Commit d2737fe1 authored by Mark Dykes's avatar Mark Dykes Committed by TrustedFirmware Code Review
Browse files

Merge changes from topic "mp/enhanced_pal_hw" into integration

* changes:
  plat/arm/fvp: populate pwr domain descriptor dynamically
  fconf: Extract topology node properties from HW_CONFIG dtb
  fconf: necessary modifications to support fconf in BL31 & SP_MIN
  fconf: enhancements to firmware configuration framework
parents 8fd41bb9 6138ffbc
......@@ -1000,6 +1000,8 @@ endif
ifeq (${NEED_BL31},yes)
BL31_SOURCES += ${SPD_SOURCES}
# Sort BL31 source files to remove duplicates
BL31_SOURCES := $(sort ${BL31_SOURCES})
ifneq (${DECRYPTION_SUPPORT},none)
$(if ${BL31}, $(eval $(call TOOL_ADD_IMG,bl31,--soc-fw,,$(ENCRYPT_BL31))),\
$(eval $(call MAKE_BL,31,soc-fw,,$(ENCRYPT_BL31))))
......@@ -1013,7 +1015,8 @@ endif
# build system will call TOOL_ADD_IMG to print a warning message and abort the
# process. Note that the dependency on BL32 applies to the FIP only.
ifeq (${NEED_BL32},yes)
# Sort BL32 source files to remove duplicates
BL32_SOURCES := $(sort ${BL32_SOURCES})
BUILD_BL32 := $(if $(BL32),,$(if $(BL32_SOURCES),1))
ifneq (${DECRYPTION_SUPPORT},none)
......
......@@ -55,6 +55,11 @@ SECTIONS
KEEP(*(rt_svc_descs))
__RT_SVC_DESCS_END__ = .;
. = ALIGN(8);
__FCONF_POPULATOR_START__ = .;
KEEP(*(.fconf_populator))
__FCONF_POPULATOR_END__ = .;
#if ENABLE_PMF
/* Ensure 8-byte alignment for descriptors and ensure inclusion */
. = ALIGN(8);
......@@ -102,6 +107,11 @@ SECTIONS
KEEP(*(rt_svc_descs))
__RT_SVC_DESCS_END__ = .;
. = ALIGN(8);
__FCONF_POPULATOR_START__ = .;
KEEP(*(.fconf_populator))
__FCONF_POPULATOR_END__ = .;
#if ENABLE_PMF
/* Ensure 8-byte alignment for descriptors and ensure inclusion */
. = ALIGN(8);
......
......@@ -56,6 +56,11 @@ SECTIONS
KEEP(*(rt_svc_descs))
__RT_SVC_DESCS_END__ = .;
. = ALIGN(8);
__FCONF_POPULATOR_START__ = .;
KEEP(*(.fconf_populator))
__FCONF_POPULATOR_END__ = .;
#if ENABLE_PMF
/* Ensure 4-byte alignment for descriptors and ensure inclusion */
. = ALIGN(4);
......@@ -93,6 +98,11 @@ SECTIONS
KEEP(*(rt_svc_descs))
__RT_SVC_DESCS_END__ = .;
. = ALIGN(8);
__FCONF_POPULATOR_START__ = .;
KEEP(*(.fconf_populator))
__FCONF_POPULATOR_END__ = .;
/*
* Ensure 4-byte alignment for cpu_ops so that its fields are also
* aligned. Also ensure cpu_ops inclusion.
......
......@@ -28,29 +28,45 @@ Examples namespace can be:
- (|TBBR|) Chain of Trust data: tbbr.cot.trusted_boot_fw_cert
- (|TBBR|) dynamic configuration info: tbbr.dyn_config.disable_auth
- Arm io policies: arm.io_policies.bl2_image
- GICv3 properties: hw_config.gicv3_config.gicr_base
Properties can be accessed with the ``FCONF_GET_PROPERTY(a,b,property)`` macro.
Defining properties
~~~~~~~~~~~~~~~~~~~
Properties composing the |FCONF| have to be stored in C structures. If another
backing store is wanted to be used, the platform has to provide a ``populate()``
function to fill the corresponding C structure.
The ``populate()`` function must be registered to the |FCONF| framework with
the ``FCONF_REGISTER_POPULATOR()`` macro. This ensures that the function would
be called inside the generic ``fconf_populate()`` function during
Properties composing the |FCONF| have to be stored in C structures. If
properties originate from a different backend source such as a device tree,
then the platform has to provide a ``populate()`` function which essentially
captures the property and stores them into a corresponding |FCONF| based C
structure.
Such a ``populate()`` function is usually platform specific and is associated
with a specific backend source. For example, a populator function which
captures the hardware topology of the platform from the HW_CONFIG device tree.
Hence each ``populate()`` function must be registered with a specific
``config_type`` identifier. It broadly represents a logical grouping of
configuration properties which is usually a device tree file.
Example:
- TB_FW: properties related to trusted firmware such as IO policies,
base address of other DTBs, mbedtls heap info etc.
- HW_CONFIG: properties related to hardware configuration of the SoC
such as topology, GIC controller, PSCI hooks, CPU ID etc.
Hence the ``populate()`` callback must be registered to the (|FCONF|) framework
with the ``FCONF_REGISTER_POPULATOR()`` macro. This ensures that the function
would be called inside the generic ``fconf_populate()`` function during
initialization.
::
int fconf_populate_tbbr_dyn_config(uintptr_t config)
int fconf_populate_topology(uintptr_t config)
{
/* read dtb and fill tbbr_dyn_config struct */
/* read hw config dtb and fill soc_topology struct */
}
FCONF_REGISTER_POPULATOR(fconf_populate_tbbr_dyn_config);
FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);
Then, a wrapper has to be provided to match the ``FCONF_GET_PROPERTY()`` macro:
......@@ -60,7 +76,7 @@ Then, a wrapper has to be provided to match the ``FCONF_GET_PROPERTY()`` macro:
#define FCONF_GET_PROPERTY(a,b,property) a##__##b##_getter(property)
/* my specific getter */
#define tbbr__dyn_config_getter(id) tbbr_dyn_config.id
#define hw_config__topology_getter(prop) soc_topology.prop
This second level wrapper can be used to remap the ``FCONF_GET_PROPERTY()`` to
anything appropriate: structure, array, function, etc..
......@@ -80,6 +96,6 @@ Populating the properties
Once a valid device tree is available, the ``fconf_populate(config)`` function
can be used to fill the C data structure with the data from the config |DTB|.
This function will call all the ``populate()`` callbacks which have been
registered with ``FCONF_REGISTER_POPULATOR()``.
registered with ``FCONF_REGISTER_POPULATOR()`` as described above.
.. uml:: ../resources/diagrams/plantuml/fconf_bl2_populate.puml
......@@ -35,6 +35,7 @@
cpu_on = <0x84000003>;
sys_poweroff = <0x84000008>;
sys_reset = <0x84000009>;
max-pwr-lvl = <2>;
};
cpus {
......
......@@ -35,6 +35,7 @@
cpu_on = <0xc4000003>;
sys_poweroff = <0x84000008>;
sys_reset = <0x84000009>;
max-pwr-lvl = <2>;
};
cpus {
......
......@@ -33,6 +33,7 @@
cpu_on = <0x84000003>;
sys_poweroff = <0x84000008>;
sys_reset = <0x84000009>;
max-pwr-lvl = <2>;
};
cpus {
......
......@@ -33,6 +33,7 @@
cpu_on = <0xc4000003>;
sys_poweroff = <0x84000008>;
sys_reset = <0x84000009>;
max-pwr-lvl = <2>;
};
cpus {
......
......@@ -11,6 +11,9 @@
/* DynamIQ based designs have upto 8 CPUs in each cluster */
&CPU_MAP {
/delete-node/ cluster0;
/delete-node/ cluster1;
cluster0 {
core0 {
cpu = <&CPU0>;
......
......@@ -35,6 +35,7 @@
cpu_on = <0xc4000003>;
sys_poweroff = <0x84000008>;
sys_reset = <0x84000009>;
max-pwr-lvl = <2>;
};
cpus {
......
......@@ -35,6 +35,7 @@
cpu_on = <0xc4000003>;
sys_poweroff = <0x84000008>;
sys_reset = <0x84000009>;
max-pwr-lvl = <2>;
};
cpus {
......
......@@ -12,9 +12,16 @@
/* Public API */
#define FCONF_GET_PROPERTY(a, b, c) a##__##b##_getter(c)
#define FCONF_REGISTER_POPULATOR(name, callback) \
/*
* This macro takes three arguments:
* config: Configuration identifier
* name: property namespace
* callback: populate() function
*/
#define FCONF_REGISTER_POPULATOR(config, name, callback) \
__attribute__((used, section(".fconf_populator"))) \
const struct fconf_populator (name##__populator) = { \
.config_type = (#config), \
.info = (#name), \
.populate = (callback) \
};
......@@ -27,6 +34,7 @@
*/
struct fconf_populator {
/* Description of the data loaded by the callback */
const char *config_type;
const char *info;
/* Callback used by fconf_populate function with a provided config dtb.
......@@ -45,7 +53,7 @@ void fconf_load_config(void);
*
* Panic on error.
*/
void fconf_populate(uintptr_t config);
void fconf_populate(const char *config_type, uintptr_t config);
/* FCONF specific getter */
#define fconf__dtb_getter(prop) fconf_dtb_info.prop
......
......@@ -222,6 +222,7 @@ void arm_tsp_early_platform_setup(void);
void arm_sp_min_early_platform_setup(void *from_bl2, uintptr_t tos_fw_config,
uintptr_t hw_config, void *plat_params_from_bl2);
void arm_sp_min_plat_runtime_setup(void);
void arm_sp_min_plat_arch_setup(void);
/* FIP TOC validity check */
bool arm_io_is_toc_valid(void);
......
......@@ -53,17 +53,17 @@ void fconf_load_config(void)
INFO("FCONF: FW_CONFIG loaded at address = 0x%lx\n", arm_tb_fw_info.image_base);
}
void fconf_populate(uintptr_t config)
void fconf_populate(const char *config_type, uintptr_t config)
{
assert(config != 0UL);
/* Check if the pointer to DTB is correct */
if (fdt_check_header((void *)config) != 0) {
ERROR("FCONF: Invalid DTB file passed for FW_CONFIG\n");
ERROR("FCONF: Invalid DTB file passed for %s\n", config_type);
panic();
}
INFO("FCONF: Reading firmware configuration file from: 0x%lx\n", config);
INFO("FCONF: Reading %s firmware configuration file from: 0x%lx\n", config_type, config);
/* Go through all registered populate functions */
IMPORT_SYM(struct fconf_populator *, __FCONF_POPULATOR_START__, start);
......@@ -73,12 +73,14 @@ void fconf_populate(uintptr_t config)
for (populator = start; populator != end; populator++) {
assert((populator->info != NULL) && (populator->populate != NULL));
if (strcmp(populator->config_type, config_type) == 0) {
INFO("FCONF: Reading firmware configuration information for: %s\n", populator->info);
if (populator->populate(config) != 0) {
/* TODO: handle property miss */
panic();
}
}
}
/* save local pointer to the config dtb */
fconf_dtb_info.base_addr = config;
......
......@@ -92,4 +92,4 @@ int fconf_populate_dtb_registry(uintptr_t config)
return 0;
}
FCONF_REGISTER_POPULATOR(dyn_cfg, fconf_populate_dtb_registry);
FCONF_REGISTER_POPULATOR(TB_FW, dyn_cfg, fconf_populate_dtb_registry);
......@@ -72,4 +72,4 @@ int fconf_populate_tbbr_dyn_config(uintptr_t config)
return 0;
}
FCONF_REGISTER_POPULATOR(tbbr, fconf_populate_tbbr_dyn_config);
FCONF_REGISTER_POPULATOR(TB_FW, tbbr, fconf_populate_tbbr_dyn_config);
/*
* Copyright (c) 2020, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <fconf_hw_config_getter.h>
#include <libfdt.h>
#include <plat/common/platform.h>
struct gicv3_config_t gicv3_config;
struct hw_topology_t soc_topology;
int fconf_populate_gicv3_config(uintptr_t config)
{
int err;
int node;
int addr[20];
/* Necessary to work with libfdt APIs */
const void *hw_config_dtb = (const void *)config;
/*
* Find the offset of the node containing "arm,gic-v3" compatible property.
* Populating fconf strucutures dynamically is not supported for legacy
* systems which use GICv2 IP. Simply skip extracting GIC properties.
*/
node = fdt_node_offset_by_compatible(hw_config_dtb, -1, "arm,gic-v3");
if (node < 0) {
WARN("FCONF: Unable to locate node with arm,gic-v3 compatible property\n");
return 0;
}
/* Read the reg cell holding base address of GIC controller modules
A sample reg cell array is shown here:
reg = <0x0 0x2f000000 0 0x10000>, // GICD
<0x0 0x2f100000 0 0x200000>, // GICR
<0x0 0x2c000000 0 0x2000>, // GICC
<0x0 0x2c010000 0 0x2000>, // GICH
<0x0 0x2c02f000 0 0x2000>; // GICV
*/
err = fdtw_read_array(hw_config_dtb, node, "reg", 20, &addr);
if (err < 0) {
ERROR("FCONF: Failed to read reg property of GIC node\n");
}
return err;
}
int fconf_populate_topology(uintptr_t config)
{
int err, node, cluster_node, core_node, thread_node, max_pwr_lvl = 0;
uint32_t cluster_count = 0, max_cpu_per_cluster = 0, total_cpu_count = 0;
/* Necessary to work with libfdt APIs */
const void *hw_config_dtb = (const void *)config;
/* Find the offset of the node containing "arm,psci-1.0" compatible property */
node = fdt_node_offset_by_compatible(hw_config_dtb, -1, "arm,psci-1.0");
if (node < 0) {
ERROR("FCONF: Unable to locate node with arm,psci-1.0 compatible property\n");
return node;
}
err = fdtw_read_cells(hw_config_dtb, node, "max-pwr-lvl", 1, &max_pwr_lvl);
if (err < 0) {
/*
* Some legacy FVP dts may not have this property. Assign the default
* value.
*/
WARN("FCONF: Could not locate max-pwr-lvl property\n");
max_pwr_lvl = 2;
}
assert((uint32_t)max_pwr_lvl <= MPIDR_AFFLVL2);
/* Find the offset of the "cpus" node */
node = fdt_path_offset(hw_config_dtb, "/cpus");
if (node < 0) {
ERROR("FCONF: Node '%s' not found in hardware configuration dtb\n", "cpus");
return node;
}
/* A typical cpu-map node in a device tree is shown here for reference
cpu-map {
cluster0 {
core0 {
cpu = <&CPU0>;
};
core1 {
cpu = <&CPU1>;
};
};
cluster1 {
core0 {
cpu = <&CPU2>;
};
core1 {
cpu = <&CPU3>;
};
};
};
*/
/* Locate the cpu-map child node */
node = fdt_subnode_offset(hw_config_dtb, node, "cpu-map");
if (node < 0) {
ERROR("FCONF: Node '%s' not found in hardware configuration dtb\n", "cpu-map");
return node;
}
uint32_t cpus_per_cluster[PLAT_ARM_CLUSTER_COUNT] = {0};
/* Iterate through cluster nodes */
fdt_for_each_subnode(cluster_node, hw_config_dtb, node) {
assert(cluster_count < PLAT_ARM_CLUSTER_COUNT);
/* Iterate through core nodes */
fdt_for_each_subnode(core_node, hw_config_dtb, cluster_node) {
/* core nodes may have child nodes i.e., "thread" nodes */
if (fdt_first_subnode(hw_config_dtb, core_node) < 0) {
cpus_per_cluster[cluster_count]++;
} else {
/* Multi-threaded CPU description is found in dtb */
fdt_for_each_subnode(thread_node, hw_config_dtb, core_node) {
cpus_per_cluster[cluster_count]++;
}
/* Since in some dtbs, core nodes may not have thread node,
* no need to error if even one child node is not found.
*/
}
}
/* Ensure every cluster node has at least 1 child node */
if (cpus_per_cluster[cluster_count] < 1U) {
ERROR("FCONF: Unable to locate the core node in cluster %d\n", cluster_count);
return -1;
}
INFO("CLUSTER ID: %d cpu-count: %d\n", cluster_count, cpus_per_cluster[cluster_count]);
/* Find the maximum number of cpus in any cluster */
max_cpu_per_cluster = MAX(max_cpu_per_cluster, cpus_per_cluster[cluster_count]);
total_cpu_count += cpus_per_cluster[cluster_count];
cluster_count++;
}
/* At least one cluster node is expected in hardware configuration dtb */
if (cluster_count < 1U) {
ERROR("FCONF: Unable to locate the cluster node in cpu-map node\n");
return -1;
}
soc_topology.plat_max_pwr_level = (uint32_t)max_pwr_lvl;
soc_topology.plat_cluster_count = cluster_count;
soc_topology.cluster_cpu_count = max_cpu_per_cluster;
soc_topology.plat_cpu_count = total_cpu_count;
return 0;
}
FCONF_REGISTER_POPULATOR(HW_CONFIG, gicv3_config, fconf_populate_gicv3_config);
FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);
/*
* Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <common/debug.h>
#include <drivers/arm/smmu_v3.h>
#include <lib/fconf/fconf.h>
#include <plat/arm/common/arm_config.h>
#include <plat/arm/common/plat_arm.h>
#include <plat/common/platform.h>
#include "fvp_private.h"
uintptr_t hw_config_dtb;
void __init bl31_early_platform_setup2(u_register_t arg0,
u_register_t arg1, u_register_t arg2, u_register_t arg3)
{
......@@ -40,4 +45,23 @@ void __init bl31_early_platform_setup2(u_register_t arg0,
/* On FVP RevC, initialize SMMUv3 */
if ((arm_config.flags & ARM_CONFIG_FVP_HAS_SMMUV3) != 0U)
smmuv3_init(PLAT_FVP_SMMUV3_BASE);
hw_config_dtb = arg2;
}
void __init bl31_plat_arch_setup(void)
{
arm_bl31_plat_arch_setup();
/*
* For RESET_TO_BL31 systems, BL31 is the first bootloader to run.
* So there is no BL2 to load the HW_CONFIG dtb into memory before
* control is passed to BL31.
*/
#if !RESET_TO_BL31 && !BL2_AT_EL3
assert(hw_config_dtb != 0U);
INFO("BL31 FCONF: HW_CONFIG address = %p\n", (void *)hw_config_dtb);
fconf_populate("HW_CONFIG", hw_config_dtb);
#endif
}
/*
* Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
......@@ -134,6 +134,8 @@ const mmap_region_t plat_arm_mmap[] = {
#if SPM_MM
ARM_SPM_BUF_EL3_MMAP,
#endif
/* Required by fconf APIs to read HW_CONFIG dtb loaded into DRAM */
ARM_MAP_NS_DRAM1,
{0}
};
......@@ -160,6 +162,8 @@ const mmap_region_t plat_arm_mmap[] = {
V2M_MAP_IOFPGA,
MAP_DEVICE0,
MAP_DEVICE1,
/* Required by fconf APIs to read HW_CONFIG dtb loaded into DRAM */
ARM_MAP_NS_DRAM1,
{0}
};
#endif
......
/*
* Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <platform_def.h>
#include <assert.h>
#include <arch.h>
#include <drivers/arm/fvp/fvp_pwrc.h>
#include <fconf_hw_config_getter.h>
#include <lib/cassert.h>
#include <plat/arm/common/arm_config.h>
#include <plat/arm/common/plat_arm.h>
#include <plat/common/platform.h>
#include <platform_def.h>
/* The FVP power domain tree descriptor */
static unsigned char fvp_power_domain_tree_desc[FVP_CLUSTER_COUNT + 2];
......@@ -21,24 +24,47 @@ CASSERT(((FVP_CLUSTER_COUNT > 0) && (FVP_CLUSTER_COUNT <= 256)),
assert_invalid_fvp_cluster_count);
/*******************************************************************************
* This function dynamically constructs the topology according to
* FVP_CLUSTER_COUNT and returns it.
* This function dynamically constructs the topology according to cpu-map node
* in HW_CONFIG dtb and returns it.
******************************************************************************/
const unsigned char *plat_get_power_domain_tree_desc(void)
{
int i;
unsigned int i;
uint32_t cluster_count, cpus_per_cluster;
/*
* fconf APIs are not supported for RESET_TO_SP_MIN, RESET_TO_BL31 and
* BL2_AT_EL3 systems.
*/
#if RESET_TO_SP_MIN || RESET_TO_BL31 || BL2_AT_EL3
cluster_count = FVP_CLUSTER_COUNT;
cpus_per_cluster = FVP_MAX_CPUS_PER_CLUSTER * FVP_MAX_PE_PER_CPU;
#else
cluster_count = FCONF_GET_PROPERTY(hw_config, topology, plat_cluster_count);
cpus_per_cluster = FCONF_GET_PROPERTY(hw_config, topology, cluster_cpu_count);
/* Several FVP Models use the same blanket dts. Ex: FVP_Base_Cortex-A65x4
* and FVP_Base_Cortex-A65AEx8 both use same dts but have different number of
* CPUs in the cluster, as reflected by build flags FVP_MAX_CPUS_PER_CLUSTER.
* Take the minimum of two to ensure PSCI functions do not exceed the size of
* the PSCI data structures allocated at build time.
*/
cpus_per_cluster = MIN(cpus_per_cluster,
(uint32_t)(FVP_MAX_CPUS_PER_CLUSTER * FVP_MAX_PE_PER_CPU));
#endif
assert(cluster_count > 0U);
assert(cpus_per_cluster > 0U);
/*
* The highest level is the system level. The next level is constituted
* by clusters and then cores in clusters.
*/
fvp_power_domain_tree_desc[0] = 1;
fvp_power_domain_tree_desc[1] = FVP_CLUSTER_COUNT;
for (i = 0; i < FVP_CLUSTER_COUNT; i++)
fvp_power_domain_tree_desc[i + 2] =
FVP_MAX_CPUS_PER_CLUSTER * FVP_MAX_PE_PER_CPU;
fvp_power_domain_tree_desc[1] = (unsigned char)cluster_count;
for (i = 0; i < cluster_count; i++)
fvp_power_domain_tree_desc[i + 2] = (unsigned char)cpus_per_cluster;
return fvp_power_domain_tree_desc;
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment