence ==0. Use default vref.\n"
},
{0x01230003,
"PMU3:Calculated %d.%d%% for Vref MR12=0x%x.\n"
},
{0x01240000,
"PMU3: CAtrain_lp\n"
},
{0x01250000,
"PMU3: CAtrain Begins.\n"
},
{0x01260001,
"PMU3: CAtrain_lp testing dly %d\n"
},
{0x01270001,
"PMU5: CA bitmap dump for cs %x\n"
},
{0x01280001,
"PMU5: CAA%d "
},
{0x01290001, "%02x"
},
{0x012a0000, "\n"
},
{0x012b0001,
"PMU5: CAB%d "
},
{0x012c0001, "%02x"
},
{0x012d0000, "\n"
},
{0x012e0003,
"PMU3: anibi=%d, anibichan[anibi]=%d ,chan=%d\n"
},
{0x012f0001, "%02x"
},
{0x01300001, "\nPMU3:Raw CA setting :%x"
},
{0x01310002, "\nPMU3:ATxDly setting:%x margin:%d\n"
},
{0x01320002, "\nPMU3:InvClk ATxDly setting:%x margin:%d\n"
},
{0x01330000, "\nPMU3:No Range found!\n"
},
{0x01340003,
"PMU3: 2 anibi=%d, anibichan[anibi]=%d ,chan=%d"
},
{0x01350002, "\nPMU3: no neg clock => CA setting anib=%d, :%d\n"
},
{0x01360001,
"PMU3:Normal margin:%d\n"
},
{0x01370001,
"PMU3:Inverted margin:%d\n"
},
{0x01380000,
"PMU3:Using Inverted clock\n"
},
{0x01390000,
"PMU3:Using normal clk\n"
},
{0x013a0003,
"PMU3: 3 anibi=%d, anibichan[anibi]=%d ,chan=%d\n"
},
{0x013b0002,
"PMU3: Setting ATxDly for anib %x to %x\n"
},
{0x013c0000,
"PMU: Error: CA Training Failed.\n"
},
{0x013d0000,
"PMU1: Writing MRs\n"
},
{0x013e0000,
"PMU4:Using MR12 values from 1D CA VREF training.\n"
},
{0x013f0000,
"PMU3:Writing all MRs to fsp 1\n"
},
{0x01400000,
"PMU10:Lp4Quickboot mode.\n"
},
{0x01410000,
"PMU3: Writing MRs\n"
},
{0x01420001,
"PMU10: Setting boot clock divider to %d\n"
},
{0x01430000,
"PMU3: Resetting DRAM\n"
},
{0x01440000,
"PMU3: setup for RCD initalization\n"
},
{0x01450000,
"PMU3: pmu_exit_SR from dev_init()\n"
},
{0x01460000,
"PMU3: initializing RCD\n"
},
{0x01470000,
"PMU10: **** Executing 2D Image ****\n"
},
{0x01480001,
"PMU10: **** Start DDR4 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x01490001,
"PMU10: **** Start DDR3 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x014a0001,
"PMU10: **** Start LPDDR3 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x014b0001,
"PMU10: **** Start LPDDR4 Training. PMU Firmware Revision 0x%04x ****\n"
},
{0x014c0000,
"PMU: Error: Mismatched internal revision between DCCM and ICCM images\n"
},
{0x014d0001,
"PMU10: **** Testchip %d Specific Firmware ****\n"
},
{0x014e0000,
"PMU1: LRDIMM with EncodedCS mode, one DIMM\n"
},
{0x014f0000,
"PMU1: LRDIMM with EncodedCS mode, two DIMMs\n"
},
{0x01500000,
"PMU1: RDIMM with EncodedCS mode, one DIMM\n"
},
{0x01510000,
"PMU2: Starting LRDIMM MREP training for all ranks\n"
},
{0x01520000,
"PMU199: LRDIMM MREP training for all ranks completed\n"
},
{0x01530000,
"PMU2: Starting LRDIMM DWL training for all ranks\n"
},
{0x01540000,
"PMU199: LRDIMM DWL training for all ranks completed\n"
},
{0x01550000,
"PMU2: Starting LRDIMM MRD training for all ranks\n"
},
{0x01560000,
"PMU199: LRDIMM MRD training for all ranks completed\n"
},
{0x01570000,
"PMU2: Starting RXEN training for all ranks\n"
},
{0x01580000,
"PMU2: Starting write leveling fine delay training for all ranks\n"
},
{0x01590000,
"PMU2: Starting LRDIMM MWD training for all ranks\n"
},
{0x015a0000,
"PMU199: LRDIMM MWD training for all ranks completed\n"
},
{0x015b0000,
"PMU2: Starting write leveling fine delay training for all ranks\n"
},
{0x015c0000,
"PMU2: Starting read deskew training\n"
},
{0x015d0000,
"PMU2: Starting SI friendly 1d RdDqs training for all ranks\n"
},
{0x015e0000,
"PMU2: Starting write leveling coarse delay training for all ranks\n"
},
{0x015f0000,
"PMU2: Starting 1d WrDq training for all ranks\n"
},
{0x01600000,
"PMU2: Running DQS2DQ Oscillator for all ranks\n"
},
{0x01610000,
"PMU2: Starting again read deskew training but with PRBS\n"
},
{0x01620000,
"PMU2: Starting 1d RdDqs training for all ranks\n"
},
{0x01630000,
"PMU2: Starting again 1d WrDq training for all ranks\n"
},
{0x01640000,
"PMU2: Starting MaxRdLat training\n"
},
{0x01650000,
"PMU2: Starting 2d WrDq training for all ranks\n"
},
{0x01660000,
"PMU2: Starting 2d RdDqs training for all ranks\n"
},
{0x01670002,
"PMU3:read_fifo %x %x\n"
},
{0x01680001,
"PMU: Error: Invalid PhyDrvImpedance of 0x%x specified in message block.\n"
},
{0x01690001,
"PMU: Error: Invalid PhyOdtImpedance of 0x%x specified in message block.\n"
},
{0x016a0001,
"PMU: Error: Invalid BPZNResVal of 0x%x specified in message block.\n"
},
{0x016b0005,
"PMU3: fixRxEnBackOff csn:%d db:%d dn:%d bo:%d dly:%x\n"
},
{0x016c0001,
"PMU3: fixRxEnBackOff dly:%x\n"
},
{0x016d0000,
"PMU3: Entering setupPpt\n"
},
{0x016e0000,
"PMU3: Start lp4PopulateHighLowBytes\n"
},
{0x016f0002,
"PMU3:Dbyte Detect: db%d received %x\n"
},
{0x01700002,
"PMU3:getDqs2Dq read %x from dbyte %d\n"
},
{0x01710002,
"PMU3:getDqs2Dq(2) read %x from dbyte %d\n"
},
{0x01720001,
"PMU: Error: Dbyte %d read 0 from the DQS oscillator it is connected to\n"
},
{0x01730002,
"PMU4: Dbyte %d dqs2dq = %d/32 UI\n"
},
{0x01740003,
"PMU3:getDqs2Dq set dqs2dq:%d/32 ui (%d ps) from dbyte %d\n"
},
{0x01750003,
"PMU3: Setting coarse delay in AtxDly chiplet %d from 0x%02x to 0x%02x\n"
},
{0x01760003,
"PMU3: Clearing coarse delay in AtxDly chiplet %d from 0x%02x to 0x%02x\n"
},
{0x01770000,
"PMU3: Performing DDR4 geardown sync sequence\n"
},
{0x01780000,
"PMU1: Enter self refresh\n"
},
{0x01790000,
"PMU1: Exit self refresh\n"
},
{0x017a0000,
"PMU: Error: No dbiEnable with lp4\n"
},
{0x017b0000,
"PMU: Error: No dbiDisable with lp4\n"
},
{0x017c0001,
"PMU1: DDR4 update Rx DBI Setting disable %d\n"
},
{0x017d0001,
"PMU1: DDR4 update 2nCk WPre Setting disable %d\n"
},
{0x017e0005,
"PMU1: read_delay: db%d lane%d delays[%2d] = 0x%02x (max 0x%02x)\n"
},
{0x017f0004,
"PMU1: write_delay: db%d lane%d delays[%2d] = 0x%04x\n"
},
{0x01800001,
"PMU5: ID=%d -- db0 db1 db2 db3 db4 db5 db6 db7 db8 db9 --\n"
},
{0x0181000b,
"PMU5: [%d]:0x %04x %04x %04x %04x %04x %04x %04x %04x %04x %04x\n"
},
{0x01820003,
"PMU2: dump delays - pstate=%d dimm=%d csn=%d\n"
},
{0x01830000,
"PMU3: Printing Mid-Training Delay Information\n"
},
{0x01840001,
"PMU5: CS%d <<KEY>> 0 TrainingCntr <<KEY>> coarse(15:10) fine(9:0)\n"
},
{0x01850001,
"PMU5: CS%d <<KEY>> 0 RxEnDly, 1 RxClkDly <<KEY>> coarse(10:6) fine(5:0)\n"
},
{0x01860001,
"PMU5: CS%d <<KEY>> 0 TxDqsDly, 1 TxDqDly <<KEY>> coarse(9:6) fine(5:0)\n"
},
{0x01870001,
"PMU5: CS%d <<KEY>> 0 RxPBDly <<KEY>> 1 Delay Unit ~= 7ps\n"
},
{0x01880000,
"PMU5: all CS <<KEY>> 0 DFIMRL <<KEY>> Units = DFI clocks\n"
},
{0x01890000,
"PMU5: all CS <<KEY>> VrefDACs <<KEY>> DAC(6:0)\n"
},
{0x018a0000,
"PMU1: Set DMD in MR13 and wrDBI in MR3 for training\n"
},
{0x018b0000,
"PMU: Error: getMaxRxen() failed to find largest rxen nibble delay\n"
},
{0x018c0003,
"PMU2: getMaxRxen(): maxDly %d maxTg %d maxNib %d\n"
},
{0x018d0003,
"PMU2: getRankMaxRxen(): maxDly %d Tg %d maxNib %d\n"
},
{0x018e0000,
"PMU1: skipping CDD calculation in 2D image\n"
},
{0x018f0001,
"PMU3: Calculating CDDs for pstate %d\n"
},
{0x01900003,
"PMU3: rxFromDly[%d][%d] = %d\n"
},
{0x01910003,
"PMU3: rxToDly [%d][%d] = %d\n"
},
{0x01920003,
"PMU3: rxDly [%d][%d] = %d\n"
},
{0x01930003,
"PMU3: txDly [%d][%d] = %d\n"
},
{0x01940003,
"PMU3: allFine CDD_RR_%d_%d = %d\n"
},
{0x01950003,
"PMU3: allFine CDD_WW_%d_%d = %d\n"
},
{0x01960003,
"PMU3: CDD_RR_%d_%d = %d\n"
},
{0x01970003,
"PMU3: CDD_WW_%d_%d = %d\n"
},
{0x01980003,
"PMU3: allFine CDD_RW_%d_%d = %d\n"
},
{0x01990003,
"PMU3: allFine CDD_WR_%d_%d = %d\n"
},
{0x019a0003,
"PMU3: CDD_RW_%d_%d = %d\n"
},
{0x019b0003,
"PMU3: CDD_WR_%d_%d = %d\n"
},
{0x019c0004,
"PMU3: F%dBC2x_B%d_D%d = 0x%02x\n"
},
{0x019d0004,
"PMU3: F%dBC3x_B%d_D%d = 0x%02x\n"
},
{0x019e0004,
"PMU3: F%dBC4x_B%d_D%d = 0x%02x\n"
},
{0x019f0004,
"PMU3: F%dBC5x_B%d_D%d = 0x%02x\n"
},
{0x01a00004,
"PMU3: F%dBC8x_B%d_D%d = 0x%02x\n"
},
{0x01a10004,
"PMU3: F%dBC9x_B%d_D%d = 0x%02x\n"
},
{0x01a20004,
"PMU3: F%dBCAx_B%d_D%d = 0x%02x\n"
},
{0x01a30004,
"PMU3: F%dBCBx_B%d_D%d = 0x%02x\n"
},
{0x01a40000,
"PMU10: Entering context_switch_postamble\n"
},
{0x01a50003,
"PMU10: context_switch_postamble is enabled for DIMM %d, RC0A=0x%x, RC3x=0x%x\n"
},
{0x01a60000,
"PMU10: Setting bcw fspace 0\n"
},
{0x01a70001,
"PMU10: Sending BC0A = 0x%x\n"
},
{0x01a80001,
"PMU10: Sending BC6x = 0x%x\n"
},
{0x01a90001,
"PMU10: Sending RC0A = 0x%x\n"
},
{0x01aa0001,
"PMU10: Sending RC3x = 0x%x\n"
},
{0x01ab0001,
"PMU10: Sending RC0A = 0x%x\n"
},
{0x01ac0001,
"PMU1: enter_lp3: DEBUG: pstate = %d\n"
},
{0x01ad0001,
"PMU1: enter_lp3: DEBUG: dfifreqxlat_pstate = %d\n"
},
{0x01ae0001,
"PMU1: enter_lp3: DEBUG: pllbypass = %d\n"
},
{0x01af0001,
"PMU1: enter_lp3: DEBUG: forcecal = %d\n"
},
{0x01b00001,
"PMU1: enter_lp3: DEBUG: pllmaxrange = 0x%x\n"
},
{0x01b10001,
"PMU1: enter_lp3: DEBUG: dacval_out = 0x%x\n"
},
{0x01b20001,
"PMU1: enter_lp3: DEBUG: pllctrl3 = 0x%x\n"
},
{0x01b30000,
"PMU3: Loading DRAM with BIOS supplied MR values and entering self refresh prior to exiting PMU code.\n"
},
{0x01b40002,
"PMU3: Setting DataBuffer function space of dimmcs 0x%02x to %d\n"
},
{0x01b50002,
"PMU4: Setting RCW FxRC%Xx = 0x%02x\n"
},
{0x01b60002,
"PMU4: Setting RCW FxRC%02x = 0x%02x\n"
},
{0x01b70001,
"PMU1: DDR4 update Rd Pre Setting disable %d\n"
},
{0x01b80002,
"PMU2: Setting BCW FxBC%Xx = 0x%02x\n"
},
{0x01b90002,
"PMU2: Setting BCW BC%02x = 0x%02x\n"
},
{0x01ba0002,
"PMU2: Setting BCW PBA mode FxBC%Xx = 0x%02x\n"
},
{0x01bb0002,
"PMU2: Setting BCW PBA mode BC%02x = 0x%02x\n"
},
{0x01bc0003,
"PMU4: BCW value for dimm %d, fspace %d, addr 0x%04x\n"
},
{0x01bd0002,
"PMU4: DB %d, value 0x%02x\n"
},
{0x01be0000,
"PMU6: WARNING MREP underflow, set to min value -2 coarse, 0 fine\n"
},
{0x01bf0004,
"PMU6: LRDIMM Writing final data buffer fine delay value nib %2d, trainDly %3d, fineDly code %2d, new MREP fine %2d\n"
},
{0x01c00003,
"PMU6: LRDIMM Writing final data buffer fine delay value nib %2d, trainDly %3d, fineDly code %2d\n"
},
{0x01c10003,
"PMU6: LRDIMM Writing data buffer fine delay type %d nib %2d, code %2d\n"
},
{0x01c20002,
"PMU6: Writing final data buffer coarse delay value dbyte %2d, coarse = 0x%02x\n"
},
{0x01c30003,
"PMU4: data 0x%04x at MB addr 0x%08x saved at CSR addr 0x%08x\n"
},
{0x01c40003,
"PMU4: data 0x%04x at MB addr 0x%08x restored from CSR addr 0x%08x\n"
},
{0x01c50003,
"PMU4: data 0x%04x at MB addr 0x%08x saved at CSR addr 0x%08x\n"
},
{0x01c60003,
"PMU4: data 0x%04x at MB addr 0x%08x restored from CSR addr 0x%08x\n"
},
{0x01c70001,
"PMU3: Update BC00, BC01, BC02 for rank-dimm 0x%02x\n"
},
{0x01c80000,
"PMU3: Writing D4 RDIMM RCD Control words F0RC00 -> F0RC0F\n"
},
{0x01c90000,
"PMU3: Disable parity in F0RC0E\n"
},
{0x01ca0000,
"PMU3: Writing D4 RDIMM RCD Control words F1RC00 -> F1RC05\n"
},
{0x01cb0000,
"PMU3: Writing D4 RDIMM RCD Control words F1RC1x -> F1RC9x\n"
},
{0x01cc0000,
"PMU3: Writing D4 Data buffer Control words BC00 -> BC0E\n"
},
{0x01cd0002,
"PMU1: setAltCL Sending MR0 0x%x cl=%d\n"
},
{0x01ce0002,
"PMU1: restoreFromAltCL Sending MR0 0x%x cl=%d\n"
},
{0x01cf0002,
"PMU1: restoreAcsmFromAltCL Sending MR0 0x%x cl=%d\n"
},
{0x01d00002,
"PMU2: Setting D3R RC%d = 0x%01x\n"
},
{0x01d10000,
"PMU3: Writing D3 RDIMM RCD Control words RC0 -> RC11\n"
},
{0x01d20002,
"PMU0: VrefDAC0/1 vddqStart %d dacToVddq %d\n"
},
{0x01d30001,
"PMU: Error: Messageblock phyVref=0x%x is above the limit for TSMC28's attenuated LPDDR4 receivers. Please see the pub databook\n"
},
{0x01d40001,
"PMU: Error: Messageblock phyVref=0x%x is above the limit for TSMC28's attenuated DDR4 receivers. Please see the pub databook\n"
},
{0x01d50001,
"PMU0: PHY VREF @ (%d/1000) VDDQ\n"
},
{0x01d60002,
"PMU0: initalizing phy vrefDacs to %d ExtVrefRange %x\n"
},
{0x01d70002,
"PMU0: initalizing global vref to %d range %d\n"
},
{0x01d80002,
"PMU4: Setting initial device vrefDQ for CS%d to MR6 = 0x%04x\n"
},
{0x01d90003,
"PMU1: In write_level_fine() csn=%d dimm=%d pstate=%d\n"
},
{0x01da0000,
"PMU3: Fine write leveling hardware search increasing TxDqsDly until full bursts are seen\n"
},
{0x01db0000,
"PMU4: WL normalized pos : ........................|........................\n"
},
{0x01dc0007,
"PMU4: WL margin for nib %2d: %08x%08x%08x%08x%08x%08x\n"
},
{0x01dd0000,
"PMU4: WL normalized pos : ........................|........................\n"
},
{0x01de0000,
"PMU3: Exiting write leveling mode\n"
},
{0x01df0001,
"PMU3: got %d for cl in load_wrlvl_acsm\n"
},
{0x01e00003,
"PMU1: In write_level_coarse() csn=%d dimm=%d pstate=%d\n"
},
{0x01e10003,
"PMU3: left eye edge search db:%d ln:%d dly:0x%x\n"
},
{0x01e20003,
"PMU3: right eye edge search db:%d ln:%d dly:0x%x\n"
},
{0x01e30004,
"PMU3: eye center db:%d ln:%d dly:0x%x (maxdq:%x)\n"
},
{0x01e40003,
"PMU3: Wrote to TxDqDly db:%d ln:%d dly:0x%x\n"
},
{0x01e50003,
"PMU3: Wrote to TxDqDly db:%d ln:%d dly:0x%x\n"
},
{0x01e60002,
"PMU3: Coarse write leveling dbyte%2d is still failing for TxDqsDly=0x%04x\n"
},
{0x01e70002,
"PMU4: Coarse write leveling iteration %d saw %d data miscompares across the entire phy\n"
},
{0x01e80000,
"PMU: Error: Failed write leveling coarse\n"
},
{0x01e90001,
"PMU3: got %d for cl in load_wrlvl_acsm\n"
},
{0x01ea0003,
"PMU3: In write_level_coarse() csn=%d dimm=%d pstate=%d\n"
},
{0x01eb0003,
"PMU3: left eye edge search db:%d ln:%d dly:0x%x\n"
},
{0x01ec0003,
"PMU3: right eye edge search db: %d ln: %d dly: 0x%x\n"
},
{0x01ed0004,
"PMU3: eye center db: %d ln: %d dly: 0x%x (maxdq: 0x%x)\n"
},
{0x01ee0003,
"PMU3: Wrote to TxDqDly db: %d ln: %d dly: 0x%x\n"
},
{0x01ef0003,
"PMU3: Wrote to TxDqDly db: %d ln: %d dly: 0x%x\n"
},
{0x01f00002,
"PMU3: Coarse write leveling nibble%2d is still failing for TxDqsDly=0x%04x\n"
},
{0x01f10002,
"PMU4: Coarse write leveling iteration %d saw %d data miscompares across the entire phy\n"
},
{0x01f20000,
"PMU: Error: Failed write leveling coarse\n"
},
{0x01f30000,
"PMU4: WL normalized pos : ................................|................................\n"
},
{0x01f40009,
"PMU4: WL margin for nib %2d: %08x%08x%08x%08x%08x%08x%08x%08x\n"
},
{0x01f50000,
"PMU4: WL normalized pos : ................................|................................\n"
},
{0x01f60001,
"PMU8: Adjust margin after WL coarse to be larger than %d\n"
},
{0x01f70001,
"PMU: Error: All margin after write leveling coarse are smaller than minMargin %d\n"
},
{0x01f80002,
"PMU8: Decrement nib %d TxDqsDly by %d fine step\n"
},
{0x01f90003,
"PMU3: In write_level_coarse() csn=%d dimm=%d pstate=%d\n"
},
{0x01fa0005,
"PMU2: Write level: dbyte %d nib%d dq/dmbi %2d dqsfine 0x%04x dqDly 0x%04x\n"
},
{0x01fb0002,
"PMU3: Coarse write leveling nibble%2d is still failing for TxDqsDly=0x%04x\n"
},
{0x01fc0002,
"PMU4: Coarse write leveling iteration %d saw %d data miscompares across the entire phy\n"
},
{0x01fd0000,
"PMU: Error: Failed write leveling coarse\n"
},
{0x01fe0001,
"PMU3: DWL delay = %d\n"
},
{0x01ff0003,
"PMU3: Errcnt for DWL nib %2d delay = %2d is %d\n"
},
{0x02000002,
"PMU3: DWL nibble %d sampled a 1 at delay %d\n"
},
{0x02010003,
"PMU3: DWL nibble %d passed at delay %d. Rising edge was at %d\n"
},
{0x02020000,
"PMU2: DWL did nto find a rising edge of memclk for all nibbles. Failing nibbles assumed to have rising edge close to fine delay 63\n"
},
{0x02030002,
"PMU2: Rising edge found in alias window, setting wrlvlDly for nibble %d = %d\n"
},
{0x02040002,
"PMU: Error: Failed DWL for nib %d with %d one\n"
},
{0x02050003,
"PMU2: Rising edge not found in alias window with %d one, leaving wrlvlDly for nibble %d = %d\n"
},
{0x04000000,
"PMU: Error:Mailbox Buffer Overflowed.\n"
},
{0x04010000,
"PMU: Error:Mailbox Buffer Overflowed.\n"
},
{0x04020000,
"PMU: ***** Assertion Error - terminating *****\n"
},
{0x04030002,
"PMU1: swapByte db %d by %d\n"
},
{0x04040003,
"PMU3: get_cmd_dly max(%d ps, %d memclk) = %d\n"
},
{0x04050002,
"PMU0: Write CSR 0x%06x 0x%04x\n"
},
{0x04060002,
"PMU0: hwt_init_ppgc_prbs(): Polynomial: %x, Deg: %d\n"
},
{0x04070001,
"PMU: Error: acsm_set_cmd to non existent instruction address %d\n"
},
{0x04080001,
"PMU: Error: acsm_set_cmd with unknown ddr cmd 0x%x\n"
},
{0x0409000c,
"PMU1: acsm_addr %02x, acsm_flgs %04x, ddr_cmd %02x, cmd_dly %02x, ddr_addr %04x, ddr_bnk %02x, ddr_cs %02x, cmd_rcnt %02x, AcsmSeq0/1/2/3 %04x %04x %04x %04x\n"
},
{0x040a0000,
"PMU: Error: Polling on ACSM done failed to complete in acsm_poll_done()...\n"
},
{0x040b0000,
"PMU1: acsm RUN\n"
},
{0x040c0000,
"PMU1: acsm STOPPED\n"
},
{0x040d0002,
"PMU1: acsm_init: acsm_mode %04x mxrdlat %04x\n"
},
{0x040e0002,
"PMU: Error: setAcsmCLCWL: cl and cwl must be each >= 2 and 5, resp. CL=%d CWL=%d\n"
},
{0x040f0002,
"PMU: Error: setAcsmCLCWL: cl and cwl must be each >= 5. CL=%d CWL=%d\n"
},
{0x04100002,
"PMU1: setAcsmCLCWL: CASL %04d WCASL %04d\n"
},
{0x04110001,
"PMU: Error: Reserved value of register F0RC0F found in message block: 0x%04x\n"
},
{0x04120001,
"PMU3: Written MRS to CS=0x%02x\n"
},
{0x04130001,
"PMU3: Written MRS to CS=0x%02x\n"
},
{0x04140000,
"PMU3: Entering Boot Freq Mode.\n"
},
{0x04150001,
"PMU: Error: Boot clock divider setting of %d is too small\n"
},
{0x04160000,
"PMU3: Exiting Boot Freq Mode.\n"
},
{0x04170002,
"PMU3: Writing MR%d OP=%x\n"
},
{0x04180000,
"PMU: Error: Delay too large in slomo\n"
},
{0x04190001,
"PMU3: Written MRS to CS=0x%02x\n"
},
{0x041a0000,
"PMU3: Enable Channel A\n"
},
{0x041b0000,
"PMU3: Enable Channel B\n"
},
{0x041c0000,
"PMU3: Enable All Channels\n"
},
{0x041d0002,
"PMU2: Use PDA mode to set MR%d with value 0x%02x\n"
},
{0x041e0001,
"PMU3: Written Vref with PDA to CS=0x%02x\n"
},
{0x041f0000,
"PMU1: start_cal: DEBUG: setting CalRun to 1\n"
},
{0x04200000,
"PMU1: start_cal: DEBUG: setting CalRun to 0\n"
},
{0x04210001,
"PMU1: lock_pll_dll: DEBUG: pstate = %d\n"
},
{0x04220001,
"PMU1: lock_pll_dll: DEBUG: dfifreqxlat_pstate = %d\n"
},
{0x04230001,
"PMU1: lock_pll_dll: DEBUG: pllbypass = %d\n"
},
{0x04240001,
"PMU3: SaveLcdlSeed: Saving seed %d\n"
},
{0x04250000,
"PMU1: in phy_defaults()\n"
},
{0x04260003,
"PMU3: ACXConf:%d MaxNumDbytes:%d NumDfi:%d\n"
},
{0x04270005,
"PMU1: setAltAcsmCLCWL setting cl=%d cwl=%d\n"
},
};
#endif /* DEBUG */
#endif
/*
* Copyright 2021 NXP
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <common/debug.h>
#include "csr.h"
#include <ddr.h>
#include "ddr4fw.h"
#include <drivers/delay_timer.h>
#ifdef NXP_WARM_BOOT
#include <fspi_api.h>
#endif
#include "input.h"
#include <lib/mmio.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#ifdef DDR_PHY_DEBUG
#include "messages.h"
#endif
#ifdef NXP_WARM_BOOT
#include "phy.h"
#endif
#include "pie.h"
#define TIMEOUTDEFAULT 500
#define MAP_PHY_ADDR(pstate, n, instance, offset, c) \
((((pstate * n) + instance + c) << 12) + offset)
static uint32_t map_phy_addr_space(uint32_t addr)
{
/* 23 bit addressing */
uint32_t pstate = (addr & U(0x700000)) >> 20U; /* bit 22:20 */
uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */
uint32_t instance = (addr & U(0x00f000)) >> 12U; /* bit 15:12 */
uint32_t offset = (addr & U(0x000fff)); /* bit 11:0 */
switch (block_type) {
case 0x0: /* 0x0 : ANIB */
return MAP_PHY_ADDR(pstate, 12, instance, offset, 0);
case 0x1: /* 0x1 : DBYTE */
return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30);
case 0x2: /* 0x2 : MASTER */
return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58);
case 0x4: /* 0x4 : ACSM */
return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c);
case 0x5: /* 0x5 : μCTL Memory */
return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60);
case 0x7: /* 0x7 : PPGC */
return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68);
case 0x9: /* 0x9 : INITENG */
return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69);
case 0xc: /* 0xC : DRTUB */
return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d);
case 0xd: /* 0xD : APB Only */
return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e);
default:
printf("ERR: Invalid block_type = 0x%x\n", block_type);
return 0;
}
}
static inline uint16_t *phy_io_addr(void *phy, uint32_t addr)
{
return phy + (map_phy_addr_space(addr) << 2);
}
static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data)
{
mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data);
#ifdef DEBUG_PHY_IO
printf("0x%06x,0x%x\n", addr, data);
#endif
}
static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr)
{
uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr));
#ifdef DEBUG_PHY_IO
printf("R: 0x%06x,0x%x\n", addr, reg);
#endif
return reg;
}
#ifdef NXP_APPLY_MAX_CDD
#define CDD_VAL_READ_ADDR (0x054012)
#define CDD_DATA_LEN (60)
static void read_phy_reg(uint16_t *phy, uint32_t addr,
uint16_t *buf, uint32_t len)
{
uint32_t i = 0U;
for (i = 0U; i < len/2; i++) {
buf[i] = phy_io_read16(phy, (addr + i));
}
}
static uint32_t findrank(uint32_t cs_in_use)
{
uint32_t val = 0U;
switch (cs_in_use) {
case U(0xf):
val = 4U;
break;
case U(0x3):
val = 2U;
break;
case U(0x1):
val = 1U;
break;
default:
printf("Error - Invalid cs_in_use value\n");
}
return val;
}
static uint8_t findmax(uint8_t *buf, uint32_t len)
{
uint8_t max = 0U;
uint32_t i = 0U;
for (i = 0U; i < len; i++) {
if (buf[i] > max) {
max = buf[i];
}
}
return max;
}
static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq,
uint32_t *tcfg0, uint32_t *tcfg4)
{
uint8_t cdd[CDD_DATA_LEN+4] = {0U};
uint32_t i, val = 0U;
uint16_t *phy;
uint8_t buf[16] = {U(0x0)};
uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U;
uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U;
uint8_t tmp = U(0x0);
uint8_t *c = NULL;
for (i = 0U; i < NUM_OF_DDRC; i++) {
phy = phy_ptr[i];
if (phy == NULL) {
continue;
}
phy_io_write16(phy, t_apbonly |
csr_micro_cont_mux_sel_addr, U(0x0));
read_phy_reg(phy, CDD_VAL_READ_ADDR,
(uint16_t *)&cdd, CDD_DATA_LEN);
phy_io_write16(phy, t_apbonly |
csr_micro_cont_mux_sel_addr, U(0x1));
/* CDD values and address
*
* 0x054012 0x24 cdd[0] CDD[X][X]
* 0x054012 0x25 cdd[1] RR[3][2]
* 0x054013 0x26 cdd[2] RR[3][1]
* 0x054013 0x27 cdd[3] RR[3][0]
* 0x054014 0x28 cdd[4] RR[2][3]
* 0x054014 0x29 cdd[5] RR[2][1]
* 0x054015 0x2a cdd[6] RR[2][0]
* 0x054015 0x2b cdd[7] RR[1][3]
* 0x054016 0x2c cdd[8] RR[1][2]
* 0x054016 0x2d cdd[9] RR[1][0]
* 0x054017 0x2e cdd[10] RR[0][3]
* 0x054017 0x2f cdd[11] RR[0][2]
* 0x054018 0x30 cdd[12] RR[0][1]
* 0x054018 0x31 cdd[13] WW[3][2]
* 0x054019 0x32 cdd[14] WW[3][1]
* 0x054019 0x33 cdd[15] WW[3][0]
* 0x05401a 0x34 cdd[16] WW[2][3]
* 0x05401a 0x35 cdd[17] WW[2][1]
* 0x05401b 0x36 cdd[18] WW[2][0]
* 0x05401b 0x37 cdd[19] WW[1][3]
* 0x05401c 0x38 cdd[20] WW[1][2]
* 0x05401c 0x39 cdd[21] WW[1][0]
* 0x05401d 0x3a cdd[22] WW[0][3]
* 0x05401d 0x3b cdd[23] WW[0][2]
* 0x05401e 0x3c cdd[24] WW[0][1]
* 0x05401e 0x3d cdd[25] RW[3][3]
* 0x05401f 0x3e cdd[26] RW[3][2]
* 0x05401f 0x3f cdd[27] RW[3][1]
* 0x054020 0x40 cdd[28] RW[3][0]
* 0x054020 0x41 cdd[29] RW[2][3]
* 0x054021 0x42 cdd[30] RW[2][2]
* 0x054021 0x43 cdd[31] RW[2][1]
* 0x054022 0x44 cdd[32] RW[2][0]
* 0x054022 0x45 cdd[33] RW[1][3]
* 0x054023 0x46 cdd[34] RW[1][2]
* 0x054023 0x47 cdd[35] RW[1][1]
* 0x054024 0x48 cdd[36] RW[1][0]
* 0x054024 0x49 cdd[37] RW[0][3]
* 0x054025 0x4a cdd[38] RW[0][2]
* 0x054025 0x4b cdd[39] RW[0][1]
* 0x054026 0x4c cdd[40] RW[0][0]
* 0x054026 0x4d cdd[41] WR[3][3]
* 0x054027 0x4e cdd[42] WR[3][2]
* 0x054027 0x4f cdd[43] WR[3][1]
* 0x054028 0x50 cdd[44] WR[3][0]
* 0x054028 0x51 cdd[45] WR[2][3]
* 0x054029 0x52 cdd[46] WR[2][2]
* 0x054029 0x53 cdd[47] WR[2][1]
* 0x05402a 0x54 cdd[48] WR[2][0]
* 0x05402a 0x55 cdd[49] WR[1][3]
* 0x05402b 0x56 cdd[50] WR[1][2]
* 0x05402b 0x57 cdd[51] WR[1][1]
* 0x05402c 0x58 cdd[52] WR[1][0]
* 0x05402c 0x59 cdd[53] WR[0][3]
* 0x05402d 0x5a cdd[54] WR[0][2]
* 0x05402d 0x5b cdd[55] WR[0][1]
* 0x05402e 0x5c cdd[56] WR[0][0]
* 0x05402e 0x5d cdd[57] CDD[Y][Y]
*/
switch (rank) {
case 1U:
tmp = rwmax;
rwmax = cdd[40];
if (tmp > rwmax) {
rwmax = tmp;
}
tmp = wrmax;
wrmax = cdd[56];
if (tmp > wrmax) {
wrmax = tmp;
}
break;
case 2U:
buf[0] = cdd[12];
buf[1] = cdd[9];
tmp = rrmax;
rrmax = findmax(buf, 2U);
if (tmp > rrmax) {
rrmax = tmp;
}
buf[0] = cdd[24];
buf[1] = cdd[21];
tmp = wwmax;
wwmax = findmax(buf, 2U);
if (tmp > wwmax) {
wwmax = tmp;
}
buf[0] = cdd[40];
buf[1] = cdd[39];
buf[2] = cdd[36];
buf[3] = cdd[35];
tmp = rwmax;
rwmax = findmax(buf, 4U);
if (tmp > rwmax) {
rwmax = tmp;
}
buf[0] = cdd[56];
buf[1] = cdd[55];
buf[2] = cdd[52];
buf[3] = cdd[51];
tmp = wrmax;
wrmax = findmax(buf, 4U);
if (tmp > wrmax) {
wrmax = tmp;
}
break;
case 4U:
tmp = rrmax;
c = &cdd[1];
rrmax = findmax(c, 12U);
if (tmp > rrmax) {
rrmax = tmp;
}
tmp = wwmax;
c = &cdd[13];
wwmax = findmax(c, 12U);
if (tmp > wwmax) {
wwmax = tmp;
}
tmp = rwmax;
c = &cdd[25];
rwmax = findmax(c, 16U);
if (tmp > rwmax) {
rwmax = tmp;
}
tmp = wrmax;
c = &cdd[41];
wrmax = findmax(c, 16U);
if (tmp > wrmax) {
wrmax = tmp;
}
break;
}
}
rrmax += 3U;
wwmax += 4U;
if (wwmax > 7U) {
wwmax = 7U;
}
if (rrmax > 7U) {
rrmax = 7U;
}
if (wrmax > U(0xf)) {
wrmax = 0U;
}
if (rwmax > U(0x7)) {
rwmax = U(0x7);
}
val = *tcfg0;
tww = (val >> 24U) & U(0x3);
trr = (val >> 26U) & U(0x3);
twr = (val >> 28U) & U(0x3);
trw = (val >> 30U) & U(0x3);
val = *tcfg4;
tww = tww | (((val >> 8U) & U(0x1)) << 2U);
trr = trr | (((val >> 10U) & U(0x1)) << 2U);
twr = twr | (((val >> 12U) & U(0x1)) << 2U);
trw = trw | (((val >> 14U) & U(0x3)) << 2U);
if (trr > rrmax) {
rrmax = trr;
}
if (tww > wwmax) {
wwmax = tww;
}
if (trw > rwmax) {
rwmax = trw;
}
if (twr > wrmax) {
wrmax = twr;
}
debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n",
rrmax, wwmax, rwmax, wrmax);
val = ((wwmax & U(0x3)) << 24U)
| ((rrmax & U(0x3)) << 26U)
| ((wrmax & U(0x3)) << 28U)
| ((rwmax & U(0x3)) << 30U);
*tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val);
val = (((wwmax >> 2U) & U(0x1)) << 8U)
| (((rrmax >> 2U) & U(0x1)) << 10U)
| (((wrmax >> 2U) & U(0x1)) << 12U)
| (((rwmax >> 2U) & U(0x3)) << 14U);
*tcfg4 = (*tcfg4 & U(0xffff00ff)) | val;
}
#endif
#ifdef NXP_WARM_BOOT
int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store,
uint32_t num_of_phy, int train2d)
{
uint16_t *phy = NULL, value = 0x0;
uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
int i = 0, j = 0, ret = -EINVAL;
ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE);
if (ret != 0) {
return -EINVAL;
}
for (j = 0; j < num_of_phy; j++) {
/* Save training values of all PHYs */
phy = phy_ptr[j];
size = sizeof(training_1D_values);
num_of_regs = ARRAY_SIZE(training_1D_values);
/* Enable access to the internal CSRs */
phy_io_write16(phy, t_apbonly |
csr_micro_cont_mux_sel_addr, 0x0);
/* Enable clocks in case they were disabled. */
phy_io_write16(phy, t_drtub |
csr_ucclk_hclk_enables_addr, 0x3);
if (train2d != 0) {
/* Address to store training values is
* to be appended for next PHY
*/
phy_store = address_to_store + (j *
(sizeof(training_1D_values) +
sizeof(training_2D_values)));
} else {
phy_store = address_to_store + (j *
(sizeof(training_1D_values)));
}
debug("Saving 1D Training reg val at: %d\n", phy_store);
for (i = 0; i < num_of_regs; i++) {
value = phy_io_read16(phy, training_1D_values[i].addr);
#ifdef DEBUG_WARM_RESET
debug("%d. Reg: %x, value: %x PHY: %p\n", i,
training_1D_values[i].addr, value,
phy_io_addr(phy,
training_1D_values[i].addr));
#endif
training_1D_values[i].data = value;
}
/* Storing 1D training values on flash */
ret = xspi_write(phy_store, (void *)training_1D_values, size);
if (train2d != 0) {
phy_store = phy_store+size;
size = sizeof(training_2D_values);
num_of_regs = ARRAY_SIZE(training_2D_values);
debug("Saving 2D Training reg val at:%d\n", phy_store);
for (i = 0; i < num_of_regs; i++) {
value = phy_io_read16(phy,
training_2D_values[i].addr);
training_2D_values[i].data = value;
#ifdef DEBUG_WARM_RESET
debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n",
i, training_2D_values[i].addr,
value, phy_io_addr(phy,
training_2D_values[i].addr));
#endif
}
/* Storing 2D training values on flash */
ret = xspi_write(phy_store, training_2D_values,
size);
}
/* Disable clocks in case they were disabled. */
phy_io_write16(phy, t_drtub |
csr_ucclk_hclk_enables_addr, 0x0);
/* Disable access to the internal CSRs */
phy_io_write16(phy, t_apbonly |
csr_micro_cont_mux_sel_addr, 0x1);
}
if (ret != 0) {
return -EINVAL;
}
return 0;
}
int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore,
uint32_t num_of_phy, int train2d)
{
uint16_t *phy = NULL;
uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
int i = 0, j = 0, ret = -EINVAL;
debug("Restoring Training register values\n");
for (j = 0; j < num_of_phy; j++) {
phy = phy_ptr[j];
size = sizeof(training_1D_values);
num_of_regs = ARRAY_SIZE(training_1D_values);
if (train2d != 0) {
/* The address to restore training values is
* to be appended for next PHY
*/
phy_store = address_to_restore + (j *
(sizeof(training_1D_values) +
sizeof(training_2D_values)));
} else {
phy_store = address_to_restore + (j *
(sizeof(training_1D_values)));
}
/* Enable access to the internal CSRs */
phy_io_write16(phy, t_apbonly |
csr_micro_cont_mux_sel_addr, 0x0);
/* Enable clocks in case they were disabled. */
phy_io_write16(phy, t_drtub |
csr_ucclk_hclk_enables_addr, 0x3);
/* Reading 1D training values from flash*/
ret = xspi_read(phy_store, (uint32_t *)training_1D_values,
size);
debug("Restoring 1D Training reg val at:%08x\n", phy_store);
for (i = 0; i < num_of_regs; i++) {
phy_io_write16(phy, training_1D_values[i].addr,
training_1D_values[i].data);
#ifdef DEBUG_WARM_RESET
debug("%d. Reg: %x, value: %x PHY: %p\n", i,
training_1D_values[i].addr,
training_1D_values[i].data,
phy_io_addr(phy,
training_1D_values[i].addr));
#endif
}
if (train2d != 0) {
phy_store = phy_store + size;
size = sizeof(training_2D_values);
num_of_regs = ARRAY_SIZE(training_2D_values);
/* Reading 2D training values from flash */
ret = xspi_read(phy_store,
(uint32_t *)training_2D_values, size);
debug("Restoring 2D Training reg val at:%08x\n",
phy_store);
for (i = 0; i < num_of_regs; i++) {
phy_io_write16(phy, training_2D_values[i].addr,
training_2D_values[i].data);
#ifdef DEBUG_WARM_RESET
debug("%d. Reg: %x, value: %x PHY: %p\n", i,
training_2D_values[i].addr,
training_2D_values[i].data,
phy_io_addr(phy,
training_1D_values[i].addr));
#endif
}
}
/* Disable clocks in case they were disabled. */
phy_io_write16(phy, t_drtub |
csr_ucclk_hclk_enables_addr, 0x0);
/* Disable access to the internal CSRs */
phy_io_write16(phy, t_apbonly |
csr_micro_cont_mux_sel_addr, 0x1);
}
if (ret != 0) {
return -EINVAL;
}
return 0;
}
#endif
static void load_pieimage(uint16_t *phy,
enum dimm_types dimm_type)
{
int i;
int size;
const struct pie *image = NULL;
switch (dimm_type) {
case UDIMM:
case SODIMM:
case NODIMM:
image = pie_udimm;
size = ARRAY_SIZE(pie_udimm);
break;
case RDIMM:
image = pie_rdimm;
size = ARRAY_SIZE(pie_rdimm);
break;
case LRDIMM:
image = pie_lrdimm;
size = ARRAY_SIZE(pie_lrdimm);
break;
default:
printf("Unsupported DIMM type\n");
break;
}
if (image != NULL) {
for (i = 0; i < size; i++)
phy_io_write16(phy, image[i].addr, image[i].data);
}
}
static void prog_acsm_playback(uint16_t *phy,
const struct input *input, const void *msg)
{
int vec;
const struct ddr4r1d *msg_blk;
uint16_t acsmplayback[2][3];
uint32_t f0rc0a;
uint32_t f0rc3x;
uint32_t f0rc5x;
if (input->basic.dimm_type != RDIMM) {
return;
}
msg_blk = msg;
f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0);
f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300);
f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500);
acsmplayback[0][0] = U(0x3ff) & f0rc0a;
acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U;
acsmplayback[0][1] = U(0x3ff) & f0rc3x;
acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U;
acsmplayback[0][2] = U(0x3ff) & f0rc5x;
acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U;
for (vec = 0; vec < 3; vec++) {
phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr +
(vec << 1)), acsmplayback[0][vec]);
phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr +
(vec << 1)), acsmplayback[1][vec]);
}
}
static void prog_acsm_ctr(uint16_t *phy,
const struct input *input)
{
if (input->basic.dimm_type != RDIMM) {
return;
}
phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr,
0xf << csr_acsm_cke_enb_lsb);
phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr,
csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask);
}
static void prog_cal_rate_run(uint16_t *phy,
const struct input *input)
{
int cal_rate;
int cal_interval;
int cal_once;
uint32_t addr;
cal_interval = input->adv.cal_interval;
cal_once = input->adv.cal_once;
cal_rate = 0x1 << csr_cal_run_lsb |
cal_once << csr_cal_once_lsb |
cal_interval << csr_cal_interval_lsb;
addr = t_master | csr_cal_rate_addr;
phy_io_write16(phy, addr, cal_rate);
}
static void prog_seq0bdly0(uint16_t *phy,
const struct input *input)
{
int ps_count[4];
int frq;
uint32_t addr;
int lower_freq_opt = 0;
__unused const soc_info_t *soc_info;
frq = input->basic.frequency >> 1;
ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/
if (input->basic.frequency < 400) {
lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3;
} else if (input->basic.frequency < 533) {
lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11;
}
/* 1.0 * frq / 4 - lower_freq */
ps_count[1] = (frq >> 2) - lower_freq_opt;
ps_count[2] = (frq << 1) + (frq >> 1); /* 10.0 * frq / 4 */
#ifdef DDR_PLL_FIX
soc_info = get_soc_info();
if (soc_info->maj_ver == 1) {
ps_count[0] = 0x520; /* seq0bdly0 */
ps_count[1] = 0xa41; /* seq0bdly1 */
ps_count[2] = 0x668a; /* seq0bdly2 */
}
#endif
if (frq > 266) {
ps_count[3] = 44;
} else if (frq > 200) {
ps_count[3] = 33;
} else {
ps_count[3] = 16;
}
addr = t_master | csr_seq0bdly0_addr;
phy_io_write16(phy, addr, ps_count[0]);
debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr));
addr = t_master | csr_seq0bdly1_addr;
phy_io_write16(phy, addr, ps_count[1]);
debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr));
addr = t_master | csr_seq0bdly2_addr;
phy_io_write16(phy, addr, ps_count[2]);
debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr));
addr = t_master | csr_seq0bdly3_addr;
phy_io_write16(phy, addr, ps_count[3]);
debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr));
}
/* Only RDIMM requires msg_blk */
static void i_load_pie(uint16_t **phy_ptr,
const struct input *input,
const void *msg)
{
int i;
uint16_t *phy;
for (i = 0; i < NUM_OF_DDRC; i++) {
phy = phy_ptr[i];
if (phy == NULL) {
continue;
}
phy_io_write16(phy,
t_apbonly | csr_micro_cont_mux_sel_addr,
0U);
load_pieimage(phy, input->basic.dimm_type);
prog_seq0bdly0(phy, input);
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr,
U(0x0000));
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr,
U(0x0173));
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr,
U(0x0060));
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr,
U(0x6110));
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr,
U(0x2152));
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr,
U(0xdfbd));
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr,
input->basic.dimm_type == RDIMM &&
input->adv.phy_gen2_umctl_opt == 1U ?
U(0x6000) : U(0xffff));
phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr,
U(0x6152));
prog_acsm_playback(phy, input, msg); /* rdimm */
prog_acsm_ctr(phy, input); /* rdimm */
phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1));
prog_cal_rate_run(phy, input);
phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr,
input->basic.dimm_type == RDIMM ? U(0x2) : 0U);
phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U);
}
}
static void phy_gen2_init_input(struct input *input)
{
int i;
input->adv.dram_byte_swap = 0;
input->adv.ext_cal_res_val = 0;
input->adv.tx_slew_rise_dq = 0xf;
input->adv.tx_slew_fall_dq = 0xf;
input->adv.tx_slew_rise_ac = 0xf;
input->adv.tx_slew_fall_ac = 0xf;
input->adv.mem_alert_en = 0;
input->adv.mem_alert_puimp = 5;
input->adv.mem_alert_vref_level = 0x29;
input->adv.mem_alert_sync_bypass = 0;
input->adv.cal_interval = 0x9;
input->adv.cal_once = 0;
input->adv.dis_dyn_adr_tri = 0;
input->adv.is2ttiming = 0;
input->adv.d4rx_preamble_length = 0;
input->adv.d4tx_preamble_length = 0;
for (i = 0; i < 7; i++) {
debug("mr[%d] = 0x%x\n", i, input->mr[i]);
}
debug("input->cs_d0 = 0x%x\n", input->cs_d0);
debug("input->cs_d1 = 0x%x\n", input->cs_d1);
debug("input->mirror = 0x%x\n", input->mirror);
debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance);
debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance);
debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance);
for (i = 0; i < 4; i++) {
debug("odt[%d] = 0x%x\n", i, input->odt[i]);
}
if (input->basic.dimm_type == RDIMM) {
for (i = 0; i < 16; i++) {
debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]);
}
debug("input->rcw3x = 0x%x\n", input->rcw3x);
}
}
/*
* All protocols share the same base structure of message block.
* RDIMM and LRDIMM have more entries defined than UDIMM.
* Create message blocks for 1D and 2D training.
* Update len with message block size.
*/
static int phy_gen2_msg_init(void *msg_1d,
void *msg_2d,
const struct input *input)
{
struct ddr4u1d *msg_blk = msg_1d;
struct ddr4u2d *msg_blk_2d = msg_2d;
struct ddr4r1d *msg_blk_r;
struct ddr4lr1d *msg_blk_lr;
switch (input->basic.dimm_type) {
case UDIMM:
case SODIMM:
case NODIMM:
msg_blk->dram_type = U(0x2);
break;
case RDIMM:
msg_blk->dram_type = U(0x4);
break;
case LRDIMM:
msg_blk->dram_type = U(0x5);
break;
default:
ERROR("Unsupported DIMM type\n");
return -EINVAL;
}
msg_blk->pstate = 0U;
/*Enable quickRd2D, a substage of read deskew, to 1D training.*/
msg_blk->reserved00 = U(0x20);
/*Enable High-Effort WrDQ1D.*/
msg_blk->reserved00 |= U(0x40);
/* Enable 1D extra effort training.*/
msg_blk->reserved1c[3] = U(0x3);
if (input->basic.dimm_type == LRDIMM) {
msg_blk->sequence_ctrl = U(0x3f1f);
} else {
msg_blk->sequence_ctrl = U(0x031f);
}
msg_blk->phy_config_override = 0U;
#ifdef DDR_PHY_DEBUG
msg_blk->hdt_ctrl = U(0x5);
#else
msg_blk->hdt_ctrl = U(0xc9);
#endif
msg_blk->msg_misc = U(0x0);
msg_blk->dfimrlmargin = U(0x1);
msg_blk->phy_vref = input->vref ? input->vref : U(0x61);
msg_blk->cs_present = input->cs_d0 | input->cs_d1;
msg_blk->cs_present_d0 = input->cs_d0;
msg_blk->cs_present_d1 = input->cs_d1;
if (input->mirror != 0) {
msg_blk->addr_mirror = U(0x0a); /* odd CS are mirrored */
}
msg_blk->share2dvref_result = 1U;
msg_blk->acsm_odt_ctrl0 = input->odt[0];
msg_blk->acsm_odt_ctrl1 = input->odt[1];
msg_blk->acsm_odt_ctrl2 = input->odt[2];
msg_blk->acsm_odt_ctrl3 = input->odt[3];
msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 +
input->basic.num_active_dbyte_dfi1) * 8;
msg_blk->x16present = input->basic.dram_data_width == 0x10 ?
msg_blk->cs_present : 0;
msg_blk->d4misc = U(0x1);
msg_blk->cs_setup_gddec = U(0x1);
msg_blk->rtt_nom_wr_park0 = 0U;
msg_blk->rtt_nom_wr_park1 = 0U;
msg_blk->rtt_nom_wr_park2 = 0U;
msg_blk->rtt_nom_wr_park3 = 0U;
msg_blk->rtt_nom_wr_park4 = 0U;
msg_blk->rtt_nom_wr_park5 = 0U;
msg_blk->rtt_nom_wr_park6 = 0U;
msg_blk->rtt_nom_wr_park7 = 0U;
msg_blk->mr0 = input->mr[0];
msg_blk->mr1 = input->mr[1];
msg_blk->mr2 = input->mr[2];
msg_blk->mr3 = input->mr[3];
msg_blk->mr4 = input->mr[4];
msg_blk->mr5 = input->mr[5];
msg_blk->mr6 = input->mr[6];
if ((msg_blk->mr4 & U(0x1c0)) != 0U) {
ERROR("Setting DRAM CAL mode is not supported\n");
}
msg_blk->alt_cas_l = 0U;
msg_blk->alt_wcas_l = 0U;
msg_blk->dramfreq = input->basic.frequency * 2U;
msg_blk->pll_bypass_en = input->basic.pll_bypass;
msg_blk->dfi_freq_ratio = input->basic.dfi_freq_ratio == 0U ? 1U :
input->basic.dfi_freq_ratio == 1U ? 2U :
4U;
msg_blk->bpznres_val = input->adv.ext_cal_res_val;
msg_blk->disabled_dbyte = 0U;
debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type);
debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl);
debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg);
debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present);
debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq);
debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en);
debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio);
debug("msg_blk->phy_odt_impedance = 0x%x\n",
msg_blk->phy_odt_impedance);
debug("msg_blk->phy_drv_impedance = 0x%x\n",
msg_blk->phy_drv_impedance);
debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val);
debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs);
debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0);
debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1);
debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2);
debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3);
/* RDIMM only */
if (input->basic.dimm_type == RDIMM ||
input->basic.dimm_type == LRDIMM) {
msg_blk_r = (struct ddr4r1d *)msg_blk;
if (msg_blk_r->cs_present_d0 != 0U) {
msg_blk_r->f0rc00_d0 = input->rcw[0];
msg_blk_r->f0rc01_d0 = input->rcw[1];
msg_blk_r->f0rc02_d0 = input->rcw[2];
msg_blk_r->f0rc03_d0 = input->rcw[3];
msg_blk_r->f0rc04_d0 = input->rcw[4];
msg_blk_r->f0rc05_d0 = input->rcw[5];
msg_blk_r->f0rc06_d0 = input->rcw[6];
msg_blk_r->f0rc07_d0 = input->rcw[7];
msg_blk_r->f0rc08_d0 = input->rcw[8];
msg_blk_r->f0rc09_d0 = input->rcw[9];
msg_blk_r->f0rc0a_d0 = input->rcw[10];
msg_blk_r->f0rc0b_d0 = input->rcw[11];
msg_blk_r->f0rc0c_d0 = input->rcw[12];
msg_blk_r->f0rc0d_d0 = input->rcw[13];
msg_blk_r->f0rc0e_d0 = input->rcw[14];
msg_blk_r->f0rc0f_d0 = input->rcw[15];
msg_blk_r->f0rc3x_d0 = input->rcw3x;
}
if (msg_blk_r->cs_present_d1 != 0) {
msg_blk_r->f0rc00_d1 = input->rcw[0];
msg_blk_r->f0rc01_d1 = input->rcw[1];
msg_blk_r->f0rc02_d1 = input->rcw[2];
msg_blk_r->f0rc03_d1 = input->rcw[3];
msg_blk_r->f0rc04_d1 = input->rcw[4];
msg_blk_r->f0rc05_d1 = input->rcw[5];
msg_blk_r->f0rc06_d1 = input->rcw[6];
msg_blk_r->f0rc07_d1 = input->rcw[7];
msg_blk_r->f0rc08_d1 = input->rcw[8];
msg_blk_r->f0rc09_d1 = input->rcw[9];
msg_blk_r->f0rc0a_d1 = input->rcw[10];
msg_blk_r->f0rc0b_d1 = input->rcw[11];
msg_blk_r->f0rc0c_d1 = input->rcw[12];
msg_blk_r->f0rc0d_d1 = input->rcw[13];
msg_blk_r->f0rc0e_d1 = input->rcw[14];
msg_blk_r->f0rc0f_d1 = input->rcw[15];
msg_blk_r->f0rc3x_d1 = input->rcw3x;
}
if (input->basic.dimm_type == LRDIMM) {
msg_blk_lr = (struct ddr4lr1d *)msg_blk;
msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0;
msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1;
msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0;
msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1;
}
}
/* below is different for 1D and 2D message block */
if (input->basic.train2d != 0) {
memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d));
/*High-Effort WrDQ1D is applicable to 2D traning also*/
msg_blk_2d->reserved00 |= U(0x40);
msg_blk_2d->sequence_ctrl = U(0x0061);
msg_blk_2d->rx2d_train_opt = 0U;
msg_blk_2d->tx2d_train_opt = 0U;
msg_blk_2d->share2dvref_result = 1U;
msg_blk_2d->delay_weight2d = U(0x20);
msg_blk_2d->voltage_weight2d = U(0x80);
debug("rx2d_train_opt %d, tx2d_train_opt %d\n",
msg_blk_2d->rx2d_train_opt,
msg_blk_2d->tx2d_train_opt);
}
msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) ||
((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U
: input->adv.is2ttiming;
return 0;
}
static void prog_tx_pre_drv_mode(uint16_t *phy,
const struct input *input)
{
int lane, byte, b_addr, c_addr, p_addr;
int tx_slew_rate, tx_pre_p, tx_pre_n;
int tx_pre_drv_mode = 0x2;
uint32_t addr;
/* Program TxPreDrvMode with 0x2 */
/* FIXME: TxPreDrvMode depends on DramType? */
tx_pre_p = input->adv.tx_slew_rise_dq;
tx_pre_n = input->adv.tx_slew_fall_dq;
tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb |
tx_pre_p << csr_tx_pre_p_lsb |
tx_pre_n << csr_tx_pre_n_lsb;
p_addr = 0;
for (byte = 0; byte < input->basic.num_dbyte; byte++) {
c_addr = byte << 12;
for (lane = 0; lane <= 1; lane++) {
b_addr = lane << 8;
addr = p_addr | t_dbyte | c_addr | b_addr |
csr_tx_slew_rate_addr;
phy_io_write16(phy, addr, tx_slew_rate);
}
}
}
static void prog_atx_pre_drv_mode(uint16_t *phy,
const struct input *input)
{
int anib, c_addr;
int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode,
ck_anib_inst[2];
uint32_t addr;
atx_pre_n = input->adv.tx_slew_fall_ac;
atx_pre_p = input->adv.tx_slew_rise_ac;
if (input->basic.num_anib == 8) {
ck_anib_inst[0] = 1;
ck_anib_inst[1] = 1;
} else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 ||
input->basic.num_anib == 13) {
ck_anib_inst[0] = 4;
ck_anib_inst[1] = 5;
} else {
ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib);
return;
}
for (anib = 0; anib < input->basic.num_anib; anib++) {
c_addr = anib << 12;
if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) {
atx_pre_drv_mode = 0;
} else {
atx_pre_drv_mode = 3;
}
atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb |
atx_pre_n << csr_atx_pre_n_lsb |
atx_pre_p << csr_atx_pre_p_lsb;
addr = t_anib | c_addr | csr_atx_slew_rate_addr;
phy_io_write16(phy, addr, atx_slew_rate);
}
}
static void prog_enable_cs_multicast(uint16_t *phy,
const struct input *input)
{
uint32_t addr = t_master | csr_enable_cs_multicast_addr;
if (input->basic.dimm_type != RDIMM &&
input->basic.dimm_type != LRDIMM) {
return;
}
phy_io_write16(phy, addr, input->adv.cast_cs_to_cid);
}
static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy,
unsigned int ip_rev,
const struct input *input,
const struct ddr4lr1d *msg)
{
const struct ddr4lr1d *msg_blk;
uint16_t dfi_xxdestm0 = 0U;
uint16_t dfi_xxdestm1 = 0U;
uint16_t dfi_xxdestm2 = 0U;
uint16_t dfi_xxdestm3 = 0U;
uint16_t dfi_rd_data_cs_dest_map;
uint16_t dfi_wr_data_cs_dest_map;
__unused const soc_info_t *soc_info;
#ifdef ERRATA_DDR_A011396
/* Only apply to DDRC 5.05.00 */
soc_info = get_soc_info(NXP_DCFG_ADDR);
if ((soc_info->maj_ver == 1U) && (ip_rev == U(0x50500))) {
phy_io_write16(phy,
t_master | csr_dfi_rd_data_cs_dest_map_addr,
0U);
return;
}
#endif
msg_blk = msg;
switch (input->basic.dimm_type) {
case UDIMM:
case SODIMM:
case NODIMM:
if ((msg_blk->msg_misc & U(0x40)) != 0U) {
dfi_rd_data_cs_dest_map = U(0xa0);
dfi_wr_data_cs_dest_map = U(0xa0);
phy_io_write16(phy,
t_master | csr_dfi_rd_data_cs_dest_map_addr,
dfi_rd_data_cs_dest_map);
phy_io_write16(phy,
t_master | csr_dfi_wr_data_cs_dest_map_addr,
dfi_wr_data_cs_dest_map);
}
break;
case LRDIMM:
if (msg->cs_present_d1 != 0U) {
dfi_xxdestm2 = 1U;
dfi_xxdestm3 = 1U;
}
dfi_rd_data_cs_dest_map =
dfi_xxdestm0 << csr_dfi_rd_destm0_lsb |
dfi_xxdestm1 << csr_dfi_rd_destm1_lsb |
dfi_xxdestm2 << csr_dfi_rd_destm2_lsb |
dfi_xxdestm3 << csr_dfi_rd_destm3_lsb;
dfi_wr_data_cs_dest_map =
dfi_xxdestm0 << csr_dfi_wr_destm0_lsb |
dfi_xxdestm1 << csr_dfi_wr_destm1_lsb |
dfi_xxdestm2 << csr_dfi_wr_destm2_lsb |
dfi_xxdestm3 << csr_dfi_wr_destm3_lsb;
phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr,
dfi_rd_data_cs_dest_map);
phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr,
dfi_wr_data_cs_dest_map);
break;
default:
break;
}
}
static void prog_pll_ctrl(uint16_t *phy,
const struct input *input)
{
uint32_t addr;
int pll_ctrl1 = 0x21; /* 000100001b */
int pll_ctrl4 = 0x17f; /* 101111111b */
int pll_test_mode = 0x24; /* 00100100b */
addr = t_master | csr_pll_ctrl1_addr;
phy_io_write16(phy, addr, pll_ctrl1);
debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr));
addr = t_master | csr_pll_test_mode_addr;
phy_io_write16(phy, addr, pll_test_mode);
debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr));
addr = t_master | csr_pll_ctrl4_addr;
phy_io_write16(phy, addr, pll_ctrl4);
debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr));
}
static void prog_pll_ctrl2(uint16_t *phy,
const struct input *input)
{
int pll_ctrl2;
uint32_t addr = t_master | csr_pll_ctrl2_addr;
if (input->basic.frequency / 2 < 235) {
pll_ctrl2 = 0x7;
} else if (input->basic.frequency / 2 < 313) {
pll_ctrl2 = 0x6;
} else if (input->basic.frequency / 2 < 469) {
pll_ctrl2 = 0xb;
} else if (input->basic.frequency / 2 < 625) {
pll_ctrl2 = 0xa;
} else if (input->basic.frequency / 2 < 938) {
pll_ctrl2 = 0x19;
} else if (input->basic.frequency / 2 < 1067) {
pll_ctrl2 = 0x18;
} else {
pll_ctrl2 = 0x19;
}
phy_io_write16(phy, addr, pll_ctrl2);
debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr));
}
static void prog_dll_lck_param(uint16_t *phy, const struct input *input)
{
uint32_t addr = t_master | csr_dll_lockparam_addr;
phy_io_write16(phy, addr, U(0x212));
debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr));
}
static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input)
{
uint32_t addr = t_master | csr_dll_gain_ctl_addr;
phy_io_write16(phy, addr, U(0x61));
debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr));
}
static void prog_pll_pwr_dn(uint16_t *phy,
const struct input *input)
{
uint32_t addr;
addr = t_master | csr_pll_pwr_dn_addr;
phy_io_write16(phy, addr, 0U);
debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr));
}
static void prog_ard_ptr_init_val(uint16_t *phy,
const struct input *input)
{
int ard_ptr_init_val;
uint32_t addr = t_master | csr_ard_ptr_init_val_addr;
if (input->basic.frequency >= 933) {
ard_ptr_init_val = 0x2;
} else {
ard_ptr_init_val = 0x1;
}
phy_io_write16(phy, addr, ard_ptr_init_val);
}
static void prog_dqs_preamble_control(uint16_t *phy,
const struct input *input)
{
int data;
uint32_t addr = t_master | csr_dqs_preamble_control_addr;
const int wdqsextension = 0;
const int lp4sttc_pre_bridge_rx_en = 0;
const int lp4postamble_ext = 0;
const int lp4tgl_two_tck_tx_dqs_pre = 0;
const int position_dfe_init = 2;
const int dll_rx_preamble_mode = 1;
int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length;
int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length;
data = wdqsextension << csr_wdqsextension_lsb |
lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb |
lp4postamble_ext << csr_lp4postamble_ext_lsb |
lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb |
position_dfe_init << csr_position_dfe_init_lsb |
two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb |
two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb;
phy_io_write16(phy, addr, data);
data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb;
addr = t_master | csr_dbyte_dll_mode_cntrl_addr;
phy_io_write16(phy, addr, data);
}
static void prog_proc_odt_time_ctl(uint16_t *phy,
const struct input *input)
{
int proc_odt_time_ctl;
uint32_t addr = t_master | csr_proc_odt_time_ctl_addr;
if (input->adv.wdqsext != 0) {
proc_odt_time_ctl = 0x3;
} else if (input->basic.frequency <= 933) {
proc_odt_time_ctl = 0xa;
} else if (input->basic.frequency <= 1200) {
if (input->adv.d4rx_preamble_length == 1) {
proc_odt_time_ctl = 0x2;
} else {
proc_odt_time_ctl = 0x6;
}
} else {
if (input->adv.d4rx_preamble_length == 1) {
proc_odt_time_ctl = 0x3;
} else {
proc_odt_time_ctl = 0x7;
}
}
phy_io_write16(phy, addr, proc_odt_time_ctl);
}
static const struct impedance_mapping map[] = {
{ 29, 0x3f },
{ 31, 0x3e },
{ 33, 0x3b },
{ 36, 0x3a },
{ 39, 0x39 },
{ 42, 0x38 },
{ 46, 0x1b },
{ 51, 0x1a },
{ 57, 0x19 },
{ 64, 0x18 },
{ 74, 0x0b },
{ 88, 0x0a },
{ 108, 0x09 },
{ 140, 0x08 },
{ 200, 0x03 },
{ 360, 0x02 },
{ 481, 0x01 },
{}
};
static int map_impedance(int strength)
{
const struct impedance_mapping *tbl = map;
int val = 0;
if (strength == 0) {
return 0;
}
while (tbl->ohm != 0U) {
if (strength < tbl->ohm) {
val = tbl->code;
break;
}
tbl++;
}
return val;
}
static int map_odtstren_p(int strength, int hard_macro_ver)
{
int val = -1;
if (hard_macro_ver == 4) {
if (strength == 0) {
val = 0;
} else if (strength == 120) {
val = 0x8;
} else if (strength == 60) {
val = 0x18;
} else if (strength == 40) {
val = 0x38;
} else {
printf("error: unsupported ODTStrenP %d\n", strength);
}
} else {
val = map_impedance(strength);
}
return val;
}
static void prog_tx_odt_drv_stren(uint16_t *phy,
const struct input *input)
{
int lane, byte, b_addr, c_addr;
int tx_odt_drv_stren;
int odtstren_p, odtstren_n;
uint32_t addr;
odtstren_p = map_odtstren_p(input->adv.odtimpedance,
input->basic.hard_macro_ver);
if (odtstren_p < 0) {
return;
}
odtstren_n = 0; /* always high-z */
tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p;
for (byte = 0; byte < input->basic.num_dbyte; byte++) {
c_addr = byte << 12;
for (lane = 0; lane <= 1; lane++) {
b_addr = lane << 8;
addr = t_dbyte | c_addr | b_addr |
csr_tx_odt_drv_stren_addr;
phy_io_write16(phy, addr, tx_odt_drv_stren);
}
}
}
static int map_drvstren_fsdq_p(int strength, int hard_macro_ver)
{
int val = -1;
if (hard_macro_ver == 4) {
if (strength == 0) {
val = 0x07;
} else if (strength == 120) {
val = 0x0F;
} else if (strength == 60) {
val = 0x1F;
} else if (strength == 40) {
val = 0x3F;
} else {
printf("error: unsupported drv_stren_fSDq_p %d\n",
strength);
}
} else {
val = map_impedance(strength);
}
return val;
}
static int map_drvstren_fsdq_n(int strength, int hard_macro_ver)
{
int val = -1;
if (hard_macro_ver == 4) {
if (strength == 0) {
val = 0x00;
} else if (strength == 120) {
val = 0x08;
} else if (strength == 60) {
val = 0x18;
} else if (strength == 40) {
val = 0x38;
} else {
printf("error: unsupported drvStrenFSDqN %d\n",
strength);
}
} else {
val = map_impedance(strength);
}
return val;
}
static void prog_tx_impedance_ctrl1(uint16_t *phy,
const struct input *input)
{
int lane, byte, b_addr, c_addr;
int tx_impedance_ctrl1;
int drv_stren_fsdq_p, drv_stren_fsdq_n;
uint32_t addr;
drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance,
input->basic.hard_macro_ver);
drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance,
input->basic.hard_macro_ver);
tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb |
drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb;
for (byte = 0; byte < input->basic.num_dbyte; byte++) {
c_addr = byte << 12;
for (lane = 0; lane <= 1; lane++) {
b_addr = lane << 8;
addr = t_dbyte | c_addr | b_addr |
csr_tx_impedance_ctrl1_addr;
phy_io_write16(phy, addr, tx_impedance_ctrl1);
}
}
}
static int map_adrv_stren_p(int strength, int hard_macro_ver)
{
int val = -1;
if (hard_macro_ver == 4) {
if (strength == 120) {
val = 0x1c;
} else if (strength == 60) {
val = 0x1d;
} else if (strength == 40) {
val = 0x1f;
} else {
printf("error: unsupported aDrv_stren_p %d\n",
strength);
}
} else {
if (strength == 120) {
val = 0x00;
} else if (strength == 60) {
val = 0x01;
} else if (strength == 40) {
val = 0x03;
} else if (strength == 30) {
val = 0x07;
} else if (strength == 24) {
val = 0x0f;
} else if (strength == 20) {
val = 0x1f;
} else {
printf("error: unsupported aDrv_stren_p %d\n",
strength);
}
}
return val;
}
static int map_adrv_stren_n(int strength, int hard_macro_ver)
{
int val = -1;
if (hard_macro_ver == 4) {
if (strength == 120) {
val = 0x00;
} else if (strength == 60) {
val = 0x01;
} else if (strength == 40) {
val = 0x03;
} else {
printf("Error: unsupported ADrvStrenP %d\n", strength);
}
} else {
if (strength == 120) {
val = 0x00;
} else if (strength == 60) {
val = 0x01;
} else if (strength == 40) {
val = 0x03;
} else if (strength == 30) {
val = 0x07;
} else if (strength == 24) {
val = 0x0f;
} else if (strength == 20) {
val = 0x1f;
} else {
printf("Error: unsupported ADrvStrenP %d\n", strength);
}
}
return val;
}
static void prog_atx_impedance(uint16_t *phy,
const struct input *input)
{
int anib, c_addr;
int atx_impedance;
int adrv_stren_p;
int adrv_stren_n;
uint32_t addr;
if (input->basic.hard_macro_ver == 4 &&
input->adv.atx_impedance == 20) {
printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n");
return;
}
adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance,
input->basic.hard_macro_ver);
adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance,
input->basic.hard_macro_ver);
atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb |
adrv_stren_p << csr_adrv_stren_p_lsb;
for (anib = 0; anib < input->basic.num_anib; anib++) {
c_addr = anib << 12;
addr = t_anib | c_addr | csr_atx_impedance_addr;
phy_io_write16(phy, addr, atx_impedance);
}
}
static void prog_dfi_mode(uint16_t *phy,
const struct input *input)
{
int dfi_mode;
uint32_t addr;
if (input->basic.dfi1exists == 1) {
dfi_mode = 0x5; /* DFI1 exists but disabled */
} else {
dfi_mode = 0x1; /* DFI1 does not physically exists */
}
addr = t_master | csr_dfi_mode_addr;
phy_io_write16(phy, addr, dfi_mode);
}
static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input)
{
uint32_t addr;
addr = t_master | csr_acx4_anib_dis_addr;
phy_io_write16(phy, addr, 0x0);
debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr));
}
static void prog_dfi_camode(uint16_t *phy,
const struct input *input)
{
int dfi_camode = 2;
uint32_t addr = t_master | csr_dfi_camode_addr;
phy_io_write16(phy, addr, dfi_camode);
}
static void prog_cal_drv_str0(uint16_t *phy,
const struct input *input)
{
int cal_drv_str0;
int cal_drv_str_pd50;
int cal_drv_str_pu50;
uint32_t addr;
cal_drv_str_pu50 = input->adv.ext_cal_res_val;
cal_drv_str_pd50 = cal_drv_str_pu50;
cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb |
cal_drv_str_pd50;
addr = t_master | csr_cal_drv_str0_addr;
phy_io_write16(phy, addr, cal_drv_str0);
}
static void prog_cal_uclk_info(uint16_t *phy,
const struct input *input)
{
int cal_uclk_ticks_per1u_s;
uint32_t addr;
cal_uclk_ticks_per1u_s = input->basic.frequency >> 1;
if (cal_uclk_ticks_per1u_s < 24) {
cal_uclk_ticks_per1u_s = 24;
}
addr = t_master | csr_cal_uclk_info_addr;
phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s);
}
static void prog_cal_rate(uint16_t *phy,
const struct input *input)
{
int cal_rate;
int cal_interval;
int cal_once;
uint32_t addr;
cal_interval = input->adv.cal_interval;
cal_once = input->adv.cal_once;
cal_rate = cal_once << csr_cal_once_lsb |
cal_interval << csr_cal_interval_lsb;
addr = t_master | csr_cal_rate_addr;
phy_io_write16(phy, addr, cal_rate);
}
static void prog_vref_in_global(uint16_t *phy,
const struct input *input,
const struct ddr4u1d *msg)
{
int vref_in_global;
int global_vref_in_dac = 0;
int global_vref_in_sel = 0;
uint32_t addr;
/*
* phy_vref_prcnt = msg->phy_vref / 128.0
* global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005;
*/
global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) /
(5 * 128);
vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb |
global_vref_in_sel;
addr = t_master | csr_vref_in_global_addr;
phy_io_write16(phy, addr, vref_in_global);
}
static void prog_dq_dqs_rcv_cntrl(uint16_t *phy,
const struct input *input)
{
int lane, byte, b_addr, c_addr;
int dq_dqs_rcv_cntrl;
int gain_curr_adj_defval = 0xb;
int major_mode_dbyte = 3;
int dfe_ctrl_defval = 0;
int ext_vref_range_defval = 0;
int sel_analog_vref = 1;
uint32_t addr;
dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb |
major_mode_dbyte << csr_major_mode_dbyte_lsb |
dfe_ctrl_defval << csr_dfe_ctrl_lsb |
ext_vref_range_defval << csr_ext_vref_range_lsb |
sel_analog_vref << csr_sel_analog_vref_lsb;
for (byte = 0; byte < input->basic.num_dbyte; byte++) {
c_addr = byte << 12;
for (lane = 0; lane <= 1; lane++) {
b_addr = lane << 8;
addr = t_dbyte | c_addr | b_addr |
csr_dq_dqs_rcv_cntrl_addr;
phy_io_write16(phy, addr, dq_dqs_rcv_cntrl);
}
}
}
static void prog_mem_alert_control(uint16_t *phy,
const struct input *input)
{
int mem_alert_control;
int mem_alert_control2;
int malertpu_en;
int malertrx_en;
int malertvref_level;
int malertpu_stren;
int malertsync_bypass;
int malertdisable_val_defval = 1;
uint32_t addr;
if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) {
malertpu_en = 1;
malertrx_en = 1;
malertpu_stren = input->adv.mem_alert_puimp;
malertvref_level = input->adv.mem_alert_vref_level;
malertsync_bypass = input->adv.mem_alert_sync_bypass;
mem_alert_control = malertdisable_val_defval << 14 |
malertrx_en << 13 |
malertpu_en << 12 |
malertpu_stren << 8 |
malertvref_level;
mem_alert_control2 = malertsync_bypass <<
csr_malertsync_bypass_lsb;
addr = t_master | csr_mem_alert_control_addr;
phy_io_write16(phy, addr, mem_alert_control);
addr = t_master | csr_mem_alert_control2_addr;
phy_io_write16(phy, addr, mem_alert_control2);
}
}
static void prog_dfi_freq_ratio(uint16_t *phy,
const struct input *input)
{
int dfi_freq_ratio;
uint32_t addr = t_master | csr_dfi_freq_ratio_addr;
dfi_freq_ratio = input->basic.dfi_freq_ratio;
phy_io_write16(phy, addr, dfi_freq_ratio);
}
static void prog_tristate_mode_ca(uint16_t *phy,
const struct input *input)
{
int tristate_mode_ca;
int dis_dyn_adr_tri;
int ddr2tmode;
int ck_dis_val_def = 1;
uint32_t addr = t_master | csr_tristate_mode_ca_addr;
dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri;
ddr2tmode = input->adv.is2ttiming;
tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb |
ddr2tmode << csr_ddr2tmode_lsb |
dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb;
phy_io_write16(phy, addr, tristate_mode_ca);
}
static void prog_dfi_xlat(uint16_t *phy,
const struct input *input)
{
uint16_t loop_vector;
int dfifreqxlat_dat;
int pllbypass_dat;
uint32_t addr;
/* fIXME: Shall unused P1, P2, P3 be bypassed? */
pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */
for (loop_vector = 0; loop_vector < 8; loop_vector++) {
if (loop_vector == 0) {
dfifreqxlat_dat = pllbypass_dat + 0x5555;
} else if (loop_vector == 7) {
dfifreqxlat_dat = 0xf000;
} else {
dfifreqxlat_dat = 0x5555;
}
addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector);
phy_io_write16(phy, addr, dfifreqxlat_dat);
}
}
static void prog_dbyte_misc_mode(uint16_t *phy,
const struct input *input,
const struct ddr4u1d *msg)
{
int dbyte_misc_mode;
int dq_dqs_rcv_cntrl1;
int dq_dqs_rcv_cntrl1_1;
int byte, c_addr;
uint32_t addr;
dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb;
dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb |
0x1 << csr_power_down_rcvr_dqs_lsb |
0x1 << csr_rx_pad_standby_en_lsb;
dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb |
csr_rx_pad_standby_en_mask);
for (byte = 0; byte < input->basic.num_dbyte; byte++) {
c_addr = byte << 12;
if (byte <= input->basic.num_active_dbyte_dfi0 - 1) {
/* disable RDBI lane if not used. */
if ((input->basic.dram_data_width != 4) &&
(((msg->mr5 >> 12) & 0x1) == 0)) {
addr = t_dbyte
| c_addr
| csr_dq_dqs_rcv_cntrl1_addr;
phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1);
}
} else {
addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr;
phy_io_write16(phy, addr, dbyte_misc_mode);
addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr;
phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1);
}
}
}
static void prog_master_x4config(uint16_t *phy,
const struct input *input)
{
int master_x4config;
int x4tg;
uint32_t addr = t_master | csr_master_x4config_addr;
x4tg = input->basic.dram_data_width == 4 ? 0xf : 0;
master_x4config = x4tg << csr_x4tg_lsb;
phy_io_write16(phy, addr, master_x4config);
}
static void prog_dmipin_present(uint16_t *phy,
const struct input *input,
const struct ddr4u1d *msg)
{
int dmipin_present;
uint32_t addr = t_master | csr_dmipin_present_addr;
dmipin_present = (msg->mr5 >> 12) & 0x1;
phy_io_write16(phy, addr, dmipin_present);
}
static void prog_dfi_phyupd(uint16_t *phy,
const struct input *input)
{
int dfiphyupd_dat;
uint32_t addr;
addr = t_master | (csr_dfiphyupd_addr);
dfiphyupd_dat = phy_io_read16(phy, addr) &
~csr_dfiphyupd_threshold_mask;
phy_io_write16(phy, addr, dfiphyupd_dat);
}
static void prog_cal_misc2(uint16_t *phy,
const struct input *input)
{
int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat;
uint32_t addr;
addr = t_master | (csr_cal_misc2_addr);
cal_misc2_dat = phy_io_read16(phy, addr) |
(1 << csr_cal_misc2_err_dis);
phy_io_write16(phy, addr, cal_misc2_dat);
addr = t_master | (csr_cal_offsets_addr);
cal_drv_pdth_data = 0x9 << 6;
cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask)
| cal_drv_pdth_data;
phy_io_write16(phy, addr, cal_offsets_dat);
}
static int c_init_phy_config(uint16_t **phy_ptr,
unsigned int ip_rev,
const struct input *input,
const void *msg)
{
int i;
uint16_t *phy;
__unused const soc_info_t *soc_info;
for (i = 0; i < NUM_OF_DDRC; i++) {
phy = phy_ptr[i];
if (phy == NULL) {
continue;
}
debug("Initialize PHY %d config\n", i);
prog_dfi_phyupd(phy, input);
prog_cal_misc2(phy, input);
prog_tx_pre_drv_mode(phy, input);
prog_atx_pre_drv_mode(phy, input);
prog_enable_cs_multicast(phy, input); /* rdimm and lrdimm */
prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg);
prog_pll_ctrl2(phy, input);
#ifdef DDR_PLL_FIX
soc_info = get_soc_info();
debug("SOC_SI_REV = %x\n", soc_info->maj_ver);
if (soc_info->maj_ver == 1) {
prog_pll_pwr_dn(phy, input);
/*Enable FFE aka TxEqualizationMode for rev1 SI*/
phy_io_write16(phy, 0x010048, 0x1);
}
#endif
prog_ard_ptr_init_val(phy, input);
prog_dqs_preamble_control(phy, input);
prog_dll_lck_param(phy, input);
prog_dll_gain_ctl(phy, input);
prog_proc_odt_time_ctl(phy, input);
prog_tx_odt_drv_stren(phy, input);
prog_tx_impedance_ctrl1(phy, input);
prog_atx_impedance(phy, input);
prog_dfi_mode(phy, input);
prog_dfi_camode(phy, input);
prog_cal_drv_str0(phy, input);
prog_cal_uclk_info(phy, input);
prog_cal_rate(phy, input);
prog_vref_in_global(phy, input, msg);
prog_dq_dqs_rcv_cntrl(phy, input);
prog_mem_alert_control(phy, input);
prog_dfi_freq_ratio(phy, input);
prog_tristate_mode_ca(phy, input);
prog_dfi_xlat(phy, input);
prog_dbyte_misc_mode(phy, input, msg);
prog_master_x4config(phy, input);
prog_dmipin_present(phy, input, msg);
prog_acx4_anib_dis(phy, input);
}
return 0;
}
static uint32_t get_mail(uint16_t *phy, int stream)
{
int timeout;
uint32_t mail = 0U;
timeout = TIMEOUTDEFAULT;
while (((--timeout) != 0) &&
((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
& uct_write_prot_shadow_mask) != 0)) {
mdelay(10);
}
if (timeout == 0) {
ERROR("Timeout getting mail from PHY\n");
return 0xFFFF;
}
mail = phy_io_read16(phy, t_apbonly |
csr_uct_write_only_shadow);
if (stream != 0) {
mail |= phy_io_read16(phy, t_apbonly |
csr_uct_dat_write_only_shadow) << 16;
}
/* Ack */
phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0);
timeout = TIMEOUTDEFAULT;
while (((--timeout) != 0) &&
((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
& uct_write_prot_shadow_mask) == 0)) {
mdelay(1);
}
if (timeout == 0) {
ERROR("Timeout ack PHY mail\n");
}
/* completed */
phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U);
return mail;
}
#ifdef DDR_PHY_DEBUG
static const char *lookup_msg(uint32_t index, int train2d)
{
int i;
int size;
const struct phy_msg *messages;
const char *ptr = NULL;
if (train2d != 0) {
messages = messages_2d;
size = ARRAY_SIZE(messages_2d);
} else {
messages = messages_1d;
size = ARRAY_SIZE(messages_1d);
}
for (i = 0; i < size; i++) {
if (messages[i].index == index) {
ptr = messages[i].msg;
break;
}
}
return ptr;
}
#endif
#define MAX_ARGS 32
static void decode_stream_message(uint16_t *phy, int train2d)
{
uint32_t index __unused;
__unused const char *format;
__unused uint32_t args[MAX_ARGS];
__unused int i;
#ifdef DDR_PHY_DEBUG
index = get_mail(phy, 1);
if ((index & 0xffff) > MAX_ARGS) { /* up to MAX_ARGS args so far */
printf("Program error in %s\n", __func__);
}
for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) {
args[i] = get_mail(phy, 1);
}
format = lookup_msg(index, train2d);
if (format != NULL) {
printf("0x%08x: ", index);
printf(format, args[0], args[1], args[2], args[3], args[4],
args[5], args[6], args[7], args[8], args[9], args[10],
args[11], args[12], args[13], args[14], args[15],
args[16], args[17], args[18], args[19], args[20],
args[21], args[22], args[23], args[24], args[25],
args[26], args[27], args[28], args[29], args[30],
args[31]);
}
#endif
}
static int wait_fw_done(uint16_t *phy, int train2d)
{
uint32_t mail = 0U;
while (mail == U(0x0)) {
mail = get_mail(phy, 0);
switch (mail) {
case U(0x7):
debug("%s Training completed\n", train2d ? "2D" : "1D");
break;
case U(0xff):
debug("%s Training failure\n", train2d ? "2D" : "1D");
break;
case U(0x0):
debug("End of initialization\n");
mail = 0U;
break;
case U(0x1):
debug("End of fine write leveling\n");
mail = 0U;
break;
case U(0x2):
debug("End of read enable training\n");
mail = 0U;
break;
case U(0x3):
debug("End of read delay center optimization\n");
mail = 0U;
break;
case U(0x4):
debug("End of write delay center optimization\n");
mail = 0U;
break;
case U(0x5):
debug("End of 2D read delay/voltage center optimztn\n");
mail = 0U;
break;
case U(0x6):
debug("End of 2D write delay/voltage center optmztn\n");
mail = 0U;
break;
case U(0x8):
decode_stream_message(phy, train2d);
mail = 0U;
break;
case U(0x9):
debug("End of max read latency training\n");
mail = 0U;
break;
case U(0xa):
debug("End of read dq deskew training\n");
mail = 0U;
break;
case U(0xc):
debug("End of LRDIMM Specific training, including:\n");
debug("/tDWL, MREP, MRD and MWD\n");
mail = 0U;
break;
case U(0xd):
debug("End of CA training\n");
mail = 0U;
break;
case U(0xfd):
debug("End of MPR read delay center optimization\n");
mail = 0U;
break;
case U(0xfe):
debug("End of Write leveling coarse delay\n");
mail = 0U;
break;
case U(0xffff):
debug("Timed out\n");
break;
default:
mail = 0U;
break;
}
}
if (mail == U(0x7)) {
return 0;
} else if (mail == U(0xff)) {
return -EIO;
} else if (mail == U(0xffff)) {
return -ETIMEDOUT;
}
debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail);
return -EINVAL;
}
static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input)
{
int ret = -EINVAL;
int i;
uint16_t *phy;
for (i = 0; i < NUM_OF_DDRC; i++) {
phy = phy_ptr[i];
if (phy == NULL) {
continue;
}
debug("Applying PLL optimal settings\n");
prog_pll_ctrl2(phy, input);
prog_pll_ctrl(phy, input);
phy_io_write16(phy,
t_apbonly | csr_micro_cont_mux_sel_addr,
0x1);
phy_io_write16(phy,
t_apbonly | csr_micro_reset_addr,
csr_reset_to_micro_mask |
csr_stall_to_micro_mask);
phy_io_write16(phy,
t_apbonly | csr_micro_reset_addr,
csr_stall_to_micro_mask);
phy_io_write16(phy,
t_apbonly | csr_micro_reset_addr,
0);
ret = wait_fw_done(phy, train2d);
if (ret == -ETIMEDOUT) {
ERROR("Wait timed out: Firmware execution on PHY %d\n",
i);
}
}
return ret;
}
static inline int send_fw(uint16_t *phy,
uint32_t dst,
uint16_t *img,
uint32_t size)
{
uint32_t i;
if ((size % 2U) != 0U) {
ERROR("Wrong image size 0x%x\n", size);
return -EINVAL;
}
for (i = 0U; i < size / 2; i++) {
phy_io_write16(phy, dst + i, *(img + i));
}
return 0;
}
static int load_fw(uint16_t **phy_ptr,
struct input *input,
int train2d,
void *msg,
size_t len,
uintptr_t phy_gen2_fw_img_buf,
int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *),
uint32_t warm_boot_flag)
{
uint32_t imem_id, dmem_id;
uintptr_t image_buf;
uint32_t size;
int ret;
int i;
uint16_t *phy;
switch (input->basic.dimm_type) {
case UDIMM:
case SODIMM:
case NODIMM:
imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID :
DDR_IMEM_UDIMM_1D_IMAGE_ID;
dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID :
DDR_DMEM_UDIMM_1D_IMAGE_ID;
break;
case RDIMM:
imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID :
DDR_IMEM_RDIMM_1D_IMAGE_ID;
dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID :
DDR_DMEM_RDIMM_1D_IMAGE_ID;
break;
default:
ERROR("Unsupported DIMM type\n");
return -EINVAL;
}
size = PHY_GEN2_MAX_IMAGE_SIZE;
image_buf = (uintptr_t)phy_gen2_fw_img_buf;
mmap_add_dynamic_region(phy_gen2_fw_img_buf,
phy_gen2_fw_img_buf,
PHY_GEN2_MAX_IMAGE_SIZE,
MT_MEMORY | MT_RW | MT_SECURE);
ret = img_loadr(imem_id, &image_buf, &size);
if (ret != 0) {
ERROR("Failed to load %d firmware.\n", imem_id);
return ret;
}
debug("Loaded Imaged id %d of size %x at address %lx\n",
imem_id, size, image_buf);
for (i = 0; i < NUM_OF_DDRC; i++) {
phy = phy_ptr[i];
if (phy == NULL) {
continue;
}
if (warm_boot_flag != DDR_WARM_BOOT) {
if (train2d == 0) {
phy_io_write16(phy, t_master |
csr_mem_reset_l_addr,
csr_protect_mem_reset_mask);
}
}
/* Enable access to the internal CSRs */
phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0);
ret = send_fw(phy, PHY_GEN2_IMEM_ADDR,
(uint16_t *)image_buf, size);
if (ret != 0) {
return ret;
}
}
size = PHY_GEN2_MAX_IMAGE_SIZE;
image_buf = (uintptr_t)phy_gen2_fw_img_buf;
ret = img_loadr(dmem_id, &image_buf, &size);
if (ret != 0) {
ERROR("Failed to load %d firmware.\n", dmem_id);
return ret;
}
debug("Loaded Imaged id %d of size %x at address %lx\n",
dmem_id, size, image_buf);
image_buf += len;
size -= len;
for (i = 0; i < NUM_OF_DDRC; i++) {
phy = phy_ptr[i];
if (phy == NULL) {
continue;
}
ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len);
if (ret != 0) {
return ret;
}
ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2,
(uint16_t *)image_buf, size);
if (ret != 0) {
return ret;
}
}
return ret;
}
static void parse_odt(const unsigned int val,
const int read,
const int i,
const unsigned int cs_d0,
const unsigned int cs_d1,
unsigned int *odt)
{
int shift = read ? 4 : 0;
int j;
if (i < 0 || i > 3) {
printf("Error: invalid chip-select value\n");
}
switch (val) {
case DDR_ODT_CS:
odt[i] |= (1 << i) << shift;
break;
case DDR_ODT_ALL_OTHER_CS:
for (j = 0; j < DDRC_NUM_CS; j++) {
if (i == j) {
continue;
}
if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
continue;
}
odt[j] |= (1 << i) << shift;
}
break;
case DDR_ODT_CS_AND_OTHER_DIMM:
odt[i] |= (1 << i) << 4;
/* fallthrough */
case DDR_ODT_OTHER_DIMM:
for (j = 0; j < DDRC_NUM_CS; j++) {
if ((((cs_d0 & (1 << i)) != 0) &&
((cs_d1 & (1 << j)) != 0)) ||
(((cs_d1 & (1 << i)) != 0) &&
((cs_d0 & (1 << j)) != 0))) {
odt[j] |= (1 << i) << shift;
}
}
break;
case DDR_ODT_ALL:
for (j = 0; j < DDRC_NUM_CS; j++) {
if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
continue;
}
odt[j] |= (1 << i) << shift;
}
break;
case DDR_ODT_SAME_DIMM:
for (j = 0; j < DDRC_NUM_CS; j++) {
if ((((cs_d0 & (1 << i)) != 0) &&
((cs_d0 & (1 << j)) != 0)) ||
(((cs_d1 & (1 << i)) != 0) &&
((cs_d1 & (1 << j)) != 0))) {
odt[j] |= (1 << i) << shift;
}
}
break;
case DDR_ODT_OTHER_CS_ONSAMEDIMM:
for (j = 0; j < DDRC_NUM_CS; j++) {
if (i == j) {
continue;
}
if ((((cs_d0 & (1 << i)) != 0) &&
((cs_d0 & (1 << j)) != 0)) ||
(((cs_d1 & (1 << i)) != 0) &&
((cs_d1 & (1 << j)) != 0))) {
odt[j] |= (1 << i) << shift;
}
}
break;
case DDR_ODT_NEVER:
break;
default:
break;
}
}
#ifdef DEBUG_DDR_INPUT_CONFIG
char *dram_types_str[] = {
"DDR4",
"DDR3",
"LDDDR4",
"LPDDR3",
"LPDDR2",
"DDR5"
};
char *dimm_types_str[] = {
"UDIMM",
"SODIMM",
"RDIMM",
"LRDIMM",
"NODIMM",
};
static void print_jason_format(struct input *input,
struct ddr4u1d *msg_1d,
struct ddr4u2d *msg_2d)
{
printf("\n{");
printf("\n \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]);
printf("\n \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]);
printf("\n \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver);
printf("\n \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte);
printf("\n \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0);
printf("\n \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib);
printf("\n \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0);
printf("\n \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates);
printf("\n \"frequency\": \"%d\",", input->basic.frequency);
printf("\n \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
printf("\n \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
printf("\n \"dfi1_exists\": \"0x%04x\",", (unsigned int)input->basic.dfi1exists);
printf("\n \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width);
printf("\n \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap);
printf("\n \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val);
printf("\n \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq);
printf("\n \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq);
printf("\n \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac);
printf("\n \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac);
printf("\n \"odt_impedance\": \"%d\",", input->adv.odtimpedance);
printf("\n \"tx_impedance\": \"%d\",", input->adv.tx_impedance);
printf("\n \"atx_impedance\": \"%d\",", input->adv.atx_impedance);
printf("\n \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en);
printf("\n \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp);
printf("\n \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level);
printf("\n \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass);
printf("\n \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval);
printf("\n \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once);
printf("\n \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri);
printf("\n \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming);
printf("\n \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length);
printf("\n \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length);
printf("\n \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc);
printf("\n \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00);
printf("\n \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl);
printf("\n \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present);
printf("\n \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref);
printf("\n \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin);
printf("\n \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror);
printf("\n \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f));
printf("\n \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f));
printf("\n \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f));
printf("\n \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f));
printf("\n \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0));
printf("\n \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0));
printf("\n \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0));
printf("\n \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0));
printf("\n \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc);
printf("\n \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result);
printf("\n \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl);
printf("\n \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0);
printf("\n \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1);
printf("\n \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2);
printf("\n \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3);
printf("\n \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4);
printf("\n \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5);
printf("\n \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6);
printf("\n \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l);
printf("\n \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l);
printf("\n \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl);
printf("\n \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0);
printf("\n \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1);
printf("\n \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2);
printf("\n \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3);
printf("\n \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4);
printf("\n \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5);
printf("\n \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6);
printf("\n \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7);
printf("\n}");
printf("\n");
}
#endif
int compute_ddr_phy(struct ddr_info *priv)
{
const unsigned long clk = priv->clk;
const struct memctl_opt *popts = &priv->opt;
const struct ddr_conf *conf = &priv->conf;
const struct dimm_params *dimm_param = &priv->dimm;
struct ddr_cfg_regs *regs = &priv->ddr_reg;
int ret;
static struct input input;
static struct ddr4u1d msg_1d;
static struct ddr4u2d msg_2d;
unsigned int i;
unsigned int odt_rd, odt_wr;
__unused const soc_info_t *soc_info;
#ifdef NXP_APPLY_MAX_CDD
unsigned int tcfg0, tcfg4, rank;
#endif
if (dimm_param == NULL) {
ERROR("Empty DIMM parameters.\n");
return -EINVAL;
}
zeromem(&input, sizeof(input));
zeromem(&msg_1d, sizeof(msg_1d));
zeromem(&msg_2d, sizeof(msg_2d));
input.basic.dram_type = DDR4;
/* FIXME: Add condition for LRDIMM */
input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM;
input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 +
dimm_param->ec_sdram_width / 8;
input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte;
input.basic.num_rank_dfi0 = dimm_param->n_ranks;
input.basic.dram_data_width = dimm_param->device_width;
input.basic.hard_macro_ver = 0xa;
input.basic.num_pstates = 1;
input.basic.dfi_freq_ratio = 1;
input.basic.num_anib = 0xc;
input.basic.train2d = popts->skip2d ? 0 : 1;
input.basic.frequency = (int) (clk / 2000000ul);
debug("frequency = %dMHz\n", input.basic.frequency);
input.cs_d0 = conf->cs_on_dimm[0];
#if DDRC_NUM_DIMM > 1
input.cs_d1 = conf->cs_on_dimm[1];
#endif
input.mirror = dimm_param->mirrored_dimm;
input.mr[0] = regs->sdram_mode[0] & U(0xffff);
input.mr[1] = regs->sdram_mode[0] >> 16U;
input.mr[2] = regs->sdram_mode[1] >> 16U;
input.mr[3] = regs->sdram_mode[1] & U(0xffff);
input.mr[4] = regs->sdram_mode[8] >> 16U;
input.mr[5] = regs->sdram_mode[8] & U(0xffff);
input.mr[6] = regs->sdram_mode[9] >> 16U;
input.vref = popts->vref_phy;
debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U);
for (i = 0U; i < DDRC_NUM_CS; i++) {
if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) {
continue;
}
odt_rd = (regs->cs[i].config >> 20U) & U(0x7);
odt_wr = (regs->cs[i].config >> 16U) & U(0x7);
parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1,
input.odt);
parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1,
input.odt);
}
/* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */
if (dimm_param->rdimm != 0U) {
regs->sdram_cfg[0] &= ~(1 << 28U);
regs->sdram_cfg[1] &= ~(1 << 2U);
input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf);
input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf);
input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf);
input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf);
input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf);
input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf);
input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf);
input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf);
input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf);
input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf);
input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf);
input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf);
input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf);
input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf);
input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf);
input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf);
input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff);
}
input.adv.odtimpedance = popts->odt ? popts->odt : 60;
input.adv.tx_impedance = popts->phy_tx_impedance ?
popts->phy_tx_impedance : 28;
input.adv.atx_impedance = popts->phy_atx_impedance ?
popts->phy_atx_impedance : 30;
debug("Initializing input adv data structure\n");
phy_gen2_init_input(&input);
debug("Initializing message block\n");
ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input);
if (ret != 0) {
ERROR("Init msg failed (error code %d)\n", ret);
return ret;
}
ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d);
if (ret != 0) {
ERROR("Init PHY failed (error code %d)\n", ret);
return ret;
}
#ifdef NXP_WARM_BOOT
debug("Warm boot flag value %0x\n", priv->warm_boot_flag);
if (priv->warm_boot_flag == DDR_WARM_BOOT) {
debug("Restoring the Phy training data\n");
// Restore the training data
ret = restore_phy_training_values(priv->phy,
PHY_TRAINING_REGS_ON_FLASH,
priv->num_ctlrs,
input.basic.train2d);
if (ret != 0) {
ERROR("Restoring of training data failed %d\n", ret);
return ret;
}
} else {
#endif
debug("Load 1D firmware\n");
ret = load_fw(priv->phy, &input, 0, &msg_1d,
sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf,
priv->img_loadr, priv->warm_boot_flag);
if (ret != 0) {
ERROR("Loading firmware failed (error code %d)\n", ret);
return ret;
}
debug("Execute firmware\n");
ret = g_exec_fw(priv->phy, 0, &input);
if (ret != 0) {
ERROR("Execution FW failed (error code %d)\n", ret);
}
#ifdef NXP_APPLY_MAX_CDD
soc_info = get_soc_info(NXP_DCFG_ADDR);
if (soc_info->maj_ver == 2) {
tcfg0 = regs->timing_cfg[0];
tcfg4 = regs->timing_cfg[4];
rank = findrank(conf->cs_in_use);
get_cdd_val(priv->phy, rank, input.basic.frequency,
&tcfg0, &tcfg4);
regs->timing_cfg[0] = tcfg0;
regs->timing_cfg[4] = tcfg4;
}
#endif
if ((ret == 0) && (input.basic.train2d != 0)) {
/* 2D training starts here */
debug("Load 2D firmware\n");
ret = load_fw(priv->phy, &input, 1, &msg_2d,
sizeof(struct ddr4u2d),
priv->phy_gen2_fw_img_buf,
priv->img_loadr,
priv->warm_boot_flag);
if (ret != 0) {
ERROR("Loading fw failed (err code %d)\n", ret);
} else {
debug("Execute 2D firmware\n");
ret = g_exec_fw(priv->phy, 1, &input);
if (ret != 0) {
ERROR("Execution FW failed (err %d)\n",
ret);
}
}
}
#ifdef NXP_WARM_BOOT
if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED &&
ret == 0) {
debug("save the phy training data\n");
//Save training data TBD
ret = save_phy_training_values(priv->phy,
PHY_TRAINING_REGS_ON_FLASH,
priv->num_ctlrs,
input.basic.train2d);
if (ret != 0) {
ERROR("Saving training data failed.");
ERROR("Warm boot will fail. Error=%d.\n", ret);
}
}
} /* else */
#endif
if (ret == 0) {
debug("Load PIE\n");
i_load_pie(priv->phy, &input, &msg_1d);
NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n",
input.basic.dimm_type == RDIMM ? "RDIMM" :
input.basic.dimm_type == LRDIMM ? "LRDIMM" :
"UDIMM",
dimm_param->n_ranks,
dimm_param->primary_sdram_width,
dimm_param->device_width);
}
#ifdef DEBUG_DDR_INPUT_CONFIG
print_jason_format(&input, &msg_1d, &msg_2d);
#endif
return ret;
}
/*
* Copyright 2021 NXP
* SPDX-License-Identifier: BSD-3-Clause
*/
#if !defined(PHY_H) && defined(NXP_WARM_BOOT)
#define PHY_H
#include <flash_info.h>
/* To store sector size to be erase on flash*/
#define PHY_ERASE_SIZE F_SECTOR_ERASE_SZ
/*Structure to implement address-data map tuples to store PHY training values*/
struct phy_training_values {
uint32_t addr;
uint16_t data;
};
/* Saves PHY Training Register values after cold reset
*@param[in] phy_ptr array to store addresses of PHYs
*@param[in] address_to_store address to save PHY training register values
*on flash
*@param[in] num_of_phy the number of PHY for which training values are
*to be saved
*@param[in] train2d flag to store whether 2D training registers are to
*be saved or not
*
*PHY training values will be stored on flash at contigous memory in the order:
*1D training registers, 2D training registers
*for each PHY
*
*if train2d is false saving 2D training registers will be skipped
*/
int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store,
uint32_t num_of_phy, int train2d);
/*Restores PHY Training Register values after warm reset
*@param[in] phy_ptr array to store addresses of PHYs
*@param[in] address_to_store address to retrieve PHY training register
*values from flash
*@param[in] num_of_phy the number of PHY for which training values are
*to be restored
*@param[in] train2d flag to store whether 2D training registers are
*to be restored or not
*
*if train2d is false saving 2D training registers will be skipped
*/
int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore,
uint32_t num_of_phy, int train2d);
/*
* Address data tuples to store the PHY 1D
*/
struct phy_training_values training_1D_values[] = {
{0x200B2, 0}, {0x200CB, 0}, {0x10043, 0}, {0x11043, 0},
{0x12043, 0}, {0x13043, 0}, {0x14043, 0}, {0x15043, 0},
{0x16043, 0}, {0x17043, 0}, {0x18043, 0}, {0x10143, 0},
{0x11143, 0}, {0x12143, 0}, {0x13143, 0}, {0x14143, 0},
{0x15143, 0}, {0x16143, 0}, {0x17143, 0}, {0x18143, 0},
{0x10080, 0}, {0x11080, 0}, {0x12080, 0}, {0x13080, 0},
{0x14080, 0}, {0x15080, 0}, {0x16080, 0}, {0x17080, 0},
{0x18080, 0}, {0x10180, 0}, {0x11180, 0}, {0x12180, 0},
{0x13180, 0}, {0x14180, 0}, {0x15180, 0}, {0x16180, 0},
{0x17180, 0}, {0x18180, 0}, {0x10081, 0}, {0x11081, 0},
{0x12081, 0}, {0x13081, 0}, {0x14081, 0}, {0x15081, 0},
{0x16081, 0}, {0x17081, 0}, {0x18081, 0}, {0x10181, 0},
{0x11181, 0}, {0x12181, 0}, {0x13181, 0}, {0x14181, 0},
{0x15181, 0}, {0x16181, 0}, {0x17181, 0}, {0x18181, 0},
{0x10082, 0}, {0x11082, 0}, {0x12082, 0}, {0x13082, 0},
{0x14082, 0}, {0x15082, 0}, {0x16082, 0}, {0x17082, 0},
{0x18082, 0}, {0x10182, 0}, {0x11182, 0}, {0x12182, 0},
{0x13182, 0}, {0x14182, 0}, {0x15182, 0}, {0x16182, 0},
{0x17182, 0}, {0x18182, 0}, {0x10083, 0}, {0x11083, 0},
{0x12083, 0}, {0x13083, 0}, {0x14083, 0}, {0x15083, 0},
{0x16083, 0}, {0x17083, 0}, {0x18083, 0}, {0x10183, 0},
{0x11183, 0}, {0x12183, 0}, {0x13183, 0}, {0x14183, 0},
{0x15183, 0}, {0x16183, 0}, {0x17183, 0}, {0x18183, 0},
{0x100D0, 0}, {0x110D0, 0}, {0x120D0, 0}, {0x130D0, 0},
{0x140D0, 0}, {0x150D0, 0}, {0x160D0, 0}, {0x170D0, 0},
{0x180D0, 0}, {0x101D0, 0}, {0x111D0, 0}, {0x121D0, 0},
{0x131D0, 0}, {0x141D0, 0}, {0x151D0, 0}, {0x161D0, 0},
{0x171D0, 0}, {0x181D0, 0}, {0x100D1, 0}, {0x110D1, 0},
{0x120D1, 0}, {0x130D1, 0}, {0x140D1, 0}, {0x150D1, 0},
{0x160D1, 0}, {0x170D1, 0}, {0x180D1, 0}, {0x101D1, 0},
{0x111D1, 0}, {0x121D1, 0}, {0x131D1, 0}, {0x141D1, 0},
{0x151D1, 0}, {0x161D1, 0}, {0x171D1, 0}, {0x181D1, 0},
{0x100D2, 0}, {0x110D2, 0}, {0x120D2, 0}, {0x130D2, 0},
{0x140D2, 0}, {0x150D2, 0}, {0x160D2, 0}, {0x170D2, 0},
{0x180D2, 0}, {0x101D2, 0}, {0x111D2, 0}, {0x121D2, 0},
{0x131D2, 0}, {0x141D2, 0}, {0x151D2, 0}, {0x161D2, 0},
{0x171D2, 0}, {0x181D2, 0}, {0x100D3, 0}, {0x110D3, 0},
{0x120D3, 0}, {0x130D3, 0}, {0x140D3, 0}, {0x150D3, 0},
{0x160D3, 0}, {0x170D3, 0}, {0x180D3, 0}, {0x101D3, 0},
{0x111D3, 0}, {0x121D3, 0}, {0x131D3, 0}, {0x141D3, 0},
{0x151D3, 0}, {0x161D3, 0}, {0x171D3, 0}, {0x181D3, 0},
{0x10068, 0}, {0x11068, 0}, {0x12068, 0}, {0x13068, 0},
{0x14068, 0}, {0x15068, 0}, {0x16068, 0}, {0x17068, 0},
{0x18068, 0}, {0x10168, 0}, {0x11168, 0}, {0x12168, 0},
{0x13168, 0}, {0x14168, 0}, {0x15168, 0}, {0x16168, 0},
{0x17168, 0}, {0x18168, 0}, {0x10268, 0}, {0x11268, 0},
{0x12268, 0}, {0x13268, 0}, {0x14268, 0}, {0x15268, 0},
{0x16268, 0}, {0x17268, 0}, {0x18268, 0}, {0x10368, 0},
{0x11368, 0}, {0x12368, 0}, {0x13368, 0}, {0x14368, 0},
{0x15368, 0}, {0x16368, 0}, {0x17368, 0}, {0x18368, 0},
{0x10468, 0}, {0x11468, 0}, {0x12468, 0}, {0x13468, 0},
{0x14468, 0}, {0x15468, 0}, {0x16468, 0}, {0x17468, 0},
{0x18468, 0}, {0x10568, 0}, {0x11568, 0}, {0x12568, 0},
{0x13568, 0}, {0x14568, 0}, {0x15568, 0}, {0x16568, 0},
{0x17568, 0}, {0x18568, 0}, {0x10668, 0}, {0x11668, 0},
{0x12668, 0}, {0x13668, 0}, {0x14668, 0}, {0x15668, 0},
{0x16668, 0}, {0x17668, 0}, {0x18668, 0}, {0x10768, 0},
{0x11768, 0}, {0x12768, 0}, {0x13768, 0}, {0x14768, 0},
{0x15768, 0}, {0x16768, 0}, {0x17768, 0}, {0x18768, 0},
{0x10868, 0}, {0x11868, 0}, {0x12868, 0}, {0x13868, 0},
{0x14868, 0}, {0x15868, 0}, {0x16868, 0}, {0x17868, 0},
{0x18868, 0}, {0x10069, 0}, {0x11069, 0}, {0x12069, 0},
{0x13069, 0}, {0x14069, 0}, {0x15069, 0}, {0x16069, 0},
{0x17069, 0}, {0x18069, 0}, {0x10169, 0}, {0x11169, 0},
{0x12169, 0}, {0x13169, 0}, {0x14169, 0}, {0x15169, 0},
{0x16169, 0}, {0x17169, 0}, {0x18169, 0}, {0x10269, 0},
{0x11269, 0}, {0x12269, 0}, {0x13269, 0}, {0x14269, 0},
{0x15269, 0}, {0x16269, 0}, {0x17269, 0}, {0x18269, 0},
{0x10369, 0}, {0x11369, 0}, {0x12369, 0}, {0x13369, 0},
{0x14369, 0}, {0x15369, 0}, {0x16369, 0}, {0x17369, 0},
{0x18369, 0}, {0x10469, 0}, {0x11469, 0}, {0x12469, 0},
{0x13469, 0}, {0x14469, 0}, {0x15469, 0}, {0x16469, 0},
{0x17469, 0}, {0x18469, 0}, {0x10569, 0}, {0x11569, 0},
{0x12569, 0}, {0x13569, 0}, {0x14569, 0}, {0x15569, 0},
{0x16569, 0}, {0x17569, 0}, {0x18569, 0}, {0x10669, 0},
{0x11669, 0}, {0x12669, 0}, {0x13669, 0}, {0x14669, 0},
{0x15669, 0}, {0x16669, 0}, {0x17669, 0}, {0x18669, 0},
{0x10769, 0}, {0x11769, 0}, {0x12769, 0}, {0x13769, 0},
{0x14769, 0}, {0x15769, 0}, {0x16769, 0}, {0x17769, 0},
{0x18769, 0}, {0x10869, 0}, {0x11869, 0}, {0x12869, 0},
{0x13869, 0}, {0x14869, 0}, {0x15869, 0}, {0x16869, 0},
{0x17869, 0}, {0x18869, 0}, {0x1006A, 0}, {0x1106A, 0},
{0x1206A, 0}, {0x1306A, 0}, {0x1406A, 0}, {0x1506A, 0},
{0x1606A, 0}, {0x1706A, 0}, {0x1806A, 0}, {0x1016A, 0},
{0x1116A, 0}, {0x1216A, 0}, {0x1316A, 0}, {0x1416A, 0},
{0x1516A, 0}, {0x1616A, 0}, {0x1716A, 0}, {0x1816A, 0},
{0x1026A, 0}, {0x1126A, 0}, {0x1226A, 0}, {0x1326A, 0},
{0x1426A, 0}, {0x1526A, 0}, {0x1626A, 0}, {0x1726A, 0},
{0x1826A, 0}, {0x1036A, 0}, {0x1136A, 0}, {0x1236A, 0},
{0x1336A, 0}, {0x1436A, 0}, {0x1536A, 0}, {0x1636A, 0},
{0x1736A, 0}, {0x1836A, 0}, {0x1046A, 0}, {0x1146A, 0},
{0x1246A, 0}, {0x1346A, 0}, {0x1446A, 0}, {0x1546A, 0},
{0x1646A, 0}, {0x1746A, 0}, {0x1846A, 0}, {0x1056A, 0},
{0x1156A, 0}, {0x1256A, 0}, {0x1356A, 0}, {0x1456A, 0},
{0x1556A, 0}, {0x1656A, 0}, {0x1756A, 0}, {0x1856A, 0},
{0x1066A, 0}, {0x1166A, 0}, {0x1266A, 0}, {0x1366A, 0},
{0x1466A, 0}, {0x1566A, 0}, {0x1666A, 0}, {0x1766A, 0},
{0x1866A, 0}, {0x1076A, 0}, {0x1176A, 0}, {0x1276A, 0},
{0x1376A, 0}, {0x1476A, 0}, {0x1576A, 0}, {0x1676A, 0},
{0x1776A, 0}, {0x1876A, 0}, {0x1086A, 0}, {0x1186A, 0},
{0x1286A, 0}, {0x1386A, 0}, {0x1486A, 0}, {0x1586A, 0},
{0x1686A, 0}, {0x1786A, 0}, {0x1886A, 0}, {0x1006B, 0},
{0x1106B, 0}, {0x1206B, 0}, {0x1306B, 0}, {0x1406B, 0},
{0x1506B, 0}, {0x1606B, 0}, {0x1706B, 0}, {0x1806B, 0},
{0x1016B, 0}, {0x1116B, 0}, {0x1216B, 0}, {0x1316B, 0},
{0x1416B, 0}, {0x1516B, 0}, {0x1616B, 0}, {0x1716B, 0},
{0x1816B, 0}, {0x1026B, 0}, {0x1126B, 0}, {0x1226B, 0},
{0x1326B, 0}, {0x1426B, 0}, {0x1526B, 0}, {0x1626B, 0},
{0x1726B, 0}, {0x1826B, 0}, {0x1036B, 0}, {0x1136B, 0},
{0x1236B, 0}, {0x1336B, 0}, {0x1436B, 0}, {0x1536B, 0},
{0x1636B, 0}, {0x1736B, 0}, {0x1836B, 0}, {0x1046B, 0},
{0x1146B, 0}, {0x1246B, 0}, {0x1346B, 0}, {0x1446B, 0},
{0x1546B, 0}, {0x1646B, 0}, {0x1746B, 0}, {0x1846B, 0},
{0x1056B, 0}, {0x1156B, 0}, {0x1256B, 0}, {0x1356B, 0},
{0x1456B, 0}, {0x1556B, 0}, {0x1656B, 0}, {0x1756B, 0},
{0x1856B, 0}, {0x1066B, 0}, {0x1166B, 0}, {0x1266B, 0},
{0x1366B, 0}, {0x1466B, 0}, {0x1566B, 0}, {0x1666B, 0},
{0x1766B, 0}, {0x1866B, 0}, {0x1076B, 0}, {0x1176B, 0},
{0x1276B, 0}, {0x1376B, 0}, {0x1476B, 0}, {0x1576B, 0},
{0x1676B, 0}, {0x1776B, 0}, {0x1876B, 0}, {0x1086B, 0},
{0x1186B, 0}, {0x1286B, 0}, {0x1386B, 0}, {0x1486B, 0},
{0x1586B, 0}, {0x1686B, 0}, {0x1786B, 0}, {0x1886B, 0},
{0x1008C, 0}, {0x1108C, 0}, {0x1208C, 0}, {0x1308C, 0},
{0x1408C, 0}, {0x1508C, 0}, {0x1608C, 0}, {0x1708C, 0},
{0x1808C, 0}, {0x1018C, 0}, {0x1118C, 0}, {0x1218C, 0},
{0x1318C, 0}, {0x1418C, 0}, {0x1518C, 0}, {0x1618C, 0},
{0x1718C, 0}, {0x1818C, 0}, {0x1008D, 0}, {0x1108D, 0},
{0x1208D, 0}, {0x1308D, 0}, {0x1408D, 0}, {0x1508D, 0},
{0x1608D, 0}, {0x1708D, 0}, {0x1808D, 0}, {0x1018D, 0},
{0x1118D, 0}, {0x1218D, 0}, {0x1318D, 0}, {0x1418D, 0},
{0x1518D, 0}, {0x1618D, 0}, {0x1718D, 0}, {0x1818D, 0},
{0x1008E, 0}, {0x1108E, 0}, {0x1208E, 0}, {0x1308E, 0},
{0x1408E, 0}, {0x1508E, 0}, {0x1608E, 0}, {0x1708E, 0},
{0x1808E, 0}, {0x1018E, 0}, {0x1118E, 0}, {0x1218E, 0},
{0x1318E, 0}, {0x1418E, 0}, {0x1518E, 0}, {0x1618E, 0},
{0x1718E, 0}, {0x1818E, 0}, {0x1008F, 0}, {0x1108F, 0},
{0x1208F, 0}, {0x1308F, 0}, {0x1408F, 0}, {0x1508F, 0},
{0x1608F, 0}, {0x1708F, 0}, {0x1808F, 0}, {0x1018F, 0},
{0x1118F, 0}, {0x1218F, 0}, {0x1318F, 0}, {0x1418F, 0},
{0x1518F, 0}, {0x1618F, 0}, {0x1718F, 0}, {0x1818F, 0},
{0x100C0, 0}, {0x110C0, 0}, {0x120C0, 0}, {0x130C0, 0},
{0x140C0, 0}, {0x150C0, 0}, {0x160C0, 0}, {0x170C0, 0},
{0x180C0, 0}, {0x101C0, 0}, {0x111C0, 0}, {0x121C0, 0},
{0x131C0, 0}, {0x141C0, 0}, {0x151C0, 0}, {0x161C0, 0},
{0x171C0, 0}, {0x181C0, 0}, {0x102C0, 0}, {0x112C0, 0},
{0x122C0, 0}, {0x132C0, 0}, {0x142C0, 0}, {0x152C0, 0},
{0x162C0, 0}, {0x172C0, 0}, {0x182C0, 0}, {0x103C0, 0},
{0x113C0, 0}, {0x123C0, 0}, {0x133C0, 0}, {0x143C0, 0},
{0x153C0, 0}, {0x163C0, 0}, {0x173C0, 0}, {0x183C0, 0},
{0x104C0, 0}, {0x114C0, 0}, {0x124C0, 0}, {0x134C0, 0},
{0x144C0, 0}, {0x154C0, 0}, {0x164C0, 0}, {0x174C0, 0},
{0x184C0, 0}, {0x105C0, 0}, {0x115C0, 0}, {0x125C0, 0},
{0x135C0, 0}, {0x145C0, 0}, {0x155C0, 0}, {0x165C0, 0},
{0x175C0, 0}, {0x185C0, 0}, {0x106C0, 0}, {0x116C0, 0},
{0x126C0, 0}, {0x136C0, 0}, {0x146C0, 0}, {0x156C0, 0},
{0x166C0, 0}, {0x176C0, 0}, {0x186C0, 0}, {0x107C0, 0},
{0x117C0, 0}, {0x127C0, 0}, {0x137C0, 0}, {0x147C0, 0},
{0x157C0, 0}, {0x167C0, 0}, {0x177C0, 0}, {0x187C0, 0},
{0x108C0, 0}, {0x118C0, 0}, {0x128C0, 0}, {0x138C0, 0},
{0x148C0, 0}, {0x158C0, 0}, {0x168C0, 0}, {0x178C0, 0},
{0x188C0, 0}, {0x100C1, 0}, {0x110C1, 0}, {0x120C1, 0},
{0x130C1, 0}, {0x140C1, 0}, {0x150C1, 0}, {0x160C1, 0},
{0x170C1, 0}, {0x180C1, 0}, {0x101C1, 0}, {0x111C1, 0},
{0x121C1, 0}, {0x131C1, 0}, {0x141C1, 0}, {0x151C1, 0},
{0x161C1, 0}, {0x171C1, 0}, {0x181C1, 0}, {0x102C1, 0},
{0x112C1, 0}, {0x122C1, 0}, {0x132C1, 0}, {0x142C1, 0},
{0x152C1, 0}, {0x162C1, 0}, {0x172C1, 0}, {0x182C1, 0},
{0x103C1, 0}, {0x113C1, 0}, {0x123C1, 0}, {0x133C1, 0},
{0x143C1, 0}, {0x153C1, 0}, {0x163C1, 0}, {0x173C1, 0},
{0x183C1, 0}, {0x104C1, 0}, {0x114C1, 0}, {0x124C1, 0},
{0x134C1, 0}, {0x144C1, 0}, {0x154C1, 0}, {0x164C1, 0},
{0x174C1, 0}, {0x184C1, 0}, {0x105C1, 0}, {0x115C1, 0},
{0x125C1, 0}, {0x135C1, 0}, {0x145C1, 0}, {0x155C1, 0},
{0x165C1, 0}, {0x175C1, 0}, {0x185C1, 0}, {0x106C1, 0},
{0x116C1, 0}, {0x126C1, 0}, {0x136C1, 0}, {0x146C1, 0},
{0x156C1, 0}, {0x166C1, 0}, {0x176C1, 0}, {0x186C1, 0},
{0x107C1, 0}, {0x117C1, 0}, {0x127C1, 0}, {0x137C1, 0},
{0x147C1, 0}, {0x157C1, 0}, {0x167C1, 0}, {0x177C1, 0},
{0x187C1, 0}, {0x108C1, 0}, {0x118C1, 0}, {0x128C1, 0},
{0x138C1, 0}, {0x148C1, 0}, {0x158C1, 0}, {0x168C1, 0},
{0x178C1, 0}, {0x188C1, 0}, {0x100C2, 0}, {0x110C2, 0},
{0x120C2, 0}, {0x130C2, 0}, {0x140C2, 0}, {0x150C2, 0},
{0x160C2, 0}, {0x170C2, 0}, {0x180C2, 0}, {0x101C2, 0},
{0x111C2, 0}, {0x121C2, 0}, {0x131C2, 0}, {0x141C2, 0},
{0x151C2, 0}, {0x161C2, 0}, {0x171C2, 0}, {0x181C2, 0},
{0x102C2, 0}, {0x112C2, 0}, {0x122C2, 0}, {0x132C2, 0},
{0x142C2, 0}, {0x152C2, 0}, {0x162C2, 0}, {0x172C2, 0},
{0x182C2, 0}, {0x103C2, 0}, {0x113C2, 0}, {0x123C2, 0},
{0x133C2, 0}, {0x143C2, 0}, {0x153C2, 0}, {0x163C2, 0},
{0x173C2, 0}, {0x183C2, 0}, {0x104C2, 0}, {0x114C2, 0},
{0x124C2, 0}, {0x134C2, 0}, {0x144C2, 0}, {0x154C2, 0},
{0x164C2, 0}, {0x174C2, 0}, {0x184C2, 0}, {0x105C2, 0},
{0x115C2, 0}, {0x125C2, 0}, {0x135C2, 0}, {0x145C2, 0},
{0x155C2, 0}, {0x165C2, 0}, {0x175C2, 0}, {0x185C2, 0},
{0x106C2, 0}, {0x116C2, 0}, {0x126C2, 0}, {0x136C2, 0},
{0x146C2, 0}, {0x156C2, 0}, {0x166C2, 0}, {0x176C2, 0},
{0x186C2, 0}, {0x107C2, 0}, {0x117C2, 0}, {0x127C2, 0},
{0x137C2, 0}, {0x147C2, 0}, {0x157C2, 0}, {0x167C2, 0},
{0x177C2, 0}, {0x187C2, 0}, {0x108C2, 0}, {0x118C2, 0},
{0x128C2, 0}, {0x138C2, 0}, {0x148C2, 0}, {0x158C2, 0},
{0x168C2, 0}, {0x178C2, 0}, {0x188C2, 0}, {0x100C3, 0},
{0x110C3, 0}, {0x120C3, 0}, {0x130C3, 0}, {0x140C3, 0},
{0x150C3, 0}, {0x160C3, 0}, {0x170C3, 0}, {0x180C3, 0},
{0x101C3, 0}, {0x111C3, 0}, {0x121C3, 0}, {0x131C3, 0},
{0x141C3, 0}, {0x151C3, 0}, {0x161C3, 0}, {0x171C3, 0},
{0x181C3, 0}, {0x102C3, 0}, {0x112C3, 0}, {0x122C3, 0},
{0x132C3, 0}, {0x142C3, 0}, {0x152C3, 0}, {0x162C3, 0},
{0x172C3, 0}, {0x182C3, 0}, {0x103C3, 0}, {0x113C3, 0},
{0x123C3, 0}, {0x133C3, 0}, {0x143C3, 0}, {0x153C3, 0},
{0x163C3, 0}, {0x173C3, 0}, {0x183C3, 0}, {0x104C3, 0},
{0x114C3, 0}, {0x124C3, 0}, {0x134C3, 0}, {0x144C3, 0},
{0x154C3, 0}, {0x164C3, 0}, {0x174C3, 0}, {0x184C3, 0},
{0x105C3, 0}, {0x115C3, 0}, {0x125C3, 0}, {0x135C3, 0},
{0x145C3, 0}, {0x155C3, 0}, {0x165C3, 0}, {0x175C3, 0},
{0x185C3, 0}, {0x106C3, 0}, {0x116C3, 0}, {0x126C3, 0},
{0x136C3, 0}, {0x146C3, 0}, {0x156C3, 0}, {0x166C3, 0},
{0x176C3, 0}, {0x186C3, 0}, {0x107C3, 0}, {0x117C3, 0},
{0x127C3, 0}, {0x137C3, 0}, {0x147C3, 0}, {0x157C3, 0},
{0x167C3, 0}, {0x177C3, 0}, {0x187C3, 0}, {0x108C3, 0},
{0x118C3, 0}, {0x128C3, 0}, {0x138C3, 0}, {0x148C3, 0},
{0x158C3, 0}, {0x168C3, 0}, {0x178C3, 0}, {0x188C3, 0},
{0x10020, 0}, {0x11020, 0}, {0x12020, 0}, {0x13020, 0},
{0x14020, 0}, {0x15020, 0}, {0x16020, 0}, {0x17020, 0},
{0x18020, 0}, {0x2007D, 0}, {0x20077, 0}
};
/*
*Array to store the PHY 2D Training register addresses
*/
struct phy_training_values training_2D_values[] = {
{0x1008C, 0}, {0x1108C, 0}, {0x1208C, 0}, {0x1308C, 0},
{0x1408C, 0}, {0x1508C, 0}, {0x1608C, 0}, {0x1708C, 0},
{0x1808C, 0}, {0x1018C, 0}, {0x1118C, 0}, {0x1218C, 0},
{0x1318C, 0}, {0x1418C, 0}, {0x1518C, 0}, {0x1618C, 0},
{0x1718C, 0}, {0x1818C, 0}, {0x10040, 0}, {0x11040, 0},
{0x12040, 0}, {0x13040, 0}, {0x14040, 0}, {0x15040, 0},
{0x16040, 0}, {0x17040, 0}, {0x18040, 0}, {0x10140, 0},
{0x11140, 0}, {0x12140, 0}, {0x13140, 0}, {0x14140, 0},
{0x15140, 0}, {0x16140, 0}, {0x17140, 0}, {0x18140, 0},
{0x10240, 0}, {0x11240, 0}, {0x12240, 0}, {0x13240, 0},
{0x14240, 0}, {0x15240, 0}, {0x16240, 0}, {0x17240, 0},
{0x18240, 0}, {0x10340, 0}, {0x11340, 0}, {0x12340, 0},
{0x13340, 0}, {0x14340, 0}, {0x15340, 0}, {0x16340, 0},
{0x17340, 0}, {0x18340, 0}, {0x10440, 0}, {0x11440, 0},
{0x12440, 0}, {0x13440, 0}, {0x14440, 0}, {0x15440, 0},
{0x16440, 0}, {0x17440, 0}, {0x18440, 0}, {0x10540, 0},
{0x11540, 0}, {0x12540, 0}, {0x13540, 0}, {0x14540, 0},
{0x15540, 0}, {0x16540, 0}, {0x17540, 0}, {0x18540, 0},
{0x10640, 0}, {0x11640, 0}, {0x12640, 0}, {0x13640, 0},
{0x14640, 0}, {0x15640, 0}, {0x16640, 0}, {0x17640, 0},
{0x18640, 0}, {0x10740, 0}, {0x11740, 0}, {0x12740, 0},
{0x13740, 0}, {0x14740, 0}, {0x15740, 0}, {0x16740, 0},
{0x17740, 0}, {0x18740, 0}, {0x10840, 0}, {0x11840, 0},
{0x12840, 0}, {0x13840, 0}, {0x14840, 0}, {0x15840, 0},
{0x16840, 0}, {0x17840, 0}, {0x18840, 0}, {0x10030, 0},
{0x11030, 0}, {0x12030, 0}, {0x13030, 0}, {0x14030, 0},
{0x15030, 0}, {0x16030, 0}, {0x17030, 0}, {0x18030, 0},
{0x10130, 0}, {0x11130, 0}, {0x12130, 0}, {0x13130, 0},
{0x14130, 0}, {0x15130, 0}, {0x16130, 0}, {0x17130, 0},
{0x18130, 0}, {0x10230, 0}, {0x11230, 0}, {0x12230, 0},
{0x13230, 0}, {0x14230, 0}, {0x15230, 0}, {0x16230, 0},
{0x17230, 0}, {0x18230, 0}, {0x10330, 0}, {0x11330, 0},
{0x12330, 0}, {0x13330, 0}, {0x14330, 0}, {0x15330, 0},
{0x16330, 0}, {0x17330, 0}, {0x18330, 0}, {0x10430, 0},
{0x11430, 0}, {0x12430, 0}, {0x13430, 0}, {0x14430, 0},
{0x15430, 0}, {0x16430, 0}, {0x17430, 0}, {0x18430, 0},
{0x10530, 0}, {0x11530, 0}, {0x12530, 0}, {0x13530, 0},
{0x14530, 0}, {0x15530, 0}, {0x16530, 0}, {0x17530, 0},
{0x18530, 0}, {0x10630, 0}, {0x11630, 0}, {0x12630, 0},
{0x13630, 0}, {0x14630, 0}, {0x15630, 0}, {0x16630, 0},
{0x17630, 0}, {0x18630, 0}, {0x10730, 0}, {0x11730, 0},
{0x12730, 0}, {0x13730, 0}, {0x14730, 0}, {0x15730, 0},
{0x16730, 0}, {0x17730, 0}, {0x18730, 0}, {0x10830, 0},
{0x11830, 0}, {0x12830, 0}, {0x13830, 0}, {0x14830, 0},
{0x15830, 0}, {0x16830, 0}, {0x17830, 0}, {0x18830, 0}
};
#endif
/*
* Copyright 2021 NXP
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef PIE_H
#define PIE_H
struct pie {
uint32_t addr;
uint16_t data;
};
static const struct pie pie_udimm[] = {
{0x90000, 0x10},
{0x90001, 0x400},
{0x90002, 0x10e},
{0x90003, 0x0},
{0x90004, 0x0},
{0x90005, 0x8},
{0x90029, 0xb},
{0x9002a, 0x480},
{0x9002b, 0x109},
{0x9002c, 0x8},
{0x9002d, 0x448},
{0x9002e, 0x139},
{0x9002f, 0x8},
{0x90030, 0x478},
{0x90031, 0x109},
{0x90032, 0x2},
{0x90033, 0x10},
{0x90034, 0x139},
{0x90035, 0xb},
{0x90036, 0x7c0},
{0x90037, 0x139},
{0x90038, 0x44},
{0x90039, 0x633},
{0x9003a, 0x159},
{0x9003b, 0x14f},
{0x9003c, 0x630},
{0x9003d, 0x159},
{0x9003e, 0x47},
{0x9003f, 0x633},
{0x90040, 0x149},
{0x90041, 0x4f},
{0x90042, 0x633},
{0x90043, 0x179},
{0x90044, 0x8},
{0x90045, 0xe0},
{0x90046, 0x109},
{0x90047, 0x0},
{0x90048, 0x7c8},
{0x90049, 0x109},
{0x9004a, 0x0},
{0x9004b, 0x1},
{0x9004c, 0x8},
{0x9004d, 0x0},
{0x9004e, 0x45a},
{0x9004f, 0x9},
{0x90050, 0x0},
{0x90051, 0x448},
{0x90052, 0x109},
{0x90053, 0x40},
{0x90054, 0x633},
{0x90055, 0x179},
{0x90056, 0x1},
{0x90057, 0x618},
{0x90058, 0x109},
{0x90059, 0x40c0},
{0x9005a, 0x633},
{0x9005b, 0x149},
{0x9005c, 0x8},
{0x9005d, 0x4},
{0x9005e, 0x48},
{0x9005f, 0x4040},
{0x90060, 0x633},
{0x90061, 0x149},
{0x90062, 0x0},
{0x90063, 0x4},
{0x90064, 0x48},
{0x90065, 0x40},
{0x90066, 0x633},
{0x90067, 0x149},
{0x90068, 0x10},
{0x90069, 0x4},
{0x9006a, 0x18},
{0x9006b, 0x0},
{0x9006c, 0x4},
{0x9006d, 0x78},
{0x9006e, 0x549},
{0x9006f, 0x633},
{0x90070, 0x159},
{0x90071, 0xd49},
{0x90072, 0x633},
{0x90073, 0x159},
{0x90074, 0x94a},
{0x90075, 0x633},
{0x90076, 0x159},
{0x90077, 0x441},
{0x90078, 0x633},
{0x90079, 0x149},
{0x9007a, 0x42},
{0x9007b, 0x633},
{0x9007c, 0x149},
{0x9007d, 0x1},
{0x9007e, 0x633},
{0x9007f, 0x149},
{0x90080, 0x0},
{0x90081, 0xe0},
{0x90082, 0x109},
{0x90083, 0xa},
{0x90084, 0x10},
{0x90085, 0x109},
{0x90086, 0x9},
{0x90087, 0x3c0},
{0x90088, 0x149},
{0x90089, 0x9},
{0x9008a, 0x3c0},
{0x9008b, 0x159},
{0x9008c, 0x18},
{0x9008d, 0x10},
{0x9008e, 0x109},
{0x9008f, 0x0},
{0x90090, 0x3c0},
{0x90091, 0x109},
{0x90092, 0x18},
{0x90093, 0x4},
{0x90094, 0x48},
{0x90095, 0x18},
{0x90096, 0x4},
{0x90097, 0x58},
{0x90098, 0xb},
{0x90099, 0x10},
{0x9009a, 0x109},
{0x9009b, 0x1},
{0x9009c, 0x10},
{0x9009d, 0x109},
{0x9009e, 0x5},
{0x9009f, 0x7c0},
{0x900a0, 0x109},
{0x900a1, 0x0},
{0x900a2, 0x8140},
{0x900a3, 0x10c},
{0x900a4, 0x10},
{0x900a5, 0x8138},
{0x900a6, 0x10c},
{0x900a7, 0x8},
{0x900a8, 0x7c8},
{0x900a9, 0x101},
{0x900aa, 0x8},
{0x900ab, 0x448},
{0x900ac, 0x109},
{0x900ad, 0xf},
{0x900ae, 0x7c0},
{0x900af, 0x109},
{0x900b0, 0x47},
{0x900b1, 0x630},
{0x900b2, 0x109},
{0x900b3, 0x8},
{0x900b4, 0x618},
{0x900b5, 0x109},
{0x900b6, 0x8},
{0x900b7, 0xe0},
{0x900b8, 0x109},
{0x900b9, 0x0},
{0x900ba, 0x7c8},
{0x900bb, 0x109},
{0x900bc, 0x8},
{0x900bd, 0x8140},
{0x900be, 0x10c},
{0x900bf, 0x0},
{0x900c0, 0x478},
{0x900c1, 0x109},
{0x900c2, 0x0},
{0x900c3, 0x1},
{0x900c4, 0x8},
{0x900c5, 0x8},
{0x900c6, 0x4},
{0x900c7, 0x8},
{0x900c8, 0x8},
{0x900c9, 0x7c8},
{0x900ca, 0x101},
{0x90006, 0x0},
{0x90007, 0x0},
{0x90008, 0x8},
{0x90009, 0x0},
{0x9000a, 0x0},
{0x9000b, 0x0},
{0xd00e7, 0x400},
{0x90017, 0x0},
{0x90026, 0x2b},
};
static const struct pie pie_rdimm[] = {
{0x90000, 0x10},
{0x90001, 0x400},
{0x90002, 0x10e},
{0x90003, 0x0},
{0x90004, 0x0},
{0x90005, 0x8},
{0x40000, 0x10},
{0x40020, 0x0},
{0x40040, 0x0},
{0x40060, 0x0},
{0x40001, 0x70a},
{0x40021, 0x7005},
{0x40041, 0x0},
{0x40061, 0x2001},
{0x40002, 0x4010},
{0x40022, 0x0},
{0x40042, 0x0},
{0x40062, 0x0},
{0x90029, 0x10},
{0x9002a, 0x400},
{0x9002b, 0x16e},
{0x9002c, 0x8},
{0x9002d, 0x370},
{0x9002e, 0x169},
{0x9002f, 0x8},
{0x90030, 0x7aa},
{0x90031, 0x6a},
{0x90032, 0x10},
{0x90033, 0x7b2},
{0x90034, 0x6a},
{0x90035, 0x0},
{0x90036, 0x48a},
{0x90037, 0x6a},
{0x90038, 0x9},
{0x90039, 0x480},
{0x9003a, 0x16a},
{0x9003b, 0x4},
{0x9003c, 0x790},
{0x9003d, 0x16a},
{0x9003e, 0xc},
{0x9003f, 0x408},
{0x90040, 0x169},
{0x90041, 0xa},
{0x90042, 0x0},
{0x90043, 0x68},
{0x90044, 0x0},
{0x90045, 0x408},
{0x90046, 0x169},
{0x90047, 0x1},
{0x90048, 0x480},
{0x90049, 0x16a},
{0x9004a, 0xb},
{0x9004b, 0x480},
{0x9004c, 0x109},
{0x9004d, 0x8},
{0x9004e, 0x448},
{0x9004f, 0x139},
{0x90050, 0x78},
{0x90051, 0x8},
{0x90052, 0x139},
{0x90053, 0x2},
{0x90054, 0x10},
{0x90055, 0x139},
{0x90056, 0xb},
{0x90057, 0x7c0},
{0x90058, 0x139},
{0x90059, 0x44},
{0x9005a, 0x633},
{0x9005b, 0x159},
{0x9005c, 0x14f},
{0x9005d, 0x630},
{0x9005e, 0x159},
{0x9005f, 0x47},
{0x90060, 0x633},
{0x90061, 0x149},
{0x90062, 0x4f},
{0x90063, 0x633},
{0x90064, 0x179},
{0x90065, 0x8},
{0x90066, 0xe0},
{0x90067, 0x109},
{0x90068, 0x0},
{0x90069, 0x7c8},
{0x9006a, 0x109},
{0x9006b, 0x0},
{0x9006c, 0x1},
{0x9006d, 0x8},
{0x9006e, 0x0},
{0x9006f, 0x45a},
{0x90070, 0x9},
{0x90071, 0x0},
{0x90072, 0x448},
{0x90073, 0x109},
{0x90074, 0x40},
{0x90075, 0x633},
{0x90076, 0x179},
{0x90077, 0x1},
{0x90078, 0x618},
{0x90079, 0x109},
{0x9007a, 0x40c0},
{0x9007b, 0x633},
{0x9007c, 0x149},
{0x9007d, 0x8},
{0x9007e, 0x4},
{0x9007f, 0x48},
{0x90080, 0x4040},
{0x90081, 0x633},
{0x90082, 0x149},
{0x90083, 0x0},
{0x90084, 0x4},
{0x90085, 0x48},
{0x90086, 0x40},
{0x90087, 0x633},
{0x90088, 0x149},
{0x90089, 0x10},
{0x9008a, 0x4},
{0x9008b, 0x18},
{0x9008c, 0x0},
{0x9008d, 0x4},
{0x9008e, 0x78},
{0x9008f, 0x549},
{0x90090, 0x633},
{0x90091, 0x159},
{0x90092, 0xd49},
{0x90093, 0x633},
{0x90094, 0x159},
{0x90095, 0x94a},
{0x90096, 0x633},
{0x90097, 0x159},
{0x90098, 0x441},
{0x90099, 0x633},
{0x9009a, 0x149},
{0x9009b, 0x42},
{0x9009c, 0x633},
{0x9009d, 0x149},
{0x9009e, 0x1},
{0x9009f, 0x633},
{0x900a0, 0x149},
{0x900a1, 0x0},
{0x900a2, 0xe0},
{0x900a3, 0x109},
{0x900a4, 0xa},
{0x900a5, 0x10},
{0x900a6, 0x109},
{0x900a7, 0x9},
{0x900a8, 0x3c0},
{0x900a9, 0x149},
{0x900aa, 0x9},
{0x900ab, 0x3c0},
{0x900ac, 0x159},
{0x900ad, 0x18},
{0x900ae, 0x10},
{0x900af, 0x109},
{0x900b0, 0x0},
{0x900b1, 0x3c0},
{0x900b2, 0x109},
{0x900b3, 0x18},
{0x900b4, 0x4},
{0x900b5, 0x48},
{0x900b6, 0x18},
{0x900b7, 0x4},
{0x900b8, 0x58},
{0x900b9, 0xb},
{0x900ba, 0x10},
{0x900bb, 0x109},
{0x900bc, 0x1},
{0x900bd, 0x10},
{0x900be, 0x109},
{0x900bf, 0x5},
{0x900c0, 0x7c0},
{0x900c1, 0x109},
{0x900c2, 0x3},
{0x900c3, 0x370},
{0x900c4, 0x169},
{0x900c5, 0x3},
{0x900c6, 0x8},
{0x900c7, 0x139},
{0x900c8, 0x0},
{0x900c9, 0x400},
{0x900ca, 0x16e},
{0x900cb, 0x8},
{0x900cc, 0x478},
{0x900cd, 0x109},
{0x900ce, 0x0},
{0x900cf, 0x8140},
{0x900d0, 0x10c},
{0x900d1, 0x10},
{0x900d2, 0x8138},
{0x900d3, 0x10c},
{0x900d4, 0x8},
{0x900d5, 0x7c8},
{0x900d6, 0x101},
{0x900d7, 0x7a},
{0x900d8, 0x8},
{0x900d9, 0x109},
{0x900da, 0x8},
{0x900db, 0x448},
{0x900dc, 0x109},
{0x900dd, 0xf},
{0x900de, 0x7c0},
{0x900df, 0x109},
{0x900e0, 0x47},
{0x900e1, 0x630},
{0x900e2, 0x109},
{0x900e3, 0x8},
{0x900e4, 0x618},
{0x900e5, 0x109},
{0x900e6, 0x8},
{0x900e7, 0xe0},
{0x900e8, 0x109},
{0x900e9, 0x0},
{0x900ea, 0x8},
{0x900eb, 0x109},
{0x900ec, 0x0},
{0x900ed, 0x7c8},
{0x900ee, 0x109},
{0x900ef, 0x8},
{0x900f0, 0x8140},
{0x900f1, 0x10c},
{0x900f2, 0x0},
{0x900f3, 0x478},
{0x900f4, 0x109},
{0x900f5, 0x0},
{0x900f6, 0x1},
{0x900f7, 0x8},
{0x900f8, 0x8},
{0x900f9, 0x4},
{0x900fa, 0x8},
{0x900fb, 0x8},
{0x900fc, 0x7c8},
{0x900fd, 0x101},
{0x90006, 0x0},
{0x90007, 0x0},
{0x90008, 0x8},
{0x90009, 0x0},
{0x9000a, 0x0},
{0x9000b, 0x0},
{0xd00e7, 0x400},
{0x90017, 0x0},
{0x90026, 0x3a},
};
static const struct pie pie_lrdimm[] = {
{0x90000, 0x10},
{0x90001, 0x400},
{0x90002, 0x10e},
{0x90003, 0x0},
{0x90004, 0x0},
{0x90005, 0x8},
{0x90029, 0xb},
{0x9002a, 0x480},
{0x9002b, 0x109},
{0x9002c, 0x8},
{0x9002d, 0x448},
{0x9002e, 0x139},
{0x9002f, 0x78},
{0x90030, 0x8},
{0x90031, 0x139},
{0x90032, 0x2},
{0x90033, 0x10},
{0x90034, 0x139},
{0x90035, 0xb},
{0x90036, 0x7c0},
{0x90037, 0x139},
{0x90038, 0x44},
{0x90039, 0x633},
{0x9003a, 0x159},
{0x9003b, 0x14f},
{0x9003c, 0x630},
{0x9003d, 0x159},
{0x9003e, 0x47},
{0x9003f, 0x633},
{0x90040, 0x149},
{0x90041, 0x4f},
{0x90042, 0x633},
{0x90043, 0x179},
{0x90044, 0x8},
{0x90045, 0xe0},
{0x90046, 0x109},
{0x90047, 0x0},
{0x90048, 0x7c8},
{0x90049, 0x109},
{0x9004a, 0x0},
{0x9004b, 0x1},
{0x9004c, 0x8},
{0x9004d, 0x0},
{0x9004e, 0x45a},
{0x9004f, 0x9},
{0x90050, 0x0},
{0x90051, 0x448},
{0x90052, 0x109},
{0x90053, 0x40},
{0x90054, 0x633},
{0x90055, 0x179},
{0x90056, 0x1},
{0x90057, 0x618},
{0x90058, 0x109},
{0x90059, 0x40c0},
{0x9005a, 0x633},
{0x9005b, 0x149},
{0x9005c, 0x8},
{0x9005d, 0x4},
{0x9005e, 0x48},
{0x9005f, 0x4040},
{0x90060, 0x633},
{0x90061, 0x149},
{0x90062, 0x0},
{0x90063, 0x4},
{0x90064, 0x48},
{0x90065, 0x40},
{0x90066, 0x633},
{0x90067, 0x149},
{0x90068, 0x10},
{0x90069, 0x4},
{0x9006a, 0x18},
{0x9006b, 0x0},
{0x9006c, 0x4},
{0x9006d, 0x78},
{0x9006e, 0x549},
{0x9006f, 0x633},
{0x90070, 0x159},
{0x90071, 0xd49},
{0x90072, 0x633},
{0x90073, 0x159},
{0x90074, 0x94a},
{0x90075, 0x633},
{0x90076, 0x159},
{0x90077, 0x441},
{0x90078, 0x633},
{0x90079, 0x149},
{0x9007a, 0x42},
{0x9007b, 0x633},
{0x9007c, 0x149},
{0x9007d, 0x1},
{0x9007e, 0x633},
{0x9007f, 0x149},
{0x90080, 0x0},
{0x90081, 0xe0},
{0x90082, 0x109},
{0x90083, 0xa},
{0x90084, 0x10},
{0x90085, 0x109},
{0x90086, 0x9},
{0x90087, 0x3c0},
{0x90088, 0x149},
{0x90089, 0x9},
{0x9008a, 0x3c0},
{0x9008b, 0x159},
{0x9008c, 0x18},
{0x9008d, 0x10},
{0x9008e, 0x109},
{0x9008f, 0x0},
{0x90090, 0x3c0},
{0x90091, 0x109},
{0x90092, 0x18},
{0x90093, 0x4},
{0x90094, 0x48},
{0x90095, 0x18},
{0x90096, 0x4},
{0x90097, 0x58},
{0x90098, 0xb},
{0x90099, 0x10},
{0x9009a, 0x109},
{0x9009b, 0x1},
{0x9009c, 0x10},
{0x9009d, 0x109},
{0x9009e, 0x5},
{0x9009f, 0x7c0},
{0x900a0, 0x109},
{0x900a1, 0x3},
{0x900a2, 0x8},
{0x900a3, 0x139},
{0x900a4, 0x0},
{0x900a5, 0x400},
{0x900a6, 0x16e},
{0x900a7, 0x8},
{0x900a8, 0x478},
{0x900a9, 0x109},
{0x900aa, 0x0},
{0x900ab, 0x8140},
{0x900ac, 0x10c},
{0x900ad, 0x10},
{0x900ae, 0x8138},
{0x900af, 0x10c},
{0x900b0, 0x8},
{0x900b1, 0x7c8},
{0x900b2, 0x101},
{0x900b3, 0x7a},
{0x900b4, 0x8},
{0x900b5, 0x109},
{0x900b6, 0x8},
{0x900b7, 0x448},
{0x900b8, 0x109},
{0x900b9, 0xf},
{0x900ba, 0x7c0},
{0x900bb, 0x109},
{0x900bc, 0x47},
{0x900bd, 0x630},
{0x900be, 0x109},
{0x900bf, 0x8},
{0x900c0, 0x618},
{0x900c1, 0x109},
{0x900c2, 0x8},
{0x900c3, 0xe0},
{0x900c4, 0x109},
{0x900c5, 0x0},
{0x900c6, 0x8},
{0x900c7, 0x109},
{0x900c8, 0x0},
{0x900c9, 0x7c8},
{0x900ca, 0x109},
{0x900cb, 0x8},
{0x900cc, 0x8140},
{0x900cd, 0x10c},
{0x900ce, 0x0},
{0x900cf, 0x478},
{0x900d0, 0x109},
{0x900d1, 0x0},
{0x900d2, 0x1},
{0x900d3, 0x8},
{0x900d4, 0x8},
{0x900d5, 0x4},
{0x900d6, 0x8},
{0x900d7, 0x8},
{0x900d8, 0x7c8},
{0x900d9, 0x101},
{0x90006, 0x0},
{0x90007, 0x0},
{0x90008, 0x8},
{0x90009, 0x0},
{0x9000a, 0x0},
{0x9000b, 0x0},
{0xd00e7, 0x400},
{0x90017, 0x0},
{0x90026, 0x2e},
};
#endif
#
# Copyright 2020 NXP
#
# SPDX-License-Identifier: BSD-3-Clause
#
#
###############################################################################
PLAT_DRIVERS_PATH := drivers/nxp
ifeq (${SMMU_NEEDED},yes)
PLAT_INCLUDES += -Iinclude/drivers/nxp/smmu/
endif
ifeq (${DCFG_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/dcfg/dcfg.mk
endif
ifeq (${CSU_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/csu/csu.mk
endif
ifeq (${TIMER_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/timer/timer.mk
endif
ifeq (${INTERCONNECT_NEEDED},yes)
include ${PLAT_DRIVERS_PATH}/interconnect/interconnect.mk
endif
ifeq (${GIC_NEEDED},yes)
include ${PLAT_DRIVERS_PATH}/gic/gic.mk
endif
ifeq (${SD_MMC_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/sd/sd_mmc.mk
endif
ifeq (${CONSOLE_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/console/console.mk
endif
ifeq (${SFP_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/sfp/sfp.mk
endif
ifeq (${XSPI_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/flexspi/nor/flexspi_nor.mk
endif
ifeq (${QSPI_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/qspi/qspi.mk
endif
ifeq (${SNVS_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/sec_mon/sec_mon.mk
endif
ifeq ($(I2C_NEEDED),yes)
$(eval $(call add_define, I2C_INIT))
include $(PLAT_DRIVERS_PATH)/i2c/i2c.mk
endif
ifeq ($(DDR_DRIVER_NEEDED),yes)
$(eval $(call add_define, DDR_INIT))
# define DDR_CNTRL_SOURCES
ifeq ($(DDRCNTLR),MMDC)
include $(PLAT_DRIVERS_PATH)/ddr/fsl-mmdc/ddr.mk
else
include $(PLAT_DRIVERS_PATH)/ddr/nxp-ddr/ddr.mk
endif # DDR_CNTRL_SOURCES
endif
ifeq (${PMU_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/pmu/pmu.mk
endif
ifeq (${CRYPTO_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/crypto/caam/caam.mk
endif
ifeq (${TZASC_NEEDED},yes)
include $(PLAT_DRIVERS_PATH)/tzc/tzc.mk
endif
ifeq (${GPIO_NEEDED},yes)
include ${PLAT_DRIVERS_PATH}/gpio/gpio.mk
endif
/*
* Copyright 2020 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <assert.h>
#include <fspi_api.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
int flexspi_nor_io_setup(uintptr_t nxp_flexspi_flash_addr,
size_t nxp_flexspi_flash_size, uint32_t fspi_base_reg_addr)
{
int ret = 0;
ret = fspi_init(fspi_base_reg_addr, nxp_flexspi_flash_addr);
/* Adding NOR Memory Map in XLAT Table */
mmap_add_region(nxp_flexspi_flash_addr, nxp_flexspi_flash_addr,
nxp_flexspi_flash_size, MT_MEMORY | MT_RW);
return ret;
}
/*
* Copyright 2020 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef FLEXSPI_NOR_H
#define FLEXSPI_NOR_H
int flexspi_nor_io_setup(uintptr_t nxp_flexspi_flash_addr,
size_t nxp_flexspi_flash_size,
uint32_t fspi_base_reg_addr);
#endif /* FLEXSPI_NOR_H */
#
# Copyright 2020 NXP
#
# SPDX-License-Identifier: BSD-3-Clause
#
ifeq (${XSPI_NOR},)
XSPI_NOR := 1
FLEXSPI_DRIVERS_PATH := ${PLAT_DRIVERS_PATH}/flexspi/nor
PLAT_XSPI_INCLUDES += -I$(FLEXSPI_DRIVERS_PATH)
XSPI_BOOT_SOURCES += $(FLEXSPI_DRIVERS_PATH)/flexspi_nor.c \
${FLEXSPI_DRIVERS_PATH}/fspi.c
ifeq ($(DEBUG),1)
XSPI_BOOT_SOURCES += ${FLEXSPI_DRIVERS_PATH}/test_fspi.c
endif
PLAT_XSPI_INCLUDES += -Iinclude/drivers/nxp/flexspi
PLAT_INCLUDES += ${PLAT_XSPI_INCLUDES}
ifeq (${BL_COMM_XSPI_NEEDED},yes)
BL_COMMON_SOURCES += ${XSPI_BOOT_SOURCES}
else
ifeq (${BL2_XSPI_NEEDED},yes)
BL2_SOURCES += ${XSPI_BOOT_SOURCES}
endif
ifeq (${BL31_XSPI_NEEDED},yes)
BL31_SOURCES += ${XSPI_BOOT_SOURCES}
endif
endif
endif
// SPDX-License-Identifier: BSD-3-Clause
/*
* NXP FlexSpi Controller Driver.
* Copyright 2021 NXP
*
*/
#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <common/debug.h>
#include <flash_info.h>
#include "fspi.h"
#include <fspi_api.h>
#include <xspi_error_codes.h>
#ifdef DEBUG_FLEXSPI
#define PR printf("In [%s][%d]\n", __func__, __LINE__)
#define PRA(a, b) printf("In [%s][%d] %s="a"\n", __func__, __LINE__, #b, b)
#else
#define PR
#define PRA(a, b)
#endif
/*
* This errata is valid for all NXP SoC.
*/
#define ERRATA_FLASH_A050272 1
static uintptr_t fspi_base_reg_addr;
static uintptr_t fspi_flash_base_addr;
static void fspi_RDSR(uint32_t *, const void *, uint32_t);
static void fspi_writel(uint32_t x_addr, uint32_t x_val)
{
fspi_out32((uint32_t *)(fspi_base_reg_addr + x_addr),
(uint32_t) x_val);
}
static uint32_t fspi_readl(uint32_t x_addr)
{
return fspi_in32((uint32_t *)(fspi_base_reg_addr + x_addr));
}
static void fspi_MDIS(uint8_t x_disable)
{
uint32_t ui_reg;
ui_reg = fspi_readl(FSPI_MCR0);
if (x_disable != 0U) {
ui_reg |= FSPI_MCR0_MDIS;
} else {
ui_reg &= (uint32_t) (~FSPI_MCR0_MDIS);
}
fspi_writel(FSPI_MCR0, ui_reg);
}
static void fspi_lock_LUT(void)
{
fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
fspi_writel(FSPI_LCKCR, FSPI_LCKER_LOCK);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
}
static void fspi_unlock_LUT(void)
{
fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
fspi_writel(FSPI_LCKCR, FSPI_LCKER_UNLOCK);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
}
static void fspi_op_setup(uint32_t fspi_op_seq_id, bool ignore_flash_sz)
{
uint32_t x_addr, x_instr0 = 0, x_instr1 = 0, x_instr2 = 0;
uint32_t cmd_id1, cmd_id2;
VERBOSE("In func %s\n", __func__);
switch (fspi_op_seq_id) {
case FSPI_READ_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_READ;
cmd_id2 = FSPI_NOR_CMD_READ_4B;
x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_LUT_READ);
break;
case FSPI_FASTREAD_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_FASTREAD;
cmd_id2 = FSPI_NOR_CMD_FASTREAD_4B;
x_instr2 = FSPI_INSTR_OPRND0(8) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_DUMMY_SDR)
| FSPI_INSTR_OPRND1(0)
| FSPI_INSTR_PAD1(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE1(FSPI_LUT_READ);
break;
case FSPI_WRITE_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_PP;
cmd_id2 = FSPI_NOR_CMD_PP_4B;
x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_LUT_WRITE);
break;
case FSPI_WREN_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_WREN;
cmd_id2 = FSPI_NOR_CMD_WREN;
break;
case FSPI_SE_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_SE_64K;
cmd_id2 = FSPI_NOR_CMD_SE_64K_4B;
break;
case FSPI_4K_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_SE_4K;
cmd_id2 = FSPI_NOR_CMD_SE_4K_4B;
break;
case FSPI_BE_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_BE;
cmd_id2 = FSPI_NOR_CMD_BE;
break;
case FSPI_RDSR_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_RDSR;
cmd_id2 = FSPI_NOR_CMD_RDSR;
break;
}
x_addr = FSPI_LUTREG_OFFSET + (uint32_t)(0x10 * fspi_op_seq_id);
if ((F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) || (ignore_flash_sz)) {
x_instr0 = FSPI_INSTR_OPRND0(cmd_id1);
x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR24BIT);
VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id1, x_addr);
} else {
x_instr0 = FSPI_INSTR_OPRND0(cmd_id2);
x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR32BIT);
VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id2, x_addr);
}
x_instr0 |= FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_LUT_CMD);
x_instr1 |= FSPI_INSTR_PAD1(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE1(FSPI_LUT_ADDR);
if (fspi_op_seq_id == FSPI_RDSR_SEQ_ID) {
x_instr0 |= FSPI_INSTR_OPRND1(1) | FSPI_INSTR_PAD1(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE1(FSPI_LUT_READ);
} else if ((fspi_op_seq_id != FSPI_BE_SEQ_ID)
&& (fspi_op_seq_id != FSPI_WREN_SEQ_ID)) {
x_instr0 |= x_instr1;
}
fspi_writel((x_addr), x_instr0);
fspi_writel((x_addr + U(0x4)), x_instr2);
fspi_writel((x_addr + U(0x8)), (uint32_t) 0x0); /* STOP command */
fspi_writel((x_addr + U(0xc)), (uint32_t) 0x0); /* STOP command */
}
static void fspi_setup_LUT(void)
{
VERBOSE("In func %s\n", __func__);
fspi_unlock_LUT();
/* LUT Setup for READ Command 3-Byte low Frequency */
fspi_op_setup(FSPI_READ_SEQ_ID, false);
/* LUT Setup for FAST READ Command 3-Byte/4-Byte high Frequency */
fspi_op_setup(FSPI_FASTREAD_SEQ_ID, false);
/* LUT Setup for Page Program */
fspi_op_setup(FSPI_WRITE_SEQ_ID, false);
/* LUT Setup for WREN */
fspi_op_setup(FSPI_WREN_SEQ_ID, true);
/* LUT Setup for Sector_Erase */
fspi_op_setup(FSPI_SE_SEQ_ID, false);
/* LUT Setup for Sub Sector 4K Erase */
fspi_op_setup(FSPI_4K_SEQ_ID, false);
/* LUT Setup for Bulk_Erase */
fspi_op_setup(FSPI_BE_SEQ_ID, true);
/* Read Status */
fspi_op_setup(FSPI_RDSR_SEQ_ID, true);
fspi_lock_LUT();
}
static inline void fspi_ahb_invalidate(void)
{
uint32_t reg;
VERBOSE("In func %s %d\n", __func__, __LINE__);
reg = fspi_readl(FSPI_MCR0);
reg |= FSPI_MCR0_SWRST;
fspi_writel(FSPI_MCR0, reg);
while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST) != 0)
; /* FSPI_MCR0_SWRESET_MASK */
VERBOSE("In func %s %d\n", __func__, __LINE__);
}
#if defined(CONFIG_FSPI_AHB)
static void fspi_init_ahb(void)
{
uint32_t i, x_flash_cr2, seq_id;
x_flash_cr2 = 0;
/* Reset AHB RX buffer CR configuration */
for (i = 0; i < 8; i++) {
fspi_writel((FSPI_AHBRX_BUF0CR0 + 4 * i), 0U);
}
/* Set ADATSZ with the maximum AHB buffer size */
fspi_writel(FSPI_AHBRX_BUF7CR0,
((uint32_t) ((FSPI_RX_MAX_AHBBUF_SIZE / 8U) |
FSPI_AHBRXBUF0CR7_PREF)));
/* Known limitation handling: prefetch and
* no start address alignment.*/
fspi_writel(FSPI_AHBCR, FSPI_AHBCR_PREF_EN);
INFO("xAhbcr=0x%x\n", fspi_readl(FSPI_AHBCR));
// Setup AHB READ sequenceID for all flashes.
x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2);
INFO("x_flash_cr2=0x%x\n", x_flash_cr2);
seq_id = CONFIG_FSPI_FASTREAD ?
FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID;
x_flash_cr2 |= ((seq_id << FSPI_FLSHXCR2_ARDSEQI_SHIFT) & 0x1f);
INFO("x_flash_cr2=0x%x\n", x_flash_cr2);
fspi_writel(FSPI_FLSHA1CR2, x_flash_cr2);
x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2);
INFO("x_flash_cr2=0x%x\n", x_flash_cr2);
}
#endif
int xspi_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes)
{
if (x_size_bytes == 0) {
ERROR("Zero length reads are not allowed\n");
return XSPI_READ_FAIL;
}
#if defined(CONFIG_FSPI_AHB)
return xspi_ahb_read(pc_rx_addr, pc_rx_buf, x_size_bytes);
#else
return xspi_ip_read(pc_rx_addr, pc_rx_buf, x_size_bytes);
#endif
}
#if defined(CONFIG_FSPI_AHB)
int xspi_ahb_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes)
{
VERBOSE("In func %s 0x%x\n", __func__, (pc_rx_addr));
if (F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) {
pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_24BIT_ADDRESS));
} else {
pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_32BIT_ADDRESS));
}
pc_rx_addr = ((uint32_t)(pcRxAddr + fspi_flash_base_addr));
if (((pc_rx_addr % 4) != 0) || (((uintptr_t)pc_rx_buf % 4) != 0)) {
WARN("%s: unaligned Start Address src=%ld dst=0x%p\n",
__func__, (pc_rx_addr - fspi_flash_base_addr), pc_rx_buf);
}
/* Directly copy from AHB Buffer */
memcpy(pc_rx_buf, (void *)(uintptr_t)pc_rx_addr, x_size_bytes);
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
#endif
int xspi_ip_read(uint32_t pc_rx_addr, uint32_t *pv_rx_buf, uint32_t ui_len)
{
uint32_t i = 0U, j = 0U, x_rem = 0U;
uint32_t x_iteration = 0U, x_size_rx = 0U, x_size_wm, temp_size;
uint32_t data = 0U;
uint32_t x_len_bytes;
uint32_t x_addr, sts0, intr, seq_id;
x_addr = (uint32_t) pc_rx_addr;
x_len_bytes = ui_len;
/* Watermark level : 8 bytes. (BY DEFAULT) */
x_size_wm = 8U;
/* Clear RX Watermark interrupt in INT register, if any existing. */
fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA);
PRA("0x%x", fspi_readl(FSPI_INTR));
/* Invalid the RXFIFO, to run next IP Command */
/* Clears data entries in IP Rx FIFOs, Also reset R/W pointers */
fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR);
fspi_writel(FSPI_INTR, FSPI_INTEN_IPCMDDONE);
while (x_len_bytes) {
/* FlexSPI can store no more than FSPI_RX_IPBUF_SIZE */
x_size_rx = (x_len_bytes > FSPI_RX_IPBUF_SIZE) ?
FSPI_RX_IPBUF_SIZE : x_len_bytes;
/* IP Control Register0 - SF Address to be read */
fspi_writel(FSPI_IPCR0, x_addr);
PRA("0x%x", fspi_readl(FSPI_IPCR0));
/* IP Control Register1 - SEQID_READ operation, Size */
seq_id = CONFIG_FSPI_FASTREAD ?
FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID;
fspi_writel(FSPI_IPCR1,
(uint32_t)(seq_id << FSPI_IPCR1_ISEQID_SHIFT) |
(uint16_t) x_size_rx);
PRA("0x%x", fspi_readl(FSPI_IPCR1));
do {
sts0 = fspi_readl(FSPI_STS0);
} while (((sts0 & FSPI_STS0_ARB_IDLE) == 0) &&
((sts0 & FSPI_STS0_SEQ_IDLE) == 0));
/* Trigger IP Read Command */
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
PRA("0x%x", fspi_readl(FSPI_IPCMD));
intr = fspi_readl(FSPI_INTR);
if (((intr & FSPI_INTR_IPCMDGE) != 0) ||
((intr & FSPI_INTR_IPCMDERR) != 0)) {
ERROR("Error in IP READ INTR=0x%x\n", intr);
return -XSPI_IP_READ_FAIL;
}
/* Will read in n iterations of each 8 FIFO's(WM level) */
x_iteration = x_size_rx / x_size_wm;
for (i = 0U; i < x_iteration; i++) {
if ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK) == 0) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
/* Wait for IP Rx Watermark Fill event */
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK)) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
/* Read RX FIFO's(upto WM level) & copy to rxbuffer */
for (j = 0U; j < x_size_wm; j += 4U) {
/* Read FIFO Data Register */
data = fspi_readl(FSPI_RFDR + j);
#if FSPI_IPDATA_SWAP /* Just In case you want swap */
data = bswap32(data);
#endif
memcpy(pv_rx_buf++, &data, 4);
}
/* Clear IP_RX_WATERMARK Event in INTR register */
/* Reset FIFO Read pointer for next iteration.*/
fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA);
}
x_rem = x_size_rx % x_size_wm;
if (x_rem != 0U) {
/* Wait for data filled */
while (!(fspi_readl(FSPI_IPRXFSTS) & FSPI_IPRXFSTS_FILL_MASK)) {
PRA("0x%x", fspi_readl(FSPI_IPRXFSTS));
}
temp_size = 0;
j = 0U;
while (x_rem > 0U) {
data = 0U;
data = fspi_readl(FSPI_RFDR + j);
#if FSPI_IPDATA_SWAP /* Just In case you want swap */
data = bswap32(data);
#endif
temp_size = (x_rem < 4) ? x_rem : 4;
memcpy(pv_rx_buf++, &data, temp_size);
x_rem -= temp_size;
}
}
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK)) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
/* Invalid the RX FIFO, to run next IP Command */
fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR);
/* Clear IP Command Done flag in interrupt register*/
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
/* Update remaining len, Increment x_addr read pointer. */
x_len_bytes -= x_size_rx;
x_addr += x_size_rx;
}
PR;
return XSPI_SUCCESS;
}
void xspi_ip_write(uint32_t pc_wr_addr, uint32_t *pv_wr_buf, uint32_t ui_len)
{
uint32_t x_iteration = 0U, x_rem = 0U;
uint32_t x_size_tx = 0U, x_size_wm, temp_size;
uint32_t i = 0U, j = 0U;
uint32_t ui_data = 0U;
uint32_t x_addr, x_len_bytes;
x_size_wm = 8U; /* Default TX WaterMark level: 8 Bytes. */
x_addr = (uint32_t)pc_wr_addr;
x_len_bytes = ui_len;
VERBOSE("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n",
__func__, __LINE__, x_addr, x_len_bytes);
while (x_len_bytes != 0U) {
x_size_tx = (x_len_bytes > FSPI_TX_IPBUF_SIZE) ?
FSPI_TX_IPBUF_SIZE : x_len_bytes;
/* IP Control Register0 - SF Address to be read */
fspi_writel(FSPI_IPCR0, x_addr);
INFO("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n",
__func__, __LINE__, x_addr, x_len_bytes);
/*
* Fill TX FIFO's..
*
*/
x_iteration = x_size_tx / x_size_wm;
for (i = 0U; i < x_iteration; i++) {
/* Ensure TX FIFO Watermark Available */
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE_MASK) == 0)
;
/* Fill TxFIFO's ( upto watermark level) */
for (j = 0U; j < x_size_wm; j += 4U) {
memcpy(&ui_data, pv_wr_buf++, 4);
/* Write TX FIFO Data Register */
fspi_writel((FSPI_TFDR + j), ui_data);
}
/* Clear IP_TX_WATERMARK Event in INTR register */
/* Reset the FIFO Write pointer for next iteration */
fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE);
}
x_rem = x_size_tx % x_size_wm;
if (x_rem != 0U) {
/* Wait for TXFIFO empty */
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE))
;
temp_size = 0U;
j = 0U;
while (x_rem > 0U) {
ui_data = 0U;
temp_size = (x_rem < 4U) ? x_rem : 4U;
memcpy(&ui_data, pv_wr_buf++, temp_size);
INFO("%d ---> pv_wr_buf=0x%p\n", __LINE__, pv_wr_buf);
fspi_writel((FSPI_TFDR + j), ui_data);
x_rem -= temp_size;
j += 4U ; /* TODO: May not be needed*/
}
/* Clear IP_TX_WATERMARK Event in INTR register */
/* Reset FIFO's Write pointer for next iteration.*/
fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE);
}
/* IP Control Register1 - SEQID_WRITE operation, Size */
fspi_writel(FSPI_IPCR1, (uint32_t)(FSPI_WRITE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | (uint16_t) x_size_tx);
/* Trigger IP Write Command */
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
/* Wait for IP Write command done */
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK))
;
/* Invalidate TX FIFOs & acknowledge IP_CMD_DONE event */
fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR);
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
/* for next iteration */
x_len_bytes -= x_size_tx;
x_addr += x_size_tx;
}
}
int xspi_write(uint32_t pc_wr_addr, void *pv_wr_buf, uint32_t ui_len)
{
uint32_t x_addr;
uint32_t x_page1_len = 0U, x_page_l_len = 0U;
uint32_t i, j = 0U;
void *buf = pv_wr_buf;
VERBOSE("\nIn func %s\n", __func__);
x_addr = (uint32_t)(pc_wr_addr);
if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) {
x_page1_len = ui_len;
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
} else if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) {
x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256));
if (ui_len > x_page1_len) {
x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256;
} else {
x_page1_len = ui_len;
x_page_l_len = 0;
}
j = 0U;
INFO("%d 0x%x 0x%x\n", x_addr % F_PAGE_256, x_addr % F_PAGE_256, F_PAGE_256);
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
} else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) {
j = ui_len / F_PAGE_256;
x_page_l_len = ui_len % F_PAGE_256;
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
} else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) {
x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256));
j = (ui_len - x_page1_len) / F_PAGE_256;
x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256;
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
}
if (x_page1_len != 0U) {
xspi_wren(x_addr);
xspi_ip_write(x_addr, (uint32_t *)buf, x_page1_len);
while (is_flash_busy())
;
INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n",
__LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr));
INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf);
x_addr += x_page1_len;
/* TODO What is buf start is not 4 aligned */
buf = buf + x_page1_len;
}
for (i = 0U; i < j; i++) {
INFO("In for loop Buf pv_wr_buf=%p, final Buf=%p x_addr=0x%x offset_buf %d.\n",
pv_wr_buf, buf, x_addr, x_page1_len/4);
xspi_wren(x_addr);
xspi_ip_write(x_addr, (uint32_t *)buf, F_PAGE_256);
while (is_flash_busy())
;
INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n",
__LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr));
x_addr += F_PAGE_256;
/* TODO What is buf start is not 4 aligned */
buf = buf + F_PAGE_256;
INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf);
}
if (x_page_l_len != 0U) {
INFO("%d Initial Buf pv_wr_buf=%p, final Buf=%p x_page_l_len=0x%x\n", __LINE__, pv_wr_buf, buf, x_page_l_len);
xspi_wren(x_addr);
xspi_ip_write(x_addr, (uint32_t *)buf, x_page_l_len);
while (is_flash_busy())
;
INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n",
__LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr));
}
VERBOSE("Now calling func call Invalidate%s\n", __func__);
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
int xspi_wren(uint32_t pc_wr_addr)
{
VERBOSE("In func %s Addr=0x%x\n", __func__, pc_wr_addr);
fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR);
fspi_writel(FSPI_IPCR0, (uint32_t)pc_wr_addr);
fspi_writel(FSPI_IPCR1, ((FSPI_WREN_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0));
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0)
;
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
return XSPI_SUCCESS;
}
static void fspi_bbluk_er(void)
{
VERBOSE("In func %s\n", __func__);
fspi_writel(FSPI_IPCR0, 0x0);
fspi_writel(FSPI_IPCR1, ((FSPI_BE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 20));
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0)
;
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
}
static void fspi_RDSR(uint32_t *rxbuf, const void *p_addr, uint32_t size)
{
uint32_t iprxfcr = 0U;
uint32_t data = 0U;
iprxfcr = fspi_readl(FSPI_IPRXFCR);
/* IP RX FIFO would be read by processor */
iprxfcr = iprxfcr & (uint32_t)~FSPI_IPRXFCR_CLR;
/* Invalid data entries in IP RX FIFO */
iprxfcr = iprxfcr | FSPI_IPRXFCR_CLR;
fspi_writel(FSPI_IPRXFCR, iprxfcr);
fspi_writel(FSPI_IPCR0, (uintptr_t) p_addr);
fspi_writel(FSPI_IPCR1,
(uint32_t) ((FSPI_RDSR_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT)
| (uint16_t) size));
/* Trigger the command */
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
/* Wait for command done */
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0)
;
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
data = fspi_readl(FSPI_RFDR);
memcpy(rxbuf, &data, size);
/* Rx FIFO invalidation needs to be done prior w1c of INTR.IPRXWA bit */
fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR);
fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA_MASK);
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
}
bool is_flash_busy(void)
{
#define FSPI_ONE_BYTE 1
uint8_t data[4];
VERBOSE("In func %s\n\n", __func__);
fspi_RDSR((uint32_t *) data, 0, FSPI_ONE_BYTE);
return !!((uint32_t) data[0] & FSPI_NOR_SR_WIP_MASK);
}
int xspi_bulk_erase(void)
{
VERBOSE("In func %s\n", __func__);
xspi_wren((uint32_t) 0x0);
fspi_bbluk_er();
while (is_flash_busy())
;
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
static void fspi_sec_er(uint32_t pc_wr_addr)
{
uint32_t x_addr;
VERBOSE("In func %s\n", __func__);
x_addr = (uint32_t)(pc_wr_addr);
fspi_writel(FSPI_IPCR0, x_addr);
INFO("In [%s][%d] Erase address 0x%x\n", __func__, __LINE__, (x_addr));
#if CONFIG_FSPI_ERASE_4K
fspi_writel(FSPI_IPCR1, ((FSPI_4K_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0));
#else
fspi_writel(FSPI_IPCR1, ((FSPI_SE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0));
#endif
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
}
int xspi_sector_erase(uint32_t pc_wr_addr, uint32_t ui_len)
{
uint32_t x_addr, x_len_bytes, i, num_sector = 0U;
VERBOSE("In func %s\n", __func__);
x_addr = (uint32_t)(pc_wr_addr);
if ((x_addr % F_SECTOR_ERASE_SZ) != 0) {
ERROR("!!! In func %s, unalinged start address can only be in multiples of 0x%x\n",
__func__, F_SECTOR_ERASE_SZ);
return -XSPI_ERASE_FAIL;
}
x_len_bytes = ui_len * 1;
if (x_len_bytes < F_SECTOR_ERASE_SZ) {
ERROR("!!! In func %s, Less than 1 sector can only be in multiples of 0x%x\n",
__func__, F_SECTOR_ERASE_SZ);
return -XSPI_ERASE_FAIL;
}
num_sector = x_len_bytes/F_SECTOR_ERASE_SZ;
num_sector += x_len_bytes % F_SECTOR_ERASE_SZ ? 1U : 0U;
INFO("F_SECTOR_ERASE_SZ: 0x%08x, num_sector: %d\n", F_SECTOR_ERASE_SZ, num_sector);
for (i = 0U; i < num_sector ; i++) {
xspi_wren(x_addr + (F_SECTOR_ERASE_SZ * i));
fspi_sec_er(x_addr + (F_SECTOR_ERASE_SZ * i));
while (is_flash_busy())
;
}
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
__attribute__((unused)) static void fspi_delay_ms(uint32_t x)
{
volatile unsigned long ul_count;
for (ul_count = 0U; ul_count < (30U * x); ul_count++)
;
}
#if defined(DEBUG_FLEXSPI)
static void fspi_dump_regs(void)
{
uint32_t i;
VERBOSE("\nRegisters Dump:\n");
VERBOSE("Flexspi: Register FSPI_MCR0(0x%x) = 0x%08x\n", FSPI_MCR0, fspi_readl(FSPI_MCR0));
VERBOSE("Flexspi: Register FSPI_MCR2(0x%x) = 0x%08x\n", FSPI_MCR2, fspi_readl(FSPI_MCR2));
VERBOSE("Flexspi: Register FSPI_DLL_A_CR(0x%x) = 0x%08x\n", FSPI_DLLACR, fspi_readl(FSPI_DLLACR));
VERBOSE("\n");
for (i = 0U; i < 8U; i++) {
VERBOSE("Flexspi: Register FSPI_AHBRX_BUF0CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF0CR0 + i * 4, fspi_readl((FSPI_AHBRX_BUF0CR0 + i * 4)));
}
VERBOSE("\n");
VERBOSE("Flexspi: Register FSPI_AHBRX_BUF7CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF7CR0, fspi_readl(FSPI_AHBRX_BUF7CR0));
VERBOSE("Flexspi: Register FSPI_AHB_CR(0x%x) \t = 0x%08x\n", FSPI_AHBCR, fspi_readl(FSPI_AHBCR));
VERBOSE("\n");
for (i = 0U; i < 4U; i++) {
VERBOSE("Flexspi: Register FSPI_FLSH_A1_CR2,(0x%x) = 0x%08x\n", FSPI_FLSHA1CR2 + i * 4, fspi_readl(FSPI_FLSHA1CR2 + i * 4));
}
}
#endif
int fspi_init(uint32_t base_reg_addr, uint32_t flash_start_addr)
{
uint32_t mcrx;
uint32_t flash_size;
if (fspi_base_reg_addr != 0U) {
INFO("FSPI is already initialized.\n");
return XSPI_SUCCESS;
}
fspi_base_reg_addr = base_reg_addr;
fspi_flash_base_addr = flash_start_addr;
INFO("Flexspi driver: Version v1.0\n");
INFO("Flexspi: Default MCR0 = 0x%08x, before reset\n", fspi_readl(FSPI_MCR0));
VERBOSE("Flexspi: Resetting controller...\n");
/* Reset FlexSpi Controller */
fspi_writel(FSPI_MCR0, FSPI_MCR0_SWRST);
while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST))
; /* FSPI_MCR0_SWRESET_MASK */
/* Disable Controller Module before programming its registersi, especially MCR0 (Master Control Register0) */
fspi_MDIS(1);
/*
* Program MCR0 with default values, AHB Timeout(0xff), IP Timeout(0xff). {FSPI_MCR0- 0xFFFF0000}
*/
/* Timeout wait cycle for AHB command grant */
mcrx = fspi_readl(FSPI_MCR0);
mcrx |= (uint32_t)((FSPI_MAX_TIMEOUT_AHBCMD << FSPI_MCR0_AHBGRANTWAIT_SHIFT) & (FSPI_MCR0_AHBGRANTWAIT_MASK));
/* Time out wait cycle for IP command grant*/
mcrx |= (uint32_t) (FSPI_MAX_TIMEOUT_IPCMD << FSPI_MCR0_IPGRANTWAIT_SHIFT) & (FSPI_MCR0_IPGRANTWAIT_MASK);
/* TODO why BE64 set BE32*/
mcrx |= (uint32_t) (FSPI_ENDCFG_LE64 << FSPI_MCR0_ENDCFG_SHIFT) & FSPI_MCR0_ENDCFG_MASK;
fspi_writel(FSPI_MCR0, mcrx);
/* Reset the DLL register to default value */
fspi_writel(FSPI_DLLACR, FSPI_DLLACR_OVRDEN);
fspi_writel(FSPI_DLLBCR, FSPI_DLLBCR_OVRDEN);
#if ERRATA_FLASH_A050272 /* ERRATA DLL */
for (uint8_t delay = 100U; delay > 0U; delay--) {
__asm__ volatile ("nop");
}
#endif
/* Configure flash control registers for different chip select */
flash_size = (F_FLASH_SIZE_BYTES * FLASH_NUM) / FSPI_BYTES_PER_KBYTES;
fspi_writel(FSPI_FLSHA1CR0, flash_size);
fspi_writel(FSPI_FLSHA2CR0, 0U);
fspi_writel(FSPI_FLSHB1CR0, 0U);
fspi_writel(FSPI_FLSHB2CR0, 0U);
#if defined(CONFIG_FSPI_AHB)
fspi_init_ahb();
#endif
/* RE-Enable Controller Module */
fspi_MDIS(0);
INFO("Flexspi: After MCR0 = 0x%08x,\n", fspi_readl(FSPI_MCR0));
fspi_setup_LUT();
/* Dump of all registers, ensure controller not disabled anymore*/
#if defined(DEBUG_FLEXSPI)
fspi_dump_regs();
#endif
INFO("Flexspi: Init done!!\n");
#if DEBUG_FLEXSPI
uint32_t xspi_addr = SZ_57M;
/*
* Second argument of fspi_test is the size of buffer(s) passed
* to the function.
* SIZE_BUFFER defined in test_fspi.c is kept large enough to
* accommodate variety of sizes for regressive tests.
*/
fspi_test(xspi_addr, 0x40, 0);
fspi_test(xspi_addr, 0x15, 2);
fspi_test(xspi_addr, 0x80, 0);
fspi_test(xspi_addr, 0x81, 0);
fspi_test(xspi_addr, 0x79, 3);
fspi_test(xspi_addr + 0x11, 0x15, 0);
fspi_test(xspi_addr + 0x11, 0x40, 0);
fspi_test(xspi_addr + 0xff, 0x40, 1);
fspi_test(xspi_addr + 0x25, 0x81, 2);
fspi_test(xspi_addr + 0xef, 0x6f, 3);
fspi_test((xspi_addr - F_SECTOR_ERASE_SZ), 0x229, 0);
#endif
return XSPI_SUCCESS;
}
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
* FlexSpi Registers & Bits definition.
*
*/
#ifndef FSPI_H
#define FSPI_H
#ifndef __ASSEMBLER__
#include <lib/mmio.h>
#ifdef NXP_FSPI_BE
#define fspi_in32(a) bswap32(mmio_read_32((uintptr_t)(a)))
#define fspi_out32(a, v) mmio_write_32((uintptr_t)(a), bswap32(v))
#elif defined(NXP_FSPI_LE)
#define fspi_in32(a) mmio_read_32((uintptr_t)(a))
#define fspi_out32(a, v) mmio_write_32((uintptr_t)(a), v)
#else
#error Please define FSPI register endianness
#endif
#endif
/* All LE so not swap needed */
#define FSPI_IPDATA_SWAP 0U
#define FSPI_AHBDATA_SWAP 0U
#define CONFIG_FSPI_FASTREAD 1U
#define FSPI_BYTES_PER_KBYTES 0x400U
#define FLASH_NUM 1U
#define FSPI_READ_SEQ_ID 0U
#define FSPI_WREN_SEQ_ID 1U
#define FSPI_WRITE_SEQ_ID 2U
#define FSPI_SE_SEQ_ID 3U
#define FSPI_RDSR_SEQ_ID 4U
#define FSPI_BE_SEQ_ID 5U
#define FSPI_FASTREAD_SEQ_ID 6U
#define FSPI_4K_SEQ_ID 7U
/*
* LUT register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*
* INSTR_SHIFT- 10, PAD_SHIFT - 8, OPRND_SHIFT -0
*/
#define FSPI_INSTR_OPRND0_SHIFT 0
#define FSPI_INSTR_OPRND0(x) (x << FSPI_INSTR_OPRND0_SHIFT)
#define FSPI_INSTR_PAD0_SHIFT 8
#define FSPI_INSTR_PAD0(x) ((x) << FSPI_INSTR_PAD0_SHIFT)
#define FSPI_INSTR_OPCODE0_SHIFT 10
#define FSPI_INSTR_OPCODE0(x) ((x) << FSPI_INSTR_OPCODE0_SHIFT)
#define FSPI_INSTR_OPRND1_SHIFT 16
#define FSPI_INSTR_OPRND1(x) ((x) << FSPI_INSTR_OPRND1_SHIFT)
#define FSPI_INSTR_PAD1_SHIFT 24
#define FSPI_INSTR_PAD1(x) ((x) << FSPI_INSTR_PAD1_SHIFT)
#define FSPI_INSTR_OPCODE1_SHIFT 26
#define FSPI_INSTR_OPCODE1(x) ((x) << FSPI_INSTR_OPCODE1_SHIFT)
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_NXP_WRITE 0x08
#define LUT_NXP_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
#define FSPI_NOR_CMD_READ 0x03
#define FSPI_NOR_CMD_READ_4B 0x13
#define FSPI_NOR_CMD_FASTREAD 0x0b
#define FSPI_NOR_CMD_FASTREAD_4B 0x0c
#define FSPI_NOR_CMD_PP 0x02
#define FSPI_NOR_CMD_PP_4B 0x12
#define FSPI_NOR_CMD_WREN 0x06
#define FSPI_NOR_CMD_SE_64K 0xd8
#define FSPI_NOR_CMD_SE_64K_4B 0xdc
#define FSPI_NOR_CMD_SE_4K 0x20
#define FSPI_NOR_CMD_SE_4K_4B 0x21
#define FSPI_NOR_CMD_BE 0x60
#define FSPI_NOR_CMD_RDSR 0x05
#define FSPI_NOR_CMD_WREN_STOP 0x04
#define FSPI_LUT_STOP 0x00
#define FSPI_LUT_CMD 0x01
#define FSPI_LUT_ADDR 0x02
#define FSPI_LUT_PAD1 0
#define FSPI_LUT_PAD2 1
#define FSPI_LUT_PAD4 2
#define FSPI_LUT_PAD8 3
#define FSPI_LUT_ADDR24BIT 0x18
#define FSPI_LUT_ADDR32BIT 0x20
#define FSPI_LUT_WRITE 0x08
#define FSPI_LUT_READ 0x09
#define FSPI_DUMMY_SDR 0x0c
/* TODO Check size if functional*/
#define FSPI_RX_IPBUF_SIZE 0x200 /* 64*64 bits */
#define FSPI_TX_IPBUF_SIZE 0x400 /* 128*64 bits */
#define FSPI_RX_MAX_AHBBUF_SIZE 0x800 /* 256 * 64bits */
#define FSPI_TX_MAX_AHBBUF_SIZE 0x40 /* 8 * 64bits */
#define FSPI_LUTREG_OFFSET 0x200ul
#define FSPI_MAX_TIMEOUT_AHBCMD 0xFFU
#define FSPI_MAX_TIMEOUT_IPCMD 0xFF
#define FSPI_SER_CLK_DIV 0x04
#define FSPI_HSEN 0
#define FSPI_ENDCFG_BE64 0x01
#define FSPI_ENDCFG_BE32 0x03
#define FSPI_ENDCFG_LE32 0x02
#define FSPI_ENDCFG_LE64 0x0
#define MASK_24BIT_ADDRESS 0x00ffffff
#define MASK_32BIT_ADDRESS 0xffffffff
/* Registers used by the driver */
#define FSPI_MCR0 0x0ul
#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR0_LEARN_EN BIT(15)
#define FSPI_MCR0_SCRFRUN_EN BIT(14)
#define FSPI_MCR0_OCTCOMB_EN BIT(13)
#define FSPI_MCR0_DOZE_EN BIT(12)
#define FSPI_MCR0_HSEN BIT(11)
#define FSPI_MCR0_SERCLKDIV BIT(8)
#define FSPI_MCR0_ATDF_EN BIT(7)
#define FSPI_MCR0_ARDF_EN BIT(6)
#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
#define FSPI_MCR0_END_CFG(x) ((x) << 2)
#define FSPI_MCR0_MDIS BIT(1)
#define FSPI_MCR0_SWRST BIT(0)
#define FSPI_MCR0_AHBGRANTWAIT_SHIFT 24
#define FSPI_MCR0_AHBGRANTWAIT_MASK (0xFFU << FSPI_MCR0_AHBGRANTWAIT_SHIFT)
#define FSPI_MCR0_IPGRANTWAIT_SHIFT 16
#define FSPI_MCR0_IPGRANTWAIT_MASK (0xFF << FSPI_MCR0_IPGRANTWAIT_SHIFT)
#define FSPI_MCR0_HSEN_SHIFT 11
#define FSPI_MCR0_HSEN_MASK (1 << FSPI_MCR0_HSEN_SHIFT)
#define FSPI_MCR0_SERCLKDIV_SHIFT 8
#define FSPI_MCR0_SERCLKDIV_MASK (7 << FSPI_MCR0_SERCLKDIV_SHIFT)
#define FSPI_MCR0_ENDCFG_SHIFT 2
#define FSPI_MCR0_ENDCFG_MASK (3 << FSPI_MCR0_ENDCFG_SHIFT)
#define FSPI_MCR0_RXCLKSRC_SHIFT 4
#define FSPI_MCR0_RXCLKSRC_MASK (3 << FSPI_MCR0_RXCLKSRC_SHIFT)
#define FSPI_MCR1 0x04
#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
#define FSPI_MCR2 0x08
#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
#define FSPI_MCR2_CLRLRPHS BIT(14)
#define FSPI_MCR2_ABRDATSZ BIT(8)
#define FSPI_MCR2_ABRLEARN BIT(7)
#define FSPI_MCR2_ABR_READ BIT(6)
#define FSPI_MCR2_ABRWRITE BIT(5)
#define FSPI_MCR2_ABRDUMMY BIT(4)
#define FSPI_MCR2_ABR_MODE BIT(3)
#define FSPI_MCR2_ABRCADDR BIT(2)
#define FSPI_MCR2_ABRRADDR BIT(1)
#define FSPI_MCR2_ABR_CMD BIT(0)
#define FSPI_AHBCR 0x0c
#define FSPI_AHBCR_RDADDROPT BIT(6)
#define FSPI_AHBCR_PREF_EN BIT(5)
#define FSPI_AHBCR_BUFF_EN BIT(4)
#define FSPI_AHBCR_CACH_EN BIT(3)
#define FSPI_AHBCR_CLRTXBUF BIT(2)
#define FSPI_AHBCR_CLRRXBUF BIT(1)
#define FSPI_AHBCR_PAR_EN BIT(0)
#define FSPI_INTEN 0x10
#define FSPI_INTEN_SCLKSBWR BIT(9)
#define FSPI_INTEN_SCLKSBRD BIT(8)
#define FSPI_INTEN_DATALRNFL BIT(7)
#define FSPI_INTEN_IPTXWE BIT(6)
#define FSPI_INTEN_IPRXWA BIT(5)
#define FSPI_INTEN_AHBCMDERR BIT(4)
#define FSPI_INTEN_IPCMDERR BIT(3)
#define FSPI_INTEN_AHBCMDGE BIT(2)
#define FSPI_INTEN_IPCMDGE BIT(1)
#define FSPI_INTEN_IPCMDDONE BIT(0)
#define FSPI_INTR 0x14
#define FSPI_INTR_SCLKSBWR BIT(9)
#define FSPI_INTR_SCLKSBRD BIT(8)
#define FSPI_INTR_DATALRNFL BIT(7)
#define FSPI_INTR_IPTXWE BIT(6)
#define FSPI_INTR_IPRXWA BIT(5)
#define FSPI_INTR_AHBCMDERR BIT(4)
#define FSPI_INTR_IPCMDERR BIT(3)
#define FSPI_INTR_AHBCMDGE BIT(2)
#define FSPI_INTR_IPCMDGE BIT(1)
#define FSPI_INTR_IPCMDDONE BIT(0)
#define FSPI_LUTKEY 0x18
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
#define FSPI_LCKCR 0x1C
#define FSPI_LCKER_LOCK 0x1
#define FSPI_LCKER_UNLOCK 0x2
#define FSPI_BUFXCR_INVALID_MSTRID 0xE
#define FSPI_AHBRX_BUF0CR0 0x20
#define FSPI_AHBRX_BUF1CR0 0x24
#define FSPI_AHBRX_BUF2CR0 0x28
#define FSPI_AHBRX_BUF3CR0 0x2C
#define FSPI_AHBRX_BUF4CR0 0x30
#define FSPI_AHBRX_BUF5CR0 0x34
#define FSPI_AHBRX_BUF6CR0 0x38
#define FSPI_AHBRX_BUF7CR0 0x3C
#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
#define FSPI_AHBRX_BUF0CR1 0x40
#define FSPI_AHBRX_BUF1CR1 0x44
#define FSPI_AHBRX_BUF2CR1 0x48
#define FSPI_AHBRX_BUF3CR1 0x4C
#define FSPI_AHBRX_BUF4CR1 0x50
#define FSPI_AHBRX_BUF5CR1 0x54
#define FSPI_AHBRX_BUF6CR1 0x58
#define FSPI_AHBRX_BUF7CR1 0x5C
#define FSPI_FLSHA1CR0 0x60
#define FSPI_FLSHA2CR0 0x64
#define FSPI_FLSHB1CR0 0x68
#define FSPI_FLSHB2CR0 0x6C
#define FSPI_FLSHXCR0_SZ_KB 10
#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
#define FSPI_FLSHA1CR1 0x70
#define FSPI_FLSHA2CR1 0x74
#define FSPI_FLSHB1CR1 0x78
#define FSPI_FLSHB2CR1 0x7C
#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
#define FSPI_FLSHXCR1_WA BIT(10)
#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
#define FSPI_FLSHXCR1_TCSS(x) (x)
#define FSPI_FLSHXCR1_TCSH_SHIFT 5
#define FSPI_FLSHXCR1_TCSH_MASK (0x1F << FSPI_FLSHXCR1_TCSH_SHIFT)
#define FSPI_FLSHXCR1_TCSS_SHIFT 0
#define FSPI_FLSHXCR1_TCSS_MASK (0x1F << FSPI_FLSHXCR1_TCSS_SHIFT)
#define FSPI_FLSHA1CR2 0x80
#define FSPI_FLSHA2CR2 0x84
#define FSPI_FLSHB1CR2 0x88
#define FSPI_FLSHB2CR2 0x8C
#define FSPI_FLSHXCR2_CLRINSP BIT(24)
#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FSPI_IPCR0 0xA0
#define FSPI_IPCR1 0xA4
#define FSPI_IPCR1_IPAREN BIT(31)
#define FSPI_IPCR1_SEQNUM_SHIFT 24
#define FSPI_IPCR1_SEQID_SHIFT 16
#define FSPI_IPCR1_IDATSZ(x) (x)
#define FSPI_IPCMD 0xB0
#define FSPI_IPCMD_TRG BIT(0)
/* IP Command Register */
#define FSPI_IPCMD_TRG_SHIFT 0
#define FSPI_IPCMD_TRG_MASK (1 << FSPI_IPCMD_TRG_SHIFT)
#define FSPI_INTR_IPRXWA_SHIFT 5
#define FSPI_INTR_IPRXWA_MASK (1 << FSPI_INTR_IPRXWA_SHIFT)
#define FSPI_INTR_IPCMDDONE_SHIFT 0
#define FSPI_INTR_IPCMDDONE_MASK (1 << FSPI_INTR_IPCMDDONE_SHIFT)
#define FSPI_INTR_IPTXWE_SHIFT 6
#define FSPI_INTR_IPTXWE_MASK (1 << FSPI_INTR_IPTXWE_SHIFT)
#define FSPI_IPTXFSTS_FILL_SHIFT 0
#define FSPI_IPTXFSTS_FILL_MASK (0xFF << FSPI_IPTXFSTS_FILL_SHIFT)
#define FSPI_IPCR1_ISEQID_SHIFT 16
#define FSPI_IPCR1_ISEQID_MASK (0x1F << FSPI_IPCR1_ISEQID_SHIFT)
#define FSPI_IPRXFSTS_FILL_SHIFT 0
#define FSPI_IPRXFSTS_FILL_MASK (0xFF << FSPI_IPRXFSTS_FILL_SHIFT)
#define FSPI_DLPR 0xB4
#define FSPI_IPRXFCR 0xB8
#define FSPI_IPRXFCR_CLR BIT(0)
#define FSPI_IPRXFCR_DMA_EN BIT(1)
#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
#define FSPI_IPTXFCR 0xBC
#define FSPI_IPTXFCR_CLR BIT(0)
#define FSPI_IPTXFCR_DMA_EN BIT(1)
#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
#define FSPI_DLLACR 0xC0
#define FSPI_DLLACR_OVRDEN BIT(8)
#define FSPI_DLLBCR 0xC4
#define FSPI_DLLBCR_OVRDEN BIT(8)
#define FSPI_STS0 0xE0
#define FSPI_STS0_DLPHB(x) ((x) << 8)
#define FSPI_STS0_DLPHA(x) ((x) << 4)
#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
#define FSPI_STS0_ARB_IDLE BIT(1)
#define FSPI_STS0_SEQ_IDLE BIT(0)
#define FSPI_STS1 0xE4
#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
#define FSPI_STS1_AHB_ERRID(x) (x)
#define FSPI_AHBSPNST 0xEC
#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
#define FSPI_AHBSPNST_ACTIVE BIT(0)
#define FSPI_IPRXFSTS 0xF0
#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
#define FSPI_IPRXFSTS_FILL(x) (x)
#define FSPI_IPTXFSTS 0xF4
#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
#define FSPI_IPTXFSTS_FILL(x) (x)
#define FSPI_NOR_SR_WIP_SHIFT (0)
#define FSPI_NOR_SR_WIP_MASK (1 << FSPI_NOR_SR_WIP_SHIFT)
#define FSPI_RFDR 0x100
#define FSPI_TFDR 0x180
#define FSPI_LUT_BASE 0x200
#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define FSPI_LUT_REG(idx) \
(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
/* register map end */
#endif
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <stdint.h>
#include <stdio.h>
#include <common/debug.h>
#include <flash_info.h>
#include "fspi.h"
#include <fspi_api.h>
/*
* The macros are defined to be used as test vector for testing fspi.
*/
#define SIZE_BUFFER 0x250
/*
* You may choose fspi_swap based on core endianness and flexspi IP/AHB
* buffer endianness set in MCR.
*/
#define fspi_swap32(A) (A)
void fspi_test(uint32_t fspi_test_addr, uint32_t size, int extra)
{
uint32_t buffer[SIZE_BUFFER];
uint32_t count = 1;
uint32_t failed, i;
NOTICE("-------------------------- %d----------------------------------\n", count++);
INFO("Sector Erase size: 0x%08x, size: %d\n", F_SECTOR_ERASE_SZ, size);
/* Test Sector Erase */
xspi_sector_erase(fspi_test_addr - fspi_test_addr % F_SECTOR_ERASE_SZ,
F_SECTOR_ERASE_SZ);
/* Test Erased data using IP read */
xspi_ip_read((fspi_test_addr), buffer, size * 4);
failed = 0;
for (i = 0; i < size; i++)
if (fspi_swap32(0xffffffff) != buffer[i]) {
failed = 1;
break;
}
if (failed == 0) {
NOTICE("[%d]: Success Erase: data in buffer[%d] 0x%08x\n", __LINE__, i-3, buffer[i-3]);
} else {
ERROR("Erase: Failed -->xxx with buffer[%d]=0x%08x\n", i, buffer[i]);
}
for (i = 0; i < SIZE_BUFFER; i++)
buffer[i] = 0x12345678;
/* Write data from buffer to flash */
xspi_write(fspi_test_addr, (void *)buffer, (size * 4 + extra));
/* Check written data using IP read */
xspi_ip_read(fspi_test_addr, buffer, (size * 4 + extra));
failed = 0;
for (i = 0; i < size; i++)
if (fspi_swap32(0x12345678) != buffer[i]) {
failed = 1;
break;
}
if (failed == 0) {
NOTICE("[%d]: Success IpWrite with IP READ in buffer[%d] 0x%08x\n", __LINE__, i-3, buffer[i-3]);
} else {
ERROR("Write: Failed -->xxxx with IP READ in buffer[%d]=0x%08x\n", i, buffer[i]);
return;
}
/* xspi_read may use AHB read */
xspi_read((fspi_test_addr), buffer, (size * 4 + extra));
failed = 0;
for (i = 0; i < size; i++)
if (fspi_swap32(0x12345678) != buffer[i]) {
failed = 1;
break;
}
if (failed == 0) {
NOTICE("[%d]: Success IpWrite with AHB OR IP READ on buffer[%d] 0x%08x\n", __LINE__, i-3, buffer[i-3]);
} else {
ERROR("Write: Failed -->xxxx with AHB READ on buffer[%d]=0x%08x\n", i, buffer[i]);
return;
}
}
# Copyright 2021 NXP
#
# SPDX-License-Identifier: BSD-3-Clause
#
#
#------------------------------------------------------------------------------
#
# Select the GIC files
#
# -----------------------------------------------------------------------------
ifeq (${ADD_GIC},)
ADD_GIC := 1
ifeq ($(GIC), GIC400)
include drivers/arm/gic/v2/gicv2.mk
GIC_SOURCES += ${GICV2_SOURCES}
GIC_SOURCES += ${PLAT_DRIVERS_PATH}/gic/ls_gicv2.c \
plat/common/plat_gicv2.c
PLAT_INCLUDES += -I${PLAT_DRIVERS_PATH}/gic/include/gicv2
else
ifeq ($(GIC), GIC500)
include drivers/arm/gic/v3/gicv3.mk
GIC_SOURCES += ${GICV3_SOURCES}
GIC_SOURCES += ${PLAT_DRIVERS_PATH}/gic/ls_gicv3.c \
plat/common/plat_gicv3.c
PLAT_INCLUDES += -I${PLAT_DRIVERS_PATH}/gic/include/gicv3
else
$(error -> GIC type not set!)
endif
endif
ifeq (${BL_COMM_GIC_NEEDED},yes)
BL_COMMON_SOURCES += ${GIC_SOURCES}
else
ifeq (${BL2_GIC_NEEDED},yes)
BL2_SOURCES += ${GIC_SOURCES}
endif
ifeq (${BL31_GIC_NEEDED},yes)
BL31_SOURCES += ${GIC_SOURCES}
endif
endif
endif
# -----------------------------------------------------------------------------
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment